
A Quadratic Control Framework for Dynamic Systems

Igor Ladnik∗

Abstract

This article presents a unified approach to quadratic optimal control for both linear and nonlinear discrete-time
systems, with a focus on trajectory tracking. The control strategy is based on minimizing a quadratic cost function
that penalizes deviations of system states and control inputs from their desired trajectories.

For linear systems, the classical Linear Quadratic Regulator (LQR) solution is derived using dynamic program-
ming, resulting in recursive equations for feedback and feedforward terms. For nonlinear dynamics, the Iterative
Linear Quadratic Regulator (iLQR) method is employed, which iteratively linearizes the system and solves a se-
quence of LQR problems to converge to an optimal policy.

To implement this approach, a software service was developed and tested on several canonical models, including:
Rayleigh oscillator, inverted pendulum on a moving cart, two-link manipulator, and quadcopter. The results confirm
that iLQR enables efficient and accurate trajectory tracking in the presence of nonlinearities.

To further enhance performance, it can be seamlessly integrated with Model Predictive Control (MPC), enabling
online adaptation and improved robustness to constraints and system uncertainties.

∗LinkedIn, email

ar
X

iv
:2

50
4.

15
39

6v
2

 [
ee

ss
.S

Y
]

 2
4

A
pr

 2
02

5

https://www.linkedin.com/in/igor-ladnik-ab93942
mailto:ladnik@hotmail.com

1 Introduction

Quadratic optimal control remains one of the most fundamental and practically significant problems in control theory,
with wide-ranging applications from robotics and aerospace systems to economics and biological motion modeling.
Classical Linear Quadratic Regulator (LQR) theory provides an elegant closed-form solution for optimal control in
linear systems with quadratic cost, offering both efficiency and robustness.

However, many real-world systems exhibit nonlinear dynamics, rendering direct application of LQR ineffective. To
address this, the iterative Linear Quadratic Regulator (iLQR) [1] method extends LQR to nonlinear domains through
a sequence of linearizations and optimizations. This iterative approach preserves the computational efficiency of LQR
while offering improved performance in nonlinear settings.

This article presents a unified treatment of both LQR and iLQR within a discrete-time trajectory tracking frame-
work. The cost function is expressed relative to desired trajectories for both states and controls. The resulting method
is applicable to a wide range of practical systems and is demonstrated through detailed simulations of Rayleigh oscil-
lator, an inverted pendulum on a moving cart, a two-link robotic manipulator and a quadcopter stabilization problem.

In addition, the iLQR method can be efficiently combined with Model Predictive Control (MPC). MPC is an
advanced control technique that solves a finite-horizon optimization problem at each time step using the current system
state as the initial condition. By integrating iLQR into the MPC framework, one can rapidly compute optimal control
sequences for nonlinear systems while continuously updating the control policy based on real-time feedback. This
hybrid iLQR–MPC scheme is particularly advantageous for systems with constraints, disturbances, or time-varying
dynamics, where both predictive adaptation and computational tractability are critical.

2 Problem Statement

We begin by formulating the optimal control problem for a nonlinear dynamical system governed by the differential
equation:

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T], (2.1)

where x(t) ∈ Rn is the system state, and u(t) ∈ Rm is the control input (Figure 1).

Figure 1: Open-loop control system.

Our objective is to minimize the following quadratic cost function:

J(u) =

∫ T

0

[
(x̂(t)− x(t))⊤Q(t)(x̂(t)− x(t)) + (û(t)− u(t))⊤R(t)(û(t)− u(t))

]
dt, (2.2)

where x̂(t) and û(t) denote the desired state and control trajectories. The matrices Q(t) and R(t) are symmetric and
time-dependent, with Q(t) positive semi-definite and R(t) positive definite.

This formulation corresponds to a standard trajectory tracking problem, commonly encountered in control theory.
The goal is to determine an optimal control input u(t) such that the system follows the desired trajectories as closely
as possible while minimizing the cost.

