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Abstract

As a widely adopted technique in data transmission, video
compression effectively reduces the size of files, making
it possible for real-time cloud computing. However, it
comes at the cost of visual quality, posing challenges
to the robustness of downstream vision models. In this
work, we present a versatile codec-aware enhancement
framework that reuses codec information to adaptively en-
hance videos under different compression settings, assist-
ing various downstream vision tasks without introducing
computation bottleneck. Specifically, the proposed codec-
aware framework consists of a compression-aware adapta-
tion (CAA) network that employs a hierarchical adaptation
mechanism to estimate parameters of the frame-wise en-
hancement network, namely the bitstream-aware enhance-
ment (BAE) network. The BAE network further leverages
temporal and spatial priors embedded in the bitstream to
effectively improve the quality of compressed input frames.
Extensive experimental results demonstrate the superior
quality enhancement performance of our framework over
existing enhancement methods, as well as its versatility in
assisting multiple downstream tasks on compressed videos
as a plug-and-play module. Code and models are avail-
able at https://huimin-zeng.github.io/PnP-
VCVE/.

1. Introduction
With the flower booming of short video platforms, video
has become one of the most popular multimedia formats.
In addition to distributing visual content, in practical sce-
narios (e.g., autonomous driving [49, 54]), it is common to
upload the captured videos to the cloud end for further vi-
sual analysis and downstream applications (e.g., object de-
tection [6, 57] and segmentation [21, 50]). However, due to
the bandwidth constraint during transmission, these videos
are typically compressed with varying levels, resulting in
poor visual quality and suboptimal performance in down-
stream tasks [24, 65] (e.g., inaccurate segmentation bound-
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Figure 1. The proposed codec-aware enhancement framework
reuses codec information to adaptively enhance videos across dif-
ferent compression settings, while assisting in various downstream
tasks in a plug-and-play manner.

aries in Fig. 1). Given the crucial role of videos in data
transmission, there is a critical need for a versatile solution
to enhance videos of diverse compression levels and effec-
tively support various downstream tasks.

Existing video enhancement methods are hard to re-
spond to these demands. Specifically, to effectively en-
hance videos of different compression levels, previous
methods [12, 13, 17, 24, 36, 61] employ separate en-
hancement models for each compression level, which is
inflexible occurring unseen compression levels. Recent
approaches [9, 19, 53] consider this issue as the gener-
alization ability across diverse compression levels, there-
fore randomly selecting inputs of different compression
levels during training. However, such a training strategy
is compression-agnostic and offers limited improvement.
Most importantly, the aforementioned methods focus pri-
marily on improving perceptual quality, neglecting the need
to assist in downstream tasks in real-world scenarios.

Based on the mismatch between the versatility demand
and existing solutions, here we summarize the follow-
ing criteria of a favorable solution: 1) adaptively enhance
videos of varying compression levels with a single model;
2) effectively assist various downstream tasks on com-
pressed videos in a plug-and-play manner; and 3) given the
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practical scenarios where real-time processing is required, it
should meet the above objectives without causing a compu-
tation bottleneck. To achieve this, we introduce a codec-
aware enhancement framework (as shown in Fig. 1) that
reuses codec information embedded in the bitstream. By
incorporating compression factors, the framework dynam-
ically adjusts its parameters to flexibly enhance inputs of
different compression levels. By reusing motion vectors and
partition maps, it efficiently aggregates temporal and spatial
clues without introducing redundant computations.

