
MRTA-Sim: A Modular Simulator for Multi-Robot Allocation,
Planning, and Control in Open-World Environments

Victoria Marie Tuck1†, Hardik Parwana2†, Pei-Wei Chen1, Georgios Fainekos2,
Bardh Hoxha2, Hideki Okamoto2, S. Shankar Sastry1, and Sanjit A. Seshia1

Abstract— This paper introduces MRTA-Sim, a
Python/ROS2/Gazebo simulator for testing approaches
to Multi-Robot Task Allocation (MRTA) problems on
simulated robots in complex, indoor environments. Grid-based
approaches to MRTA problems can be too restrictive for
use in complex, dynamic environments such in warehouses,
department stores, hospitals, etc. However, approaches that
operate in free-space often operate at a layer of abstraction
above the control and planning layers of a robot and make
an assumption on approximate travel time between points
of interest in the system. These abstractions can neglect
the impact of the tight space and multi-agent interactions
on the quality of the solution. Therefore, MRTA solutions
should be tested with the navigation stacks of the robots in
mind, taking into account robot planning, conflict avoidance
between robots, and human interaction and avoidance. This
tool connects the allocation output of MRTA solvers to
individual robot planning using the NAV2 stack and local,
centralized multi-robot deconfliction using Control Barrier
Function-Quadrtic Programs (CBF-QPs), creating a platform
closer to real-world operation for more comprehensive testing
of these approaches. The simulation architecture is modular
so that users can swap out methods at different levels of the
stack. We show the use of our system with a Satisfiability
Modulo Theories (SMT)-based approach to dynamic MRTA
on a fleet of indoor delivery robots.

I. INTRODUCTION

Centralized multi-robot systems are being used in many
new areas such as advanced air mobility, autonomous ve-
hicles, environmental monitoring, disaster management, and
hospital robotics [1] [2] [3] [4]. In industries such as health-
care, robots can be used to deliver medications and supplies,
provide a video platform for a call to family, or help with
rehabilitation [5] [6]. Such multi-robot systems are already
being used in warehouses [7]. However, these environments
are strongly structured and largely predictable. In contrast,
novel applications involve open-world environments and
unpredictable elements such as humans.

Multi-robot systems are often developed with a hierar-
chical approach where tasks are assigned at the highest
level, individual robots plan and follow trajectories, and
groups of robots must implement deconfliction and deadlock-
reducing strategies. In structured environments like ware-

†This work was completed in part during an internship at Toyota Motor
North America.

1Department of Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, CA, USA {victoria tuck,
pwchen, shankar sastry, sseshia}@berkeley.edu

2Toyota Motor North America, MI, USA hardiksp@umich.edu,
{georgios.fainekos, bardh.hoxha,
hideki.okamoto}@toyota.com

Fig. 1: View of robots (center of the blue circles) moving
in the simulation. Hospital beds, crowded rooms, humans,
and tight doorways create difficult movement challenges for
multi-agent, continuous operation.

houses, we see these multi-robot systems being successfully
used. However, when moving out of the warehouse into
more open-world environments, it can be difficult to analyze
such environments theoretically making the efficacy of these
approaches less clear. As real-world testing can be costly,
digital twins for testing in simulation can be used for
realistic evaluation faster and at a lower cost. Another major
challenge when comparing approaches is the lack of methods
implemented on a common platform for comparison. This
need has been highlighted in the validation section of the
recent Road map for Control for Societal-Scale Challenges
[8]. Finally, algorithms for robot movement and interaction
are often compared only on short, isolated tasks – such as
contrasting a control algorithm against another for a two
robot avoidance case. Yet, in practical applications, these
algorithms must operate continuously within a full system
over extended periods. Therefore, it is crucial to evaluate
methods on longer tasks and as part of a complete algorithm
stack to better understand their real-world performance.

In this work, we introduce MRTA-Sim, a simulation plat-
form for testing approaches to Multi-Robot Task Allocation
Systems (MRTA) in open-world environments. We build
upon Gazebo Classic, an open-source robotics simulator
and use the Robot Operating System 2 (ROS2) for robot
operation and coordination [9] [10]. Our simulator fulfills
the need for a common platform on which to evaluate
not only task allocation approaches with path planning and
control approaches but also different path planning and

ar
X

iv
:2

50
4.