In the following sections, we first examine the linear case, deriving the optimal solution using dynamic program-
ming in discrete time. We then extend this approach to nonlinear systems using an iterative linearization technique,
corresponding to the iLQR method [1].

2

3 Linear Case

First, we consider a linear dynamic system governed by the well-known differential equation:

ẋ(t) = Ā(t)x(t) + B̄(t)u(t)

where x(t) is the state vector, u(t) is the control input, and Ā(t) and B̄(t) are the system and input matrices,
respectively.

In discrete form, this equation can be approximated as:

xk+1 = Ak xk +Bk uk (3.1)

with the discrete-time matrices Ak and Bk defined by:

Ak ≈ I + Ā(k∆t)∆t

Bk ≈ B̄(k∆t)∆t

where I is the identity matrix and ∆t is the discretization time step.
Suppose that x̂0 = x0. Then the discretization of the cost function (2.2) can be presented with the following expression

JN (u) =

N−1∑
k=0

[(x̂k+1 − xk+1)
⊤Qk(x̂k+1 − xk+1) + (ûk − uk)

⊤Rk(ûk − uk)] (3.2)

Let’s denote minimum of JN (u) as
mN (x0) = min

(u0,u1,...,uN−1)
JN (u)

and the minimum of the cost function on the last N − (k + 1) steps of the process is mN−(k+1)(xk+1).
Consider the k-th step of the process. Assuming that the control over the last N − (k + 1) steps is optimal, and
applying Bellman’s principle of optimality, the following relation is obtained:

mN−k(xk) = min
uk

[
(x̂k+1 − xk+1)

⊤Qk(x̂k+1 − xk+1) + (ûk − uk)
⊤Rk(ûk − uk) +mN−(k+1)(xk+1)

]
(3.3)

where k = 0, 1, 2, ..., N − 1.
At k = N , we have m0(xN) = 0.
Let’s assume that mN−k(xk) can be presented as

mN−k(xk) = x⊤k PN−kxk − 2v⊤N−kxk + aN−k (3.4)

where P is symmetric positively semi-defined matrix, v is vector and a is a value independent on x.
Replacing in (3.3) mN−(k+1)(xk+1) with expression (3.4) for (k + 1)-th step, getting

mN−k(xk) = min
uk

[
(x̂k+1 − xk+1)

⊤Qk(x̂k+1 − xk+1) + (ûk − uk)
⊤Rk(ûk − uk)+

x⊤k+1PN−(k+1)xk+1 − 2v⊤N−(k+1)xk+1 + aN−(k+1)

] (3.5)

The control sequence uk is determined by substituting the expression for xk+1 from equation (3.1) into equation (3.5),
and setting to zero the partial derivative with respect to uk of the expression in square brackets in (3.5).

uk = cN−k − FN−kxk (3.6)

where

WN−k = B⊤
k (Qk + PN−(k+1))Bk +Rk

cN−k =W−1
N−k

[
B⊤
k (Qkx̂k+1 + vN−(k+1)) +Rkûk

]
FN−k =W−1

N−k
[
B⊤
k (Qk + PN−(k+1))Ak

] (3.7)

If matrix W is near-singular, then a product of the regularization parameter (as in Levenberg–Marquardt regulariza-
tion) and the identity matrix may be added to it.

Substituting (3.6), (3.7) and (3.1) into (3.5), an expression for mN−k(xk) is derived in the form corresponding to
(3.4), where

Zk = Ak −BkFN−k

PN−k = Z⊤
k (Qk + PN−(k+1))Zk + F⊤

N−kRkFN−k

vN−k = Z⊤
k (Qkx̂k+1 + vN−(k+1) − (Qk + PN−(k+1))BkcN−k) + F⊤

N−kRk(cN−k − ûk)

(3.8)

3

Expressions (3.6)–(3.8) define the optimal control of the open-loop system uk, as illustrated in Figure 2, where cN−k
represents the control vector of the closed-loop system, and FN−k is the feedback gain matrix applied to all coordinates
of the state vector. Both of these parameters are generally time-dependent.