Specifically, our codec-aware enhancement framework
comprises a compression-aware adaptation (CAA) network
and a bitstream-aware enhancement (BAE) network. The
CAA network serves as a “meta” network that dynamically
adjusts the parameters of the subsequent BAE network. A
hierarchical adaptation mechanism is proposed to first esti-
mate sequence-adaptive parameters based on the sequence
compression level, and then re-weight these parameters ac-
cording to the frame compression level, thereby achieving
a BAE network tailored for each input frame. The frame-
adaptive BAE network conducts motion vector alignment to
aggregate intra-frame information and provide useful clues
for the current frame. Subsequently, based on the region
complexity indicated by partition maps, the region-aware
refinement assigns independent filters for different regions,
achieving flexible enhancement for different regions. Com-
prehensive experiments are conducted to demonstrate the
superiority of our method in improving the quality of com-
pressed videos, and the effectiveness of assisting in various
downstream tasks (i.e., video super-resolution, optical flow
estimation, and video object segmentation). Our contribu-
tions are summarized as follows:
• We present a codec-aware framework for versatile com-

pressed video enhancement, which adaptively enhances
input videos of different compression levels and supports
a wide range of downstream vision tasks.

• We develop a compression-aware adaptation (CAA) net-
work and a bitstream-aware enhancement (BAE) network
that utilize the off-the-shelf codec information, contribut-
ing to generalizing across different compression settings
and boosting the enhancement performance with a unified
framework.

• Experimental results show the superiority of our method
over existing enhancement methods, and its effectiveness
in serving as a plug-and-play enhancement module to as-
sist in downstream tasks.

2. Related Work
2.1. Compressed Video Enhancement
Existing compressed video enhancement methods can be
categorized into in-loop and post-processing methods. Al-
though in-loop methods [16, 27, 29, 45] effectively im-
prove the quality of reconstructed frames, they embed filters

in the encoding and decoding loops, therefore not suitable
for enhancing already compressed videos. While the post-
processing methods [18, 28, 30, 41, 47, 53, 56, 62, 64, 67,
69, 71] provide more practical solutions to enhance com-
pressed videos by placing filters at the decoder side. Ob-
serving the quality fluctuation across frames, MFQE [61]
locates the peak quality frame (PQF) with an SVM-based
detector and proposes a multi-frame quality enhancement
mechanism to enhance non-PQFs. MFQE 2.0 [24] fur-
ther designs a BiLSTM-based detector and performs multi-
frame quality enhancement for both non-PQF and PQF. To
address the inaccuracies in optical flow estimation from
compressed videos, STDF [17] proposes estimating the
offset field using spatio-temporal deformable convolution.
S2SVR [36] introduces a sequence-to-sequence network to
model long-range dependencies within frames. The afore-
mentioned methods inflexibly equip a separate model for
each compression level, while we propose to adaptively
handle diverse inputs with a single unified model. Recent
methods [19, 71] utilize spatial priors from bitstream to ad-
dress multiple compression levels, however, they only con-
sider I/P-frames, whereas we design a hierarchical adapta-
tion mechanism to address all types of frames.

2.2. Codec-Aware Video Super-Resolution
Some works in video super-resolution (VSR) [12, 13, 32,
33, 58, 66, 68] explore ways of using codec information
such as motion estimation and spatial prior for reconstruc-
tion. COMISR [33] focuses on reducing accumulated warp-
ing errors caused by the random locations of the intra-frame
from compressed video frames. Chen et al. [12] employ
motion vectors to build the temporal relationship and sup-
press coding artifacts. CVCP [13] utilizes motion vectors
and spatial priors with a guided soft alignment scheme and
guided SFT layer, respectively. CIAF [66] leverages motion
vectors and residuals to model temporal relationships and
skip redundant computations, respectively. Despite lever-
aging codec information, these methods focus on a single
task (i.e., VSR). In contrast, our method not only shows
competitive performance in VSR (see supplementary mate-
rials), but also effectively supports a range of downstream
tasks, which is not explored by the aforementioned works.