15
41

8v
1

 [
cs

.R
O

]
 2

1
A

pr
 2

02
5

Fig. 2: The Gazebo view is shown in the top row; the bottom row shows the Rviz visualization of paths, obstacle points, and
agent positions and headings. From left to right: a) The yellow and pink agents follow the ”right-hand” travel rule on the
roads. The red agent is waiting for the higher priority pink agent to pass first due to the CBF cluster control b) A moving
human is shown in Gazebo and Rviz. c) Due to CBF cluster control, the green agent has moved out of the way of the red
agent that just arrived. d) The blue agent originally plans for the end of the queue (the right-most small dot) before it knows
its queue position. Once it receives its position, it adjusts its path to plan towards the room. The red agent is not in the
queue because it has completed its tasks.

control approaches when implemented for long-term multi-
agent systems. We include a baseline task allocation, path
planning, and control algorithm as well as infrastructure to
coordination many agents at different levels of centralization.
Visualization tools are included to understand the movements
of the agents.

The specific contributions of this work are
1) the MRTA-Sim shown in Fig. 1 and Fig. 2 which

provides a challenging and unpredictable environment
for benchmarking of MRTA, path planning, and control
approaches on long-term multi-robot multi-task prob-
lems;

2) a set of baseline algorithm implementations so that
users can more easily evaluate their new approach 1)
with respect to a turnkey baseline and 2) within a
system that must also complete task allocation, path
planning, or control;

3) an interface to the scenario generation tool Scenic [11]
for creation of different settings; and

4) an analysis of scalability of the system and its base
controller.

We describe related simulation and hardware platforms in
Sec. II. In Sec. III, we introduce the tool’s use case, architec-
ture, and multi-agent interaction methods. We provide brief
usage instructions in Sec. IV, and Sec. V includes scalability
experiments.

II. RELATED WORK

We provide a brief overview of related simulation plat-
forms for robotic evaluation. A summary of related work
is found in Table I. The first portion of this table looks at

whether or not the platform supports algorithms at each level
of a multi-robot system including control, path planning,
and task allocation. The second portion considers multi-robot
problems. We label a platform Multi-Robot:Centralized if it
has a centralized coordination system between the agents.
If agents have access to local position information of other
agents that they use to avoid conflicts, we assign the label
Multi-Robot:Decentralized. Lastly, an intermediate notion
of coordination (Multi-Robot: Local) indicates that agents
can i) determine leaders among locally located agents for
the leaders to ii) determine control for all local agents.
We describe if the platform’s environments have realistic
physics modeling (Physics-based) and/or modeled humans
(Humans). If the platform is a hardware platform (e.g.,
remote-access robots), we label it as Physics-based and also
include it under Real Hardware.

We compare platforms that are remote-access robot
hardware systems or benchmarking simulators for mobile
robotics. We acknowledge other important simulators such as
Maniskill, robosuite, and Isaac Sim but exclude them from
this comparison as they are focused more on completing
single robot tasks with an emphasis on scalable training for
learning [18] [19] [20]. The Robotarium provides a platform
for multi-agent testing on real robots and provides a safety
control layer but has little support for multi-layered architec-
tures and only obstacle projection [12]. ARGoS handles large
numbers of agents but also only includes a controller plugin
without the option for higher levels of planning including
path planning and task allocation [13]. VMAS also handles
large numbers of agents but is focused on testing and training
end-to-end learning approaches without consideration for

TABLE I: Comparison of Robotic Simulators and Hardware Platforms

Robot System Layers Robot Coordination Environment

Features →
↓ Simulator Control Path

Planning
Task

Allocation
Multi-Robot:
Centralized

Multi-Robot:
Local

Multi-Robot:
Decentralized Humans Physics-

based
Real

Hardware
Robotarium [12] ✓ ✓ ✓

ARGoS [13] ✓ ✓ ✓
Arena [14] ✓ ✓ ✓ ✓

Open-RMF [15] ✓ ✓ ✓ ✓ ✓ ✓
VMAS [16] ✓ ✓ ✓

REMROC [17] ✓ ✓ ✓ ✓ ✓
MRTA-Sim [ours] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