Figure 2: Closed-loop control system.

Theoretically, different combinations of cN−k and FN−k can yield the same values of uk in equation (3.6). However,
such variations can significantly affect the system’s response to unmodeled disturbances.

Clearly, not all coordinates of the state vector are directly measurable. The unmeasured components are estimated
using various observers, such as the Kalman filter.

The computation process proceeds as follows: First, during the backward pass, the parameters cN−k and FN−k
are computed using equations (3.7) and (3.8), starting from the final time step. Next, in the forward pass, the control
vector uk is computed using equation (3.6), and the corresponding state vector is then updated via the system dynamics
described in equation (2.1). The overall procedure is illustrated in Figure 3.

Figure 3: Computation schema.

4

4 Nonlinear Case

Now we extend the above result to the nonlinear systems. The main idea is using the above recurrent mechanism, to
obtain control policy with iterations for linearized control object. For that matter we linearize discrete representation
of (2.1)

xk+1 = f(k, xk, uk) (4.1)

For i-th iteration (trajectory) the controlled object is presented in the following form:

xi+1
k+1 = Aikx

i+1
k +Biku

i+1
k (4.2)

where transfer matrices at the k-th point of i-th trajectory are given with the following Jacobians

Aik = ∇xf(k, x
i
k, u

i
k) =

∂f

∂x

∣∣∣∣
xik,u

i
k

,

Bik = ∇uf(k, x
i
k, u

i
k) =

∂f

∂u

∣∣∣∣
xik,u

i
k

.

(4.3)

State and control vectors on (i+ 1)-th trajectory may be presented as:

xi+1
k = xik + δxik

ui+1
k = uik + δuik

(4.4)

Cost function (3.2) may be formulated for increments δx and δu. In this case, in the cost function (3.2), vectors of
desirable values x̂ and û should be replaced with new vectors δx̂ and δû respectively:

δx̂i+1
k+1 = x̂k+1 − xik+1

δûi+1
k = ûk − uik

(4.5)

This allows us to reduce the nonlinear problem to a sequence of linear iterations.

5 Computational Algorithm for Nonlinear Case

The algorithm consists of the following steps:

1. Assume initial (for iteration 0) vectors x0k and u0k (normally all zero values except for initial conditions x0k=0, but
the choice is up to a user).

2. Calculate linearized Aik and Bik for all k at the i-th trajectory according to (4.3). This can be performed either
analytically, by deriving Jacobians, or numerically using finite differences or automatic differentiation.

3. Calculate new vectors δx̂ik+1 and δûik of desirable values for the i-th iteration according to (4.5).

4. Calculate δxik and δuik with inverse and direct runs as for the linear case, replacing in (3.6)–(3.8), and (3.1) actual
and desirable state and control vectors with their respective increments:

xk ⇒ δxik, uk ⇒ δuik, x̂k ⇒ δx̂ik, ûk ⇒ δûik.

Regularization may be be applied in this step to ensure numerical stability.

5. Calculate xi+1
k and ui+1

k for (i+ 1)-th iteration with (4.4).

6. Check the condition to stop iterations. This condition may be based, e.g., on the difference between values of the
cost function compared to the previous iteration, or simply contain a fixed number of iterations. If the condition is
not satisfied, then steps 2 - 6 should be repeated until the stop condition will be satisfied. After the condition was
satisfied, policy uk and states xk is considered as the final solution.

It is important to note that even in the nonlinear case, when using a single iLQR iteration with constant desired state
x̂, control vector û, and weight matrices Q and R, both the input vector c and the feedback matrix F in equation (3.6)
remain constant. This observation enables the system designer to simplify, in some cases, the closed-loop control of
nonlinear systems by reducing it to time-invariant input and feedback terms.

Several numerical examples illustrating different scenarios are presented below.