2.3. Dynamic Neural Networks
Instead of setting separate models for different inputs, the
early mixture of expert (MoE) structure [2, 20, 42] con-
structs parallel network branches and selectively executes
branches to obtain the weighted outputs. Instead of increas-
ing the number of parallel branches, the dynamic parame-
ters ensemble strategy [2, 14, 20, 25, 42, 60] presets paral-
lel expert layers and selectively fusing their parameters to
promote the network capability and generalization ability,
therefore serving as an efficient alternative to MoE. To pro-
mote the generalization ability of pre-trained models, Gain-
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Figure 2. Hierarchical structure of quality adjustment, where
frames are divided into multiple groups of pictures (GOP). The
Constant Rate Factor (CRF) affects video quality at both sequence
and frame levels. An increase in the CRF value indicates a reduc-
tion in video quality (e.g., lower PSNR values).

tune [43] proposes to predict a single multiplicative scaling
parameter for each channel according to test samples, thus
modifying static models to test-adaptive ones. Li et al. [34]
handle the conflicts between the domain-agnostic model
and multiple target domains with dynamic transfer, which
is simply modeled by combining residual matrices and a
static convolution matrix. DRConv [11] divides the input
image into different regions with a learnable mask and as-
signs multiple filters for these regions, which enhances the
feature representation ability without introducing a notice-
able computation burden. Instead of searching and learning
conditions for dynamic parameters, we leverage priors em-
bedded in the bitstream as the condition.

3. Preliminaries
We take H.264 [59] as a representative standard to analyze
available codec information. Note recent codecs [5, 52] also
provide similar priors (i.e., CRF, motion vector, partition
map), therefore assuring the applicability of our method. To
reduce transmission bandwidth, codecs compress videos by
adjusting quality and reducing redundancy.

3.1. Hierarchical Quality Adjustment
Video quality is commonly influenced by the constant rate
factor (CRF), which involves hierarchical adjustment for
both sequence-wise and frame-wise compression.
Sequence-wise CRF. The CRF ranges from 0 to 51 to bal-
ance compression efficiency and visual quality. A higher
CRF results in more compact output but increased pixel
loss (e.g., the average PSNR of CRF35 is much lower than
CRF15 in Fig. 2). By considering the sequence-wise CRF
(denoted as CRFs), the enhancement network can be tai-
lored to handle videos of different compression levels.
Frame-wise CRF As shown in Fig. 2, a video sequence
is divided into multiple groups of pictures (GOP) and fur-
ther categorized as I-frames, P-frames, or B-frames. The
CRF value of each frame (denoted as CRFi) is dynamically

adjusted based on CRFs so that lower CRFi is assigned
for I/P frames to maintain quality and higher CRFi for B
frames for compact representations.

Inspired by the hierarchical quality adjustment
paradigm, we design a hierarchical adaptation paradigm
that first performs sequence adaptation to predict network
parameters based on CRFs, and then re-weights these
parameters according to CRFi for frame adaptation.
In practical scenarios where CRFi is unavailable (e.g.,
limited access to full bitstream), the proposed method can
instead use slice type (I/P/B) for frame adaptation, which is
demonstrated to yield similar performance in Sec. 5.2.

3.2. Redundancy Reduction
To reduce redundancy and improve the entropy of the bit-
stream, codecs block-wisely perform motion estimation to
model the intra-frame correlations and embed the correla-
tions in the bitstream for decoding.
Partition map. As shown in Fig. 1, different regions
of each frame are partitioned into blocks of varying sizes
(e.g., H.264 provides macroblocks of 16×16, 16×8, 8×16,
and 8×8) according to the texture complexity. Flat regions
(e.g., the ground) can tolerate higher quantization errors and
are therefore divided into blocks of large size, while com-
plex regions (e.g., leaves and fence) take smaller blocks to
maintain details. To effectively enhance regions of different
complexity, we propose dynamically assigning filters based
on the partition map that indicates region complexity.
Motion vector. Motion vectors are utilized in decoding
to aggregate information from reference frames and propa-
gate information of current frame. As illustrated in Fig. 1,
they describe the relationship between current frame and its
reference frames in a block-wise manner. Although motion
vectors can be noisy and are less precise than optical flow,
they effectively align reference frames with current frame,
serving as a cost-effective alternative for optical flow.