hierarchical systems and supports only simplistic Python
environments [16]. Arena offers complex environments that
include dynamic components but currently has no support for
multi-agent settings [14]. Open-RMF is a tool that considers
more of the hierarchical aspects with task allocation and
deconfliction [15]. However, it handles agent deconfliction
via use of a traffic schedule, which is highly centralized and
potentially less robust to environment changes. Remroc is a
simulator in Gazebo that tests multi-agent systems but with
a focus on multi-agent path finding problems and multi-
agent coordination without the task allocation component
[17]. Particularly important for robotic applications, it lacks
the typical robot path planning level. Across all of these
options, we see a need for a system that both handles multi-
robot coordination at various levels of centrality and can be
used for longer-term operation with online arriving tasks.

III. MULTI-AGENT TASK ALLOCATION SIMULATOR
(MRTA-SIM)

In this section, we provide an overview of the components
of the tool, images of which is shown in Fig. 2 and the
architecture of which is shown in Fig. 3. The tool can be
accessed at https://github.com/victoria-tuck/multi-robot-task-
allocation-stack. Section III-B explains each component of
the system. Section III-C goes into detail about how robots
deconflict and avoid deadlocks.

We use the notation [N] = 1, . . . , N to denote the set of
integers from 1 to N. The notation S−i = S \ i where S is
a set denotes the set with element i removed.

A. Problem and Use Case

Robots in complex, real-world environments need to be
able to respond and adjust to changing environments. These
systems should operate autonomously for long periods of
time and, therefore, need robust task allocation, planning, and
control algorithms. Operating in open-world scenarios is hard
to analyze theoretically, which is where realistic physics-
based simulations (digital twins) help validate approaches
for real-world use. However, no open source physics-based
simulator currently provides a turnkey multi-agent system
that includes features such as task allocation, decentralized
planning, control, and deconfliction. This means researchers
lack a platform to test their approaches across these levels
within the context of a long-running task allocation and
planning system. Our goal is to create such a simulator
that allows researchers to plug their new approach into the

system at any level, leveraging the baselines provided and
implementations of other algorithms in the stack to test on
sequences of tasks in a complex environment.

B. Architecture

In this section, we provide an overview of the architecture
of the tool. Figure 3 provides a complete view of the system,
and each block is explained in detail below.

1) Allocation Solver: The allocation solver determines
which agents complete which tasks and in what order. New
tasks are received from the task allocator as well as feedback
on which tasks have been completed by what time by each
robot. The Allocation Solver has access to travel times
between system locations and agent starting rooms. It needs
to either directly output a sequence of system locations for
each agent to track or needs to output this information in a
form factor that the user interprets in the task allocator to
create the sequences. The system locations V ⊂ P are given
in the form of a travel time graph G = (V,E). We denote
the set of valid robot positions as P . Additionally, if the user
would like to loosen the need for travel time information,
they can adjust the function of the task allocator and provide
a new solver while still using the rest of the system.

We have tested the SMrTa solver and specless for task
allocation in our framework [21] [22]. The SMrTa solver is
a Satisfiability Modulo Theories (SMT)-based approach to
Multi-Robot Task Allocation, and the Python library SPEC-
ification LEarning and Strategy Synthesis (SPECLESS) is
a tool for learning specifications from demonstrations and
synthesizing strategies. Both of these require knowledge of
approximate travel times between system locations.

2) Task Allocator: There is a single task allocator, which
calls the allocation solver when a new set of tasks arrives,
sends a sequence of waypoints to the waypoint generator for
each agent, and takes feedback from the waypoint generator
on actual waypoint arrival times.

The solver is initialized with a fully connected, weighted,
undirected graph of travel times G = (V,E) where an edge
ei,j = (vi, vj) ∈ E connects two locations of the system
vi ∈ V and vj ∈ V with a weight wij ∈ R+ that is an
approximation of the travel time between locations vi and
vj . The task allocator currently supports connection to the
SMrTa solver [21]. The task allocator calls the allocation
solver on the set of robots N , set of incoming tasks Mj ,
and travel time graph G and outputs a sequence of waypoints

https://github.com/victoria-tuck/multi-robot-task-allocation-stack
https://github.com/victoria-tuck/multi-robot-task-allocation-stack

Fig. 3: MRTA-Sim Architecture

Wi = wi,1, . . . wi,M , ∀i ∈ [N] where each waypoint wi,m ∈
Wi is a valid position ∈ P . The sequence of waypoints may
change whenever new tasks arrive to the system.