5

6 Numeric Examples

The quadratic optimization algorithm was implemented as a software service and tested on several canonical models
of dynamic systems.

6.1 Rayleigh Oscillator

This dynamic system is described as following [2, 3].

Table 1: State and Control Variables

Variable Description

State Vector 1 x0 Position
2 x1 Velocity

Control Input 1 u Control input

Table 2: System Parameters and Equations

Symbol Description

a System nonlinearity parameter (a = 1.4)
b Control gain (b = 4)

ẋ0 x1

ẋ1 −x0 + a(1− x2
1

10)x1 + bu

Initial state of the system is presented in the Table 3.

Table 3: Initial State Vector

Parameter x (m) vx (m/s)

Value -5 -5

The objective of the control in this case is to drive the system to the zero state with minimal control effort. Constant
desired values of state and control and their weight factors are presented in the Table 4.

Table 4: Desired Values and Weights

Variable x0 x1 u

Desired Value 0 0 0
Weight 1 0 1

Two cases of control design are shown below. In the left-hand side of Figure 4 a single iteration variant of control
is presented. In this case the control may be implemented with constant negative feedbacks (Table 5) without input
of close-loop system (since the steady state is zero). The three iterations case is presented in the right-hand side of
Figure 4. Although the dynamics of the system state coordinates are similar in both cases, the initial control signal in
the open-loop system with constant feedback gains is significantly higher—approximately 9 vs. 6 m/s2.

6

Table 5: The Single Iteration Case

Symbol Value

c (closed-loop input) 0

F (feedback matrix)
[
0.7591 1.064

]

1 iteration 3 iterations

Figure 4: Comparison of Rayleigh system dynamics under different scenarios.

6.2 Inverted Pendulum on a Moving Cart

The inverted pendulum on a moving cart (Figure 5) is a classic nonlinear control system consisting of a pendulum
hinged on a horizontally moving cart [4, 5]. The goal is to apply a horizontal force to the cart in order to stabilize the
pendulum in its upright (inverted) position, despite its inherent instability. This system often serves as a benchmark
problem for validating control algorithms in robotics, automation, and feedback system design.

Figure 5: Schema of Inverted Pendulum on a Moving Cart [4].

Table 6: State and Control Variables

Variable Units Description

State Vector 1 x m Cart position
2 ẋ m/s Cart velocity
3 θ ° Pendulum angle from vertical

4 θ̇ °/s Angular velocity of pendulum

Control Input 1 u N Horizontal force on the cart

7

Table 7: System Dynamics and Parameters

Symbol Description

g Acceleration due to gravity (9.81 m/s2)
m Mass of the pendulum (1 kg)
M Mass of the cart (1 kg)
l Length to pendulum center of mass (1 m)

ẋ Cart velocity

θ̇ Angular velocity of pendulum

ẍ −mlθ̇2 sin θ+mg sin θ cos θ+u
M+m(1−cos2 θ)

θ̈ −mlθ̇2 sin θ cos θ+(M+m)g sin θ+u cos θ
l(M+m(1−cos2 θ)

The control objective is to shift the cart by 10 meters while stabilizing the pendulum in the upright position. The
corresponding constant desired values for the state and control vectors, along with their weights, are provided in
Table 8.

Table 8: Desired Values and Weights for Inverted Pendulum

Variable x ẋ θ θ̇ u

Desired Value 10 0 0 0 0
Weight 100 1 1 1 10

Figure 6 presents the control results using constant desired state, control inputs, and weight values for a single iteration
(left column) and for three iterations (right column).

8

Table 9: The Single Iteration Case

Symbol Value

c (closed-loop input) −19.84

F (feedback matrix)
[
−1.984 −3.595 49.87 12.83

]

Force, 1 iteration Force, 3 iterations

Position and velocity, 1 iteration Position and velocity, 3 iterations

Angle and angular velocity, 1 iteration Angle and angular velocity, 3 iterations

Figure 6: Comparison of pendulum system behavior under different scenarios.