4. Codec-Aware Enhancement Framework
4.1. Overview
As shown in Fig. 3(a), the proposed method comprises
a compression-aware adaption (CAA) network Gϕ and a
bitstream-aware enhancement (BAE) network Fθi . The
CAA network employs a hierarchical compression adap-
tation mechanism to estimate parameters for the frame-
adaptive BAE network, which then aggregates intra-frame
information and performs region-aware refinement to en-
hance the input compressed frame.

4.2. Compression-Aware Adaptation Network
To handle sequences of varying compression levels and
quality fluctuations across frames, as illustrated in Fig. 3(a),
the CAA network Gϕ utilizes CRFs for sequence adapta-
tion to estimate sequence-adaptive parameters, and perform
frame adaptation to refine these parameters based on CRFi.
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Figure 3. The proposed Codec-Aware Enhancement Framework consists of two sub-networks: 1) the Compression-Aware Adaptation
(CAA) Network, which hierarchically applies sequence adaptation and frame adaptation to dynamically adjust parameters of the en-
hancement network; and 2) Bitstream-Aware Enhancement (BAE) Network, which leverages motion vectors to align frames and conducts
region-aware refinement to flexibly enhance regions of different complexity.

Sequence adaptation. To ensure robust performance
across multiple compression settings without increasing
complexity, we propose estimating sequence-adaptive pa-
rameters for the enhancement network instead of fusing fea-
tures from separate submodels. As shown in Fig. 3(b), par-
allel expert layers {fθ1 , fθ2 , ..., fθN }, which share the same
architecture but have independent parameters, serve as the
basis for parameter combination. The sequence-wise CRFs

is adopted as the condition to re-weight parameters of these
expert layers, which is expressed as follows,

fθs = Gϕs(CRFs, {fθ1 , fθ2 , ..., fθN }) =
N∑

n=1

wnfθn , (1)

where fθs and Gϕs
denote the sequence-adaptive expert

layer and the sequence-wise weight generator, respectively.
wn denotes the weight for each expert layer. We set N = 6
(see ablation studies in supplementary materials) and visu-
alize wn against different CRFs in Fig. 4, which shows
that each expert layer has a distinct preference for specific
CRFs. Compared to MoE that re-weights output features,
re-weighting expert layer parameters (as shown in Eq. 1)
is computationally efficient and comparable to the network
constructed with a single expert layer. Note that CRFs is
constant for frames within the same sequence, fθs is pre-
dicted only once and reused by subsequent frames.
Frame adaptation. To flexibly enhance frames with dif-
ferent visual quality, we propose to re-weight the sequence-
based fθs using frame-wise CRFi. We attribute the qual-
ity fluctuation between the sequence and current frame to
the disparity between CRFs and CRFi, which can be ad-
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Figure 4. Visualization of wn against different CRFs, where each
expert shows a distinct preference for specific CRFs values.

dressed by introducing a set of frame-wise auxiliary param-
eters △θi. As shown in Fig. 3(c), the auxiliary parameters
△θi that conditioned on CRFi re-weights the sequence-
adaptive fθs to obtain the frame-adaptive expert layer fθi ,
which is expressed as follows,

fθi = Gϕi
(CRFi, fθs) = fθs+△θi , (2)

where fθi and Gϕi denote the estimated frame-adaptive ex-
pert layer and the frame-wise parameters generator, respec-
tively. As shown by the black dashed lines in Fig. 3(a), the
obtained fθi is used to construct the enhancement blocks,
resulting in the frame-adaptive BAE network Fθi (intro-
duced in the following Sec. 4.3).