Due to the constrained and complex nature of the envi-
ronment, robots may not always take the expected time to
complete tasks. Therefore, the task allocator receives actual
travel time information as a sequence of the times that each
robot actually arrived at each waypoint. This sequence of
times is sent as feedback back to the waypoint generator as
ti,j , ∀wi,j ∈ Wi, ∀i ∈ [N].

3) Room Queues: Room queues are used to assist in
deadlock reduction between agents and are described in more
detail in Sec. III-C.3. Queues are established for each room
or heavily congested areas. A robot’s waypoint generator
plans a path to the end of the queue and requests a spot in
the queue once nearby. The waypoint generator updates the
sequence of waypoints based on the returned queue position
(e.g., if a robot initially planned toward some waypoint
w ∈ P that is the location of the final position of the queue
but is placed at the top of the queue, the waypoint generator
will add onto the path to move into the room). Only the robot
at the head of the queue is allowed in the room and will hold
onto the position until it has moved a certain distance away
from the room or finished all tasks. Once it finishes, the
queue updates and the next robot receives access.

4) Waypoint Generator: Each robot has three components
- a waypoint generator, path planner, and controller. The
highest level component, the waypoint generator, takes in
a sequence of high level actions to complete from the task
allocator, converts each action (such as ”pick up object A”)
into a sequence of waypoints and continuously provides
the next two waypoints (the one the agent is currently
heading to and the following) to the planner. The waypoint

generator will follow the roadways and manage requesting
room access via the room queues as well as update the
waypoint sequence based on the room queue position. At
minimum, the roadways include the starting and ending point
of each route is specified as the path to travel between
two system locations li, lj ∈ L. Intermediate waypoints to
designate the paths to travel on the roadways may also be
specified. The waypoint generator monitors the actual time
that each point is reached and stores that for feedback to
return to the task allocator.

5) Path Planner: The path planner calls the planner ser-
vice on the waypoints received from the waypoint generator
to determine a path for the robot. The robot waits to receive
valid plans from the planner before proceeding.

6) Controller: The controller has access to the robot’s
state, goal location, and size; the other robots’ states;
nearby obstacles; and the humans’ states and velocities. For
computational reasons, the nearest obstacles are found via
ray tracing along pre-specified directions about the robot.
The nearest obstacle point along the ray is captured and
represented as a list of obstacle points to the robot.

In the current base controller for the included turtlebot
robot, we support the unicycle dynamics

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω.

with position x and heading θ as the state and angular
velocity ω and velocity v as the control. Other robots with
unicycle dynamics can be exchanged in the world file and
tuned in the controller. If different dynamics or robot state are
needed, these can be changed in the controller wrapper, and
the user would need to provide a controller for their desired

Fig. 4: The bookshelf in these two screenshots has been
added via a Scenic program. The distance away from the
wall for each was automatically sampled from a distribution
by Scenic.

dynamics or provide a dynamic representation to the given
controller module. The base controller used is a CBF-QP,
which we include because of the current interest in CBFs
in the controls community [23]. Control is determined for
navigation to the closest point on the planner’s path at least
a minimum distance δ away; this parameter is currently set
to 0.5m but can be changed in the controller. An individual
CBF-QP is used when far away from others and a local,
centralized CBF-QP is used when near other active robots.
As explained in more detail in Section III-C.2, the wrapper
around a robot’s controller determines their cluster for the
local, centralized CBF-QP. Control is computed at a rate of
20 Hz but can be adjusted based on desired rate.

7) Simulator: For simulation, we use Gazebo Classic, an
open-source robotics simulator. Gazebo requires a world file
for environment description; we include the AWS Robo-
Maker Hospital World as the base environment. The interface
was written and tested in ROS2 Humble. Humans track
waypoints that can be specified in a yaml file; they are
modeled using the popular social force model [24]. We
also provide a basic interface to Scenic, a probabilistic
programming language for scenario generation [11]. Figure
4 shows a bookshelf that has been added in a randomly
sampled position by a scenic program. We note that the
currently provided costmap for obstacle avoidance does not
take Scenic-generated objects into account, so these will need
to be added into the costmap by the user.