Another selection of weight gains, presented in Table 10, results in a softened control input (force). In this case, the
transients (Figure 7) are significantly attenuated and require substantially more time to reach steady state. A single
iteration is sufficient here, as the variations in θ are relatively small and the system behaves almost linearly.

9

Table 10: Desired Values and Weights for Softened Control Input in the Inverted Pendulum System

Variable x ẋ θ θ̇ u

Desired Value 10 0 0 0 0
Weight 1 1 1000 1000 0

Table 11: The Single Iteration Case for Softened Control Input

Symbol Value

c (closed-loop input) −2.889

F (feedback matrix)
[
−0.2889 −1.103 38.36 12.86

]

Force, 1 iteration

Position and velocity, 1 iteration

Angle and angular velocity, 1 iteration

Figure 7: Dynamic response of the pendulum system under softened control input.

10

6.3 Two-Link Manipulator

We consider a simplified dynamic model of a two-link manipulator depicted in Figure 8 [6]. The state and control
variables are summarized in Table 12, while the corresponding mathematical model is presented in Table 13.

Figure 8: Schema of Two-Link Manipulator.

Table 12: State and Control Vector for Two-Link Manipulator

Variable Units Description

State Vector 1 θ1 rad Angle of link 1

2 θ̇1 rad/s Angular velocity of link 1
3 θ2 rad Angle of link 2

4 θ̇2 rad/s Angular velocity of link 2

Control Inputs 1 T1 Nm Torque at joint 1
2 T2 Nm Torque at joint 2

Table 13: Two-Link Manipulator Dynamic Parameters and Equations

Symbol Description

g Gravity constant 9.81m/s2

M1, M2 Masses of links (each 1 kg)
L1, L2 Lengths of links (each 1 m)
m M2/(M1 +M2)

θ̇1 Angular velocity of link 1

ω̇1
mT1/(M2L1)−mL2θ̇

2
2 sin(θ1−θ2)−g cos(θ1)−m cos(θ1−θ2)(T2/(M2L2)+L1θ̇

2
1 sin(θ1−θ2)−g cos(θ2))

L1(1−m cos2(θ1−θ2))
θ̇2 Angular velocity of link 2

ω̇2
T2/(M2L2)+L1θ̇

2
1 sin(θ1−θ2)−g cos(θ2)−cos(θ1−θ2)(mT1/(M2L1)−mL2θ̇

2
2 sin(θ1−θ2)−g cos(θ1))

L2(1−m cos2(θ1−θ2))

The objective is to compute an optimal control policy that drives the manipulator from zero initial conditions to the
final configuration with θ1 = π/4 and θ2 = π/6 radians. The corresponding desired state and control values, along
with their weights, are provided in Table 14.

Table 14: Desired Values and Weights (States vs Inputs)

Variable θ1 θ̇1 θ2 θ̇2 T1 T2

Desired Value π/4 0 π/6 0 0 0
Weight 100000 0 100000 0 1 1

11

Table 15: The Single Iteration Case

Symbol Value

c (closed-loop input)

[
230.3
152.3

]
F (feedback matrix)

[
283.0 33.64 15.54 11.29
15.53 11.29 267.4 22.35

]

Joint torques T1, T2, 1 iteration Joint torques T1, T2, 3 iterations

Joint angles θ1, θ2, 1 iteration. Reference deviations. Joint angles θ1, θ2, 3 iterations.

Angular velocities θ̇1, θ̇2, 1 iteration. Angular velocities θ̇1, θ̇2, 3 iterations.

Figure 9: Two-Link Manipulator control response comparisons.

It can be observed that under similar settings, the single-iteration case results in a steady-state deviation of the
joint angles from their reference values. Although this deviation can be corrected through parameter tuning, doing
so complicates the controller design process. In contrast, when three iterations are used, the system achieves zero
steady-state error.