4.3. Bitstream-Aware Enhancement Network
To leverage high-quality frames and propagate information,
the BAE network Fθi utilizes motion vectors to align ref-
erence frames with the current frame. Meanwhile, the par-
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Reference frame

Figure 5. Visualization of features in region-aware refinement,
where hi and ĥi indicate the input and output features, re-
spectively. The refined features are denoted in the format of
S(M type

i , hi).

tition map serves as spatial complexity guidance to enable
flexible enhancement of different regions.
Motion vector alignment. Since the motion vectors
roughly model the temporal relationship in a block-wise
manner, for each block of the current frame shown in
Fig. 3(d), motion vectors locate blocks with similar content
in the previous and future reference features (highlighted
with red and blue boxes). The warped reference features
are concatenated with current frame along the channel di-
mension as input of the BAE network, expressed as follows,

x̂i = [MV (hp
i ),MV (hf

i ), xi], (3)

where x̂i, h
p
i and hf

i denote the current input frame, en-
hanced features of previous and future reference frames, re-
spectively. MV denotes warping reference features based
on motion vectors. [, ] denotes concatenation along channel
dimension. Bilinear interpolation is adopted for the case
that the offsets of motion vectors are not integers.
Region-aware refinement. To effectively enhance re-
gions of different complexity, we propose to dynami-
cally assign different filters for regions based on the par-
tition map. As shown in Fig. 3(e), the block-based par-
tition map Pi is decoupled into multiple binary masks
{M8×8

i ,M16×16
i , ...,M type

i } according to the size of mac-
roblocks, allowing separate refinement of regions using
sparse convolution [37]. The output is defined as the sum
of frame-adaptive extracted features and separately region-
aware refined features, depicted as follows,

ĥi = Fθi(x̂i, Pi) = fθi ∗ hi +

M∑
type=1

S(M type
i , hi), (4)

where ĥi indicates the output features. S denotes the opera-
tions applying sparse convolution guided by mask M type

i to
refine input features. In H.264 standard, three types of mac-
roblocks are used (16× 16, 8× 16/16× 8, and 8× 8), thus
M is set to 3. Features in region-aware refinement are visu-
alized in Fig 5, where the refined features are denoted with
operations like S(M8×8

i , hi). As can be seen, the output
features ĥi contain more fine-grained and high-frequency
details than hi. Meanwhile, refined features provide distinct
activations for different regions. For instance, S(M8×8

i , hi)

focuses on static objects (e.g., trees) while S(M8×16
i , hi)

focuses on moving objects (e.g., the bus).

4.4. Loss function
We adopt Charbonnier penalty loss [10] as the loss function
and train the proposed codec-aware enhancement frame-
work in an end-to-end manner. The specific loss function
is expressed as follows,

L =
1

T

T∑
i=1

√
∥yi − ŷi∥2 + ϵ2, (5)

where yi, ŷi and T indicate the uncompressed ground truth,
the predicted output, and the length of the input sequence. ϵ
is set to 1× 10−12.

5. Experiments
5.1. Experimental Settings
Compression settings. H.264 is a popular video com-
pression standard that compresses nearly 85% of internet
videos [1], and tends to introduce more severe degradations
than H.265 and H.266. We adopt H.264 [51] and compress
videos with the CRFs values of 15, 25, and 35.
Tasks and training dataset. Our tasks involve quality en-
hancement and assisting downstream tasks on compressed
inputs. The primary downstream tasks include video super-
resolution, optical flow estimation and video object seg-
mentation, with video inpainting reported as an extension to
fully evaluate the versatility. Training splits of REDS [44]
and DAVIS [46] datasets are combined for training.
Compared methods. We compare with representative
methods in compressed video enhancement, including
MFQE 2.0 [24], STDF [17], S2SVR [36] and Metabit [19].
For a fair comparison, we fully retrain these methods with
the same training dataset and configurations. For down-
stream tasks, the compressed video is first enhanced by
quality enhancement methods, and then fed to downstream
models for corresponding tasks and further assessment.

5.2. Results
Our evaluations are two-fold: 1) verifying the quality en-
hancement performance on seen, unseen, and highly com-
pressed scenarios; 2) evaluating the versatility to assist dif-
ferent downstream tasks on multiple compression settings.