8) Planning Service: The planning service requires a
waypoint and current position as ROS2 poses and returns
a Nav2 Path object. We use a single Nav2 stack with a
wrapper node, which all robots call for planning [25]. This
wrapper node allows a single Nav2 stack to be used as a
planning service so a single computer can support simulating
navigation for large numbers of robots at once. The base
planner finds paths using a cost-aware 2D-A∗ planner [26] on
a map of known static obstacle locations with a pre-computed
cost map.

C. Multi-Agent Interaction

In this section, we provide further information about the
provided approaches for conflict avoidance and deadlock

reduction. We use common approaches found in the literature
as baselines for comparison in future research.

1) Roadways: A network of road-like paths has been
designed for the floor so that agents can more easily navigate
past each other in corridors. Paths follow a right-hand rule
and are described via sequences of waypoints. The waypoint
generator will pull waypoints to follow from the network of
roads.

2) Local, Centralized Control via Control Barrier Func-
tion Quadratic Programs (CBF-QPs) : When a robot is
alone, it calculates its control via a CBF-QP with slack
using a distance based CBF to avoid obstacles [23]. For
deconfliction and deadlock avoidance in the presence of other
robots, a local, centralized CBF calculation among clusters
of robots is used to compute the control for each robot in
the cluster. For each robot i to determine its cluster, it first
uses the positional information of other agents pj∈[N]−i

, to
determine its set of neighbors Bi = {j ∈ [N]−i | ||pj−pi|| <
dmin}. Each robot shares Bi and creates an undirected graph
Gc = (Nc, Ec) where an edge in the graph indicates two
agents that are neighbors. The graph is formed with nodes
Nc = [N] and edge set Ec = {(i, j) | j ∈ Bi, i ∈ [N]}. Let
T = C1, . . . , Ck be the set of clusters (isolated components)
in the cluster graph resulting from taking the transitive
closure of the connection graph Gc. Each Ci ∈ T is a set
of agents that are in a cluster. Cluster vertices are disjoint
(Ci ∩Cj = ∅ ∀i ̸= j = 1, . . . k) as agents can only belong
to one cluster. The active robots of the cluster are the robots
with tasks currently assigned that are not waiting in a queue.
The leader of each cluster is a single agent determined by
priority assignment out of the active robots. We pre-designate
a priority ordering among agents that is used throughout the
simulation, but an alternative approach is to determine the
leader based on another metric such as distance to goal such
as in Garg et al. [27]. Each robot updates its current cluster
and cluster leader at a rate of 20 Hz.

The leader calculates control for all agents in the cluster
and sends remote control commands to the other cluster
agents. We calculate the distance di an agent i is from
their next waypoint, the desired heading angle θ∗i that points
directly towards the waypoint wi from their current position
pi and the heading angle error θ̂i with respect to their current
heading θi as

di = ||pi − wi||2
θ∗i = arctan 2(wi,y − pi,y, wi,x − pi,x)

θ̂i = θ∗i − θi

v∗i = min(kvdi cos(θ̂i), vmax).

In our CBF-QP implementation and found in
multi dynamic unicycle.py, the leader i’s nominal control
u∗
i towards waypoint wi from their current position pi with

velocity vi is their desired control

u∗
i =

{
[0, kθ θ̂i]

T if θ̂i < θ̄

[kv(v
∗
i − vi), kθ θ̂i]

T , otherwise,

Fig. 5: From left to right: All agents are stopped because they have no active tasks. Then the blue and green agents received
tasks. The green agent waits for the higher priority blue agent to pass. Then, it replans towards its goal and moves to follow
its path.

and the nominal control uj∗ for the jth other agent in the
cluster is to slow to a stop

u∗
j = [min(max(kslowvj ,−vmax), vmax), 0]

T .

The tuning parameters are kv, kθ, andkslow. Note that agents
stop moving towards their waypoint once they are less than a
minimum distance dmin away. Using local clusters allows for
scalable centralized multi-agent deconfliction, and the remote
control approach assists in deadlock avoidance.