12

6.4 Quadcopter

We consider a simplified dynamic model of a quadcopter, illustrated in Figure 10 [7, 8], which includes integrators
in the control input channels to enhance control smoothness. The associated state and control variables are listed
in Table 16, and the corresponding dynamic equations are detailed in Table 17. The numerical values of the model
parameters used in the simulations are provided in Table 18.

Figure 10: Schema of Quadcopter.

Table 16: State and Control Vectors for the Quadcopter

Variable Units Description

State Vector 1 ϕ rad Roll angle

2 ϕ̇ rad/s Roll rate
3 θ rad Pitch angle

4 θ̇ rad/s Pitch rate
5 ψ rad Yaw angle

6 ψ̇ rad/s Yaw rate
7 x m Position along x-axis
8 vx m/s Velocity along x-axis
9 y m Position along y-axis
10 vy m/s Velocity along y-axis
11 z m Position along z-axis
12 vz m/s Velocity along z-axis
13 T N Total thrust
14 τϕ Nm Torque around x-axis (roll)
15 τθ Nm Torque around y-axis (pitch)
16 τψ Nm Torque around z-axis (yaw)

Control Inputs 1 uT N/s Input to thrust integrator
2 uϕ Nm/s Input to τϕ integrator
3 uθ Nm/s Input to τθ integrator
4 uψ Nm/s Input to τψ integrator

13

Table 17: Quadcopter Dynamic Parameters and Equations

Category Symbol Units Description

Auxiliary Coefficients a1 =
Jy − Jz
Jx

– Gyroscopic coefficient (roll)

a2 =
Jz − Jx
Jy

– Gyroscopic coefficient (pitch)

a3 =
Jx − Jy
Jz

– Gyroscopic coefficient (yaw)

b1 =
l

Jx
m/kg·m² Input gain (roll)

b2 =
l

Jy
m/kg·m² Input gain (pitch)

b3 =
l

Jz
m/kg·m² Input gain (yaw)

Rotational Dynamics ϕ̇ = ωϕ rad/s Angular velocity around x-axis
ω̇ϕ = a1ωθωψ + b1τϕ rad/s² Angular accel. (roll)

θ̇ = ωθ rad/s Angular velocity around y-axis
ω̇θ = a2ωϕωψ + b2τθ rad/s² Angular accel. (pitch)

ψ̇ = ωψ rad/s Angular velocity around z-axis
ω̇ψ = a3ωϕωθ + b3τψ rad/s² Angular accel. (yaw)

Translational Dynamics ẋ = vx m/s Velocity along x-axis
v̇x = T

m
(cosϕ sin θ cosψ + sinϕ sinψ) m/s² Acceleration along x

ẏ = vy m/s Velocity along y-axis
v̇y = T

m
(cosϕ sin θ sinψ − sinϕ cosψ) m/s² Acceleration along y

ż = vz m/s Velocity along z-axis
v̇z = T

m
cosϕ cos θ − g m/s² Acceleration along z

Control Dynamics Ṫ = uT N/s Thrust control rate
τ̇ϕ = uϕ Nm/s Torque input (roll)
τ̇θ = uθ Nm/s Torque input (pitch)
τ̇ψ = uψ Nm/s Torque input (yaw)

Table 18: Model Parameters

Parameter Value Units Description

g 9.81 m/s2 Gravitational acceleration
l 0.23 m Arm length
m 0.65 kg Mass
Jx 7.5 · 10−3 kg ·m2 Moment of inertia about x-axis
Jy 7.5 · 10−3 kg ·m2 Moment of inertia about y-axis
Jz 1.3 · 10−2 kg ·m2 Moment of inertia about z-axis

The objective is to compute an optimal control policy that stabilizes the quadcopter (i.e., ensures hovering), starting
from the initial conditions specified in Table 19.