5.2.1. Quality Enhancement Performance
Quantitative results. The results of compressed video
quality enhancement are reported in Tab.1, which is evalu-
ated on the REDS4 datasets [44] using PSNR and SSIM (the
higher the better). Note the CRF values of 18, 28 and 38 are
not included during training. For each method, we include
the model complexity and inference speed. For our method,
we report results of both applying CRFi and its substitu-
tion with slice type (highlighted with grey ). As shown in
Tab. 1, leveraging slice type yields comparable performance
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Method Param/M FLOPs/G Speed/ms FPS
CRF15 CRF25 CRF35 CRF18 CRF28 CRF38

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
Input - - - - 41.04 / 0.9785 34.92 / 0.9363 29.25 / 0.8238 39.12 / 0.9698 33.18 / 0.9123 27.69 / 0.7725
MFQE 2.0 [24] 1.64 51 53 19 40.95 / 0.9806 34.83 / 0.9378 29.22 / 0.8256 38.97 / 0.9712 33.13 / 0.9140 27.67 / 0.7742
STDF [17] 1.27 45 38 26 41.15 / 0.9793 35.23 / 0.9398 29.74 / 0.8359 39.28 / 0.9712 33.58 / 0.9178 28.11 / 0.7853
S2SVR [36] 7.43 294 - - 41.96 / 0.9834 35.61 / 0.9445 29.87 / 0.8391 39.88 / 0.9755 33.87 / 0.9223 28.19 / 0.7881
Metabit [19] 1.60 92 24 42 41.04 / 0.9785 34.92 / 0.9363 29.25 / 0.8238 39.11 / 0.9698 33.18 / 0.9123 27.69 / 0.7725

Ours 4.56 47 36 28
42.22 / 0.9842 35.90 / 0.9468 30.17 / 0.8471 40.17 / 0.9767 34.16 / 0.9258 28.49 / 0.7985
42.24 / 0.9842 35.91 / 0.9468 30.19 / 0.8472 40.18 / 0.9767 34.17 / 0.9258 28.52 / 0.7985

Table 1. Quantitative results on quality enhancement, where PSNR and SSIM (higher is better) are adopted for evaluation. The best and
second best results are marked with bold and underline. Results obtained by replacing CRFi with slice type are highlighted with grey .

Frame 030, Clip 020, CRF35 MFQE 2.0 STDF Ours GTS2SVRInput Metabit

Figure 6. Qualitative results on quality enhancement, where our method effectively reduces the compression artifacts, achieving visually
pleasant results. In contrast, the results of the compared methods still contain severe distortions (e.g., the calf in the 1st row).

Method
CRF15 CRF25 CRF35

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
BasicVSR 29.24 / 0.8212 26.19 / 0.7131 23.40 / 0.6005
+ MFQE 2.0 29.29 / 0.8233 26.28 / 0.7182 23.46 / 0.6056
+ STDF 29.31 / 0.8247 26.51 / 0.7293 23.80 / 0.6249
+ S2SVR 29.45 / 0.8288 26.70 / 0.7346 23.86 / 0.6270
+ Metabit 29.24 / 0.8211 26.19 / 0.7131 23.39 / 0.6005
+ Ours 29.54 / 0.8328 26.85 / 0.7419 24.02 / 0.6361
IconVSR 29.29 / 0.8230 26.19 / 0.7130 23.39 / 0.6003
+ MFQE 2.0 29.37 / 0.8254 26.28 / 0.7182 23.45 / 0.6055
+ STDF 29.36 / 0.8263 26.52 / 0.7292 23.79 / 0.6248
+ S2SVR 29.54 / 0.8306 26.71 / 0.7345 23.85 / 0.6269
+ Metabit 29.29 / 0.8230 26.19 / 0.7130 23.39 / 0.6003
+ Ours 29.63 / 0.8344 26.86 / 0.7418 24.01 / 0.6360
BasicVSR++ 29.61 / 0.8303 26.19 / 0.7118 23.38 / 0.5998
+ MFQE 2.0 29.66 / 0.8322 26.27 / 0.7169 23.44 / 0.6051
+ STDF 29.68 / 0.8338 26.53 / 0.7289 23.79 / 0.6247
+ S2SVR 29.82 / 0.8371 26.72 / 0.7346 23.85 / 0.6269
+ Metabit 29.61 / 0.8303 26.19 / 0.7118 23.38 / 0.5997
+ Ours 29.92 / 0.8407 26.87 / 0.7419 24.00 / 0.6358