3) Queueing : Each room or congested area with a
system location has a queue to manage access. The queue
receives requests to add robots and will remove a robot when
signaled to by the robot when the robot has exited the area.
An agent’s queue requests are managed by the waypoint
generator. Queue positions are placed outside the rooms.
With queueing, robots are less likely to get deadlocked at
doorways and within rooms. However, if this wait time is not
properly accounted for in the task allocator, this can cause a
mismatch between expected and actual task completion time.

IV. TOOL USAGE INSTRUCTIONS

Section IV-A explains the tool we provide to collect travel
time information for use within the task allocator. Section IV-
B contains more information about how to get started. An
example portion of a run is shown in Fig. 5

A. Travel Time Collection

In many approaches, we need an estimate of travel time
between relevant locations. We provide a script to move a
single agent between all pairs of locations in the system
to collect travel time information. Currently, we use the
maximum time for each pair in the travel time graph for
the task allocator though this can be changed in the travel
time script if another metric like an average is preferred.

B. Getting Started

We provide a brief overview here and direct the reader to
our github repository https://github.com/victoria-tuck/multi-
robot-task-allocation-stack for further instructions on tool
use. Requirements include a dedicated NVIDIA GPU for
graphics and a Linux install with docker.

A user specifies the starting locations of the robots in the
robot setup file and case config file as shown in Fig. 6. A
testcase file describes the sequence of tasks to arrive to the
system. Fig. 7 shows one such task request which would be
included as one element of the system’s task stream.

Setup is simplified by our use of docker. Relevant depen-
dancies for docker and nvidia-docker should be installed,
and a dockerfile is included to set up the environment.
Because we use ROS, the colcon workspace needs to be
built; instructions for this and other steps can be found in our
README. The testcase file is specified within the task al-
locator node (dispatcher.py). Additionally, we include many
aliases to shorten terminal commands to start Gazebo, Rviz,
and different nodes. These can be found in the README.
We have an Rviz visualization to better understand the
movements of the robots shown in Fig. 8.

In Fig. 9, we show the planned paths of three agents near
each other. The bottom (yellow) agent has received access to
the bottom room so is traveling there. It is close enough to
the other agents, so all three have formed a cluster with the
bottom agent as the leader. The other agents are paused due
to the cluster, and the upper (pink) one will move once the
bottom one moves further away as it becomes leader of the
smaller cluster. This is a screenshot from a simulation with

agents:
robot1:

start: [0, 2.2]
robot2:

start: [4.25, -27.2]

Fig. 6: Example configuration file for two agents with
starting positions (0, 2.2) and (4.25,−27.2).

https://github.com/victoria-tuck/multi-robot-task-allocation-stack
https://github.com/victoria-tuck/multi-robot-task-allocation-stack

"arrival": 40,
"tasks": [

{"start": 3, "end": 0, "deadline": 150},
{"start": 2, "end": 1, "deadline": 300}

]

Fig. 7: Example of how to specify a task request to the
system with the SMrTa solver. The two tasks arrive at t=40.
The first requires a pickup from room 3, a drop-off in room
0, and must be completed by t=150. The second has a similar
requirement.

Fig. 8: Agents, a queue outside a room, the sample obstacle
points, and the agent paths are shown in Rviz. Walls are
shown in black, and the blue and pink regions show the
costmap for obstacle collision avoidance.

six agents receiving 6 pick and drop tasks total in two sets. In
this run, two agents do run into planner issues and therefore
do not complete their tasks, which is unsurprising given that
planners may fail in certain cases. However, the use of our
tool will make easier designing and testing approaches to
such planning and other issues like deadlocks.

The user can swap out approaches by implementing their
approach as a new function and replacing the current function
call to the controller, allocation solver, or planning approach.
The planning approach can be changed inside the planner
service or can replace the planner service. The CBF-QP
function call can be swapped in the controller block, and
the task allocator similarly has an allocation solver function
call that can be adjusted. An additional swap that can be
made is to change the prioritization when determining the
cluster leader. Swapping allows the user to not only test the
component in a environment but to test it within the context
of the rest of the system. In the future, we intend to replace
the manual swap in the code with a configuration file where
the user can specify the methods to be used.

V. EXPERIMENTS

In this section, we study the scalability of our system. All
experiments are run on a computer running Ubuntu 20.04
with 20 3.5GHz Intel Cores i9-9900X and 64GB RAM
and a dedicated Nvidia GPU for Gazebo graphics. In Table

Fig. 9: Showing three agents in Rviz. Agents and their
current direction are represented by the arrows, and the lines
of corresponding color are their planned paths.