Table 19: Initial State Vector x0

Parameter ϕ (rad) ϕ̇ (rad/s) θ (rad) θ̇ (rad/s) ψ (rad) ψ̇ (rad/s) x (m) vx (m/s)

Value 0.3 1 -0.4 1 0.2 1 0 1

Parameter y (m) vy (m/s) z (m) vz (m/s) T (N) τϕ (Nm) τθ (Nm) τψ (Nm)

Value 0 1 0 -1 0 0 0 0

14

The computational results after five iterations, using the desired state and control values along with their corresponding
weights from Table 20, are presented in Figure 11.

Table 20: Desired Values and Weights

Variable ϕ ϕ̇ θ θ̇ ψ ψ̇ x vx y vy z vz T τϕ τθ τψ uT uϕ uθ uψ

Desired Value 0

Weight 10 1 10 1 10 1 10 1 10 1 50 5 0 0 0 0 0.5 0.5 0.5 0.5

Control input uT Control inputs uϕ, uθ, uψ

Generated thrust Torques τϕ, τθ, τψ

Positions x, y, z Velocities ẋ, ẏ, ż

Angles ϕ, θ, ψ Angular rates ϕ̇, θ̇, ψ̇

Figure 11: Quadcopter control and state evolution: inputs, forces, torques, position, velocity, and orientation.

A single iteration, which yields constant input and feedback, is insufficient to transfer the quadcopter to the hovering
position. With two iterations, the system reaches a hovering state, though with some deviation from the initial location.
Increasing the number of iterations results in a solution that ensures final hovering precisely at the initial point.

15

Conclusions

This paper presented a unified framework for solving quadratic optimal control problems using both classical LQR
and the iterative LQR (iLQR) algorithm. The approach is applicable to linear and nonlinear systems alike, leveraging
discrete-time dynamic programming and system linearization.

We demonstrated the effectiveness of the iLQR approach through detailed simulations involving Rayleigh oscillator,
an inverted pendulum, a two-link manipulator, and a quadcopter model. The results confirm the method’s tracking
accuracy under nonlinear conditions.

The modular structure of iLQR makes it well-suited for integration with Model Predictive Control (MPC) archi-
tectures, further enhancing its utility in real-time, constrained, or adaptive control environments. Future work may
explore real-world implementation scenarios, especially for robotics and aerial vehicle control.

References

[1] Li, W. & Todorov, E. (2004). Iterative linear quadratic regulator design for nonlinear biological movement
systems. In Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics
(ICINCO), pp. 222–229.

[2] J. Liang. (2003). Lecture notes for ece/mae 7360, robust and optimal control (part 2). Technical report, Utah
State University at Logan.

[3] Rayleigh Unconstrained

[4] E. Burdet. (2010). Inverted Pendulum on a Cart: Equations of Motion.

[5] B. L. Widjiantoro & M. K. Wafi. (2023). Discrete-time state-feedback controller with canonical form on inverted
pendulum (on a cart).

[6] Mahboub Baccouch. (2012). A two-link manipulator simulation and control design.

[7] Bouabdallah, S., Murrieri, P., & Siegwart, R. (2004). Design and control of an indoor micro quadrotor. In
Proceedings of the 2004 IEEE International Conference on Robotics and Automation.

[8] Shi Lu. (2018). Modeling, Control and Design of a Quadrotor Platform for Indoor Environments.

16

https://tomopt.com/docs/propt/tomlab_propt092.php
https://courses.ece.ucsb.edu/ECE594/594D_W10Byl/hw/cartpole_eom.pdf
https://arxiv.org/abs/2304.07838
https://arxiv.org/abs/2304.07838
https://www.academia.edu/9726014/A_two_link_manipulator_simulation_and_control_design_Advisor_Dr_Mahboub_Baccouch_Student
https://core.ac.uk/download/pdf/195380024.pdf

	Introduction
	Problem Statement
	Linear Case
	Nonlinear Case
	Computational Algorithm for Nonlinear Case
	Numeric Examples
	Rayleigh Oscillator
	Inverted Pendulum on a Moving Cart
	Two-Link Manipulator
	Quadcopter