Table 2. Quantitative results of ×4 VSR, where the best and sec-
ond best results are highlighted with bold and underline.

to CRFi, with a negligible decrease of PSNR (<0.03 dB),
demonstrating the feasibility of replacing CRFi with slice
type in practical. The proposed method notably improves
the quality of compressed input, achieving a PSNR gain
of 1.2 dB on CRF15, while MFQE 2.0 and Metabit lead
to no improvement. With similar computation cost and in-
ference speed, our method significantly outperforms STDF,
obtaining a PSNR gain of 1.09 dB on CRF15. Compared to
S2SVR, our approach takes only 61% of the parameters and
16% of the FLOPs, and achieves a throughput of 28 FPS,
which underlines its practicality. In addition, our method
shows robustness and generalization ability on unseen sce-

narios (i.e., CRF18, CRF28 and CRF38), achieving up to
1.06 dB PSNR gain on CRF18. In contrast, other methods
trained with mixed compression settings show sub-optimal
performance. For instance, STDF and S2SVR only achieve
PSNR gains of 0.16 dB and 0.76 dB at CRF18, while MFQE
2.0 shows no improvement. Quantitative results on highly
compressed scenarios (i.e., CRF40, CRF45, CRF48) are in-
cluded in the supplementary materials.
Qualitative results. Qualitative comparisons are provided
in Fig. 11. As can be seen, MFQE 2.0 and Metabit struggle
to improve the quality of compressed inputs. Both STDF
and S2SVR cannot adequately remove compression arti-
facts (e.g., boundary of the calf), while the proposed method
effectively eliminates the compression artifacts, preserving
accurate edges and textures. We provide more qualitative
comparisons in the supplementary materials.

5.2.2. Versatility Evaluation
To evaluate the versatility in assisting practical downstream
tasks, we employ the implementation that utilizes slice type
for frame adaptation (as described in Sec. 3.1) to enhance
compressed inputs for downstream tasks. More qualitative
comparisons are included in the supplementary materials.
Video super-resolution. We adopt BasicVSR [7], Icon-
VSR [7], and BasicVSR++ [8] as the representative baseline
methods for ×4 video super-resolution (VSR), which are
trained on “clean” data without considering compresstion.
The evaluation is conducted on the REDS4 dataset [44] and
summarized with PSNR and SSIM (the higher the better).
As depicted in Tab. 2, pre-enhancing compressed inputs
with Metabit fails to improve the performance of down-
stream VSR models. In contrast, pre-enhancing with our
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Input + STDF + OursIconVSR + MFQE 2.0 GT+ S2SVR + Metabit

Figure 7. Qualitative results of ×4 VSR. Pre-enhancing with our method before VSR effectively avoids amplifying compression artifacts.
While other methods cannot fully eliminate the artifacts and even severe the distortions (e.g., results of MFQE 2.0).

+ STDF + OursDEQ + MFQE 2.0Frame + S2SVR + Metabit

Figure 8. Qualitative results of optical flow estimation. As can be seen, pre-processing with our method effectively corrects the mispredicted
optical flow, especially the boundaries of moving objects (e.g., edge of the moving car).