II, we analyze the time to compute computationally heavy
calculations for control on a six agent example. The single-
agent CBF-QP is invoked when an agent is far away from
others and can run at up to 100 Hz if desired. The multi-
agent CBF-QPs are invoked when in a cluster of that size,
and each multi-agent CBF-QP is solved by only one agent
of the cluster. The initial QP time refers to the time that
it takes to run the first call of this QP. We use JAX for
gradient calculation in the constraints of the QPs, and this
time difference is due to the JITing required for the first call
[28]. These results show us that the QP-based control can
run in real time (20 Hz) as the initial call can be run before
the run starts.

TABLE II: Average Time for CBF-QP Initial and Other
Control Calculations (s)

1-Agent 2-Agent 3-Agent
Init 0.0126 1.50 1.54

Other 0.00854 0.0143 0.0123

We also study the scalability by looking at the real-time
factor with respect to 2, 4, and 6 robotic agents in the
simulation in Table III. The table includes the lowest real-
time factor seen when running the simulation. Physics-based
simulators can struggle to handle too many agents at once,
which we do see in our simulator. In the future, we wish to
switch to a setup across multiple computers to mitigate this
issue.

TABLE III: Real-Time Factor

Number of Agents 2 4 6
Real-Time Factor 0.73 0.56 0.42

VI. CONCLUSION

In this work we introduce the MRTA-SIM tool, an open
source tool for testing long-term multi-robot task allocation
systems with hierarchical robot stacks in a realistic physics
simulator. Users of the tool can test their Multi-Robot Task
Allocation (MRTA) approach with standard deconfliction,
planning, and control approaches and/or study how different
deconfliction, planning, or control approaches affect the

success of the MRTA approach in this complex setting.
Additionally, our implementation supports multi-agent co-
ordination algorithms with different levels of centrality. We
note that robot-to-robot deconfliction and resolving dead-
locks are not solved problems, especially when such systems
are deployed in unstructured spaces. Therefore, although we
implement methods to mitigate these issues, our system is not
completely free of these issues, leaving room for this system
to be used to develop better approaches. Future directions
include adding intermittent corridor blockages, expanding
the environments supported, and modeling communication
outages. We also intend to add increased support for the
Scenic interface and improve accessibility and scalability by
using a distributed cloud-based implementation.

ACKNOWLEDGMENT

We acknowledge the use of ChatGPT and Microsoft
Copilot for portions of code creation.

REFERENCES

[1] L. A. Garrow, B. J. German, and C. E. Leonard, “Urban air mobility:
A comprehensive review and comparative analysis with autonomous
and electric ground transportation for informing future research,”
Transportation Research Part C: Emerging Technologies, vol. 132,
p. 103377, 2021.

[2] S. Jeon, J. Lee, and J. Kim, “Multi-robot task allocation for real-time
hospital logistics,” in IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pp. 2465–2470, 2017.

[3] B. Bayat, N. Crasta, A. Crespi, A. M. Pascoal, and A. Ijspeert,
“Environmental monitoring using autonomous vehicles: a survey
of recent searching techniques,” Current Opinion in Biotechnology,
vol. 45, pp. 76–84, 2017. Energy biotechnology • Environmental
biotechnology.

[4] S. Nabavi, B. Vahdani, B. A. Nadjafi, and M. Adibi, “Synchronizing
victim evacuation and debris removal: A data-driven robust prediction
approach,” European Journal of Operational Research, vol. 300, no. 2,
pp. 689–712, 2022.

[5] A. A. Morgan, J. Abdi, M. A. Syed, G. E. Kohen, P. Barlow, and
M. P. Vizcaychipi, “Robots in healthcare: a scoping review,” Current
robotics reports, vol. 3, no. 4, pp. 271–280, 2022.

[6] F. Yuan, E. Klavon, Z. Liu, R. P. Lopez, and X. Zhao, “A systematic
review of robotic rehabilitation for cognitive training,” Frontiers in
Robotics and AI, vol. 8, p. 605715, 2021.

[7] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” vol. 29, no. 1,
p. 9, 2008.

[8] A. M. Annaswamy, K. H. Johansson, and G. J. Pappas, eds., Control
for Societal-scale Challenges: Road Map 2030. IEEE Control Systems
Society Publication, 2023.

[9] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, pp. 2149–2154 vol.3, 2004.

[10] Open Source Robotics Foundation, “Ros 2.” https://index.
ros.org/doc/ros2/.

[11] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario
specification and scene generation,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’19, p. 63–78, ACM, June 2019.

[12] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control of
multirobot systems,” IEEE Control Systems Magazine, vol. 40, no. 1,
pp. 26–44, 2020.

[13] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari,
L. M. Gambardella, and M. Dorigo, “ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems,” Swarm Intelligence,
vol. 6, no. 4, pp. 271–295, 2012.

[14] V. Shcherbyna1, L. Kästner, D. Diaz, H. G. Nguyen, M. H.-K. Schreff,
T. Lenz, J. Kreutz, A. Martban, H. Zeng, and H. Soh, “Arena 4.0:
A comprehensive ros2 development and benchmarking platform for
human-centric navigation using generative-model-based environment
generation,” 2024.

[15] Open-RMF Contributors, “Open-RMF: Open robotics middleware
framework.” https://open-rmf.org/, 2024. Accessed: 2024-
10-30.

[16] M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok, “Vmas:
A vectorized multi-agent simulator for collective robot learning,”
in Proceedings of the 16th International Symposium on Distributed
Autonomous Robotic Systems, DARS ’22, Springer, 2022.

[17] L. Heuer, L. Palmieri, A. Mannucci, S. Koenig, and M. Magnus-
son, “Benchmarking multi-robot coordination in realistic, unstructured
human-shared environments,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 14541–14547, 2024.

[18] S. Tao, F. Xiang, A. Shukla, Y. Qin, X. Hinrichsen, X. Yuan, C. Bao,
X. Lin, Y. Liu, T. kai Chan, Y. Gao, X. Li, T. Mu, N. Xiao, A. Gurha,
Z. Huang, R. Calandra, R. Chen, S. Luo, and H. Su, “Maniskill3:
Gpu parallelized robotics simulation and rendering for generalizable
embodied ai,” 2024.

[19] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, K. Lin,
A. Maddukuri, S. Nasiriany, and Y. Zhu, “robosuite: A modular
simulation framework and benchmark for robot learning,” in arXiv
preprint arXiv:2009.12293, 2020.

[20] NVIDIA Corporation, “Isaacsim.” https://developer.
nvidia.com/isaac-sim, 2023.

[21] V. M. Tuck, P.-W. Chen, G. Fainekos, B. Hoxha, H. Okamoto,
S. S. Sastry, and S. A. Seshia, “Smt-based dynamic multi-robot
task allocation,” in NASA Formal Methods Symposium, pp. 331–351,
Springer, 2024.

[22] K. Watanabe, “Specless.” https://watakandai.github.io/
specless/, 2023.

[23] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC), pp. 3420–3431,
IEEE, 2019.

[24] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[25] S. Macenski, F. Martı́n, R. White, and J. Ginés Clavero, “The marathon
2: A navigation system,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[26] S. Macenski, M. Booker, and J. Wallace, “Open-source, cost-aware
kinematically feasible planning for mobile and surface robotics,” 2024.

[27] K. Garg, S. Hamilton, and C. Fan, “Deadlock resolution of connected
multi-agent systems using hierarchical control,” in 2024 IEEE 63rd
Conference on Decision and Control (CDC), pp. 1275–1282, 2024.

[28] R. Frostig, M. J. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” Systems for Machine Learning,
vol. 4, no. 9, 2018.

https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://open-rmf.org/
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://watakandai.github.io/specless/
https://watakandai.github.io/specless/

	Introduction
	Related Work
	Multi-Agent Task Allocation SIMulator (MRTA-SIM)
	Problem and Use Case
	Architecture
	Allocation Solver
	Task Allocator
	Room Queues
	Waypoint Generator
	Path Planner
	Controller
	Simulator
	Planning Service

	Multi-Agent Interaction
	Roadways
	Local, Centralized Control via Control Barrier Function Quadratic Programs (CBF-QPs)
	Queueing

	Tool Usage Instructions
	Travel Time Collection
	Getting Started

	Experiments
	Conclusion
	References