Method CRF15 CRF25 CRF35

EPE↓ / F1-all↓ EPE↓ / F1-all↓ EPE↓ / F1-all↓
RAFT 5.26 / 17.81 7.37 / 22.13 16.73 / 44.70
+ MFQE 2.0 5.32 / 17.83 7.27 / 21.92 16.68 / 44.74
+ STDF 5.34 / 17.93 7.13 / 22.16 15.92 / 44.04
+ S2SVR 5.22 / 17.71 6.90 / 21.57 15.73 / 44.62
+ Metabit 5.32 / 17.86 7.33 / 22.07 16.69 / 44.28
+ Ours 5.20 / 17.69 6.52 / 20.99 14.84 / 42.56

DEQ 3.99 / 13.71 5.40 / 17.33 13.94 / 41.63
+ MFQE 2.0 3.97 / 13.73 5.14 / 17.06 14.06 / 41.72
+ STDF 4.08 / 13.84 5.27 / 17.38 13.52 / 40.75
+ S2SVR 4.01 / 13.69 5.22 / 16.99 13.74 / 41.65
+ Metabit 3.92 / 13.78 5.30 / 17.33 13.84 / 41.21
+ Ours 3.97 / 13.68 4.96 / 16.54 13.09 / 39.43

KPAFlow 4.46 / 16.07 6.71 / 20.96 16.50 / 45.13
+ MFQE 2.0 4.42 / 15.96 6.71 / 20.92 16.70 / 45.29
+ STDF 4.52 / 16.19 6.96 / 21.53 15.62 / 44.17
+ S2SVR 4.37 / 15.96 6.10 / 19.76 15.62 / 44.23
+ Metabit 4.47 / 16.17 6.75 / 21.08 16.68 / 44.90
+ Ours 4.43 / 16.10 5.59 / 18.73 14.83 / 41.24

Table 3. Quantitative results of optical flow estimation, where we
highlight the best and second best results with bold and underline.

framework yields consistent improvement especially in sce-
narios of high compression (e.g., up to 0.62 dB PSNR gain
with BaiscVSR++ on CRF35). Meanwhile, our method
significantly outperforms MFQE 2.0 and STDF, achieving
PSNR gains of 0.25 dB and 0.23 dB over MFQE 2.0 and
STDF on BasicVSR/CRF15, respectively. Compared with
S2SVR, the proposed method offers more effective support
to VSR models with lower complexity. As shown in Fig. 12,
performing VSR on compressed data inevitably amplifies
compression artifacts (e.g., the 1st column), while results
pre-enhanced with our method maintain accurate edges and
textures, avoiding distortions seen in other methods.
Optical flow estimation. We adopt RAFT [55], DEQ [3],
and KPAFlow [40] as baseline models for optical flow esti-
mation. Evaluation on the KITTI-2015 dataset [23] is sum-
marized with EPE (end-point-error) and F1-all loss, where
lower values indicate better accuracy. As shown in Tab. 3,

Method
CRF15 CRF25 CRF35

Avg↑ / J ↑ / F ↑ Avg↑ / J ↑ / F ↑ Avg↑ / J ↑ / F ↑
STCN 85.07 / 81.83 / 88.32 84.35 / 80.96 / 87.74 79.20 / 76.04 / 82.37
+ MFQE 2.0 84.96 / 81.71 / 88.21 84.30 / 80.92 / 87.69 79.28 / 76.11 / 82.44
+ STDF 85.01 / 81.73 / 88.28 84.23 / 80.97 / 87.50 79.77 / 76.52 / 83.02
+ S2SVR 85.17 / 81.93 / 88.41 84.46 / 81.20 / 87.72 80.04 / 76.88 / 83.20
+ Metabit 84.56 / 80.97 / 88.14 83.86 / 80.18 / 87.55 79.03 / 75.65 / 82.40
+ Ours 85.21 / 81.99 / 88.44 84.63 / 81.42 / 87.85 81.57 / 78.46 / 84.69
DeAoT 85.90 / 82.89 / 88.91 85.18 / 82.37 / 88.00 82.87 / 79.86 / 85.88
+ MFQE 2.0 85.86 / 82.84 / 88.88 85.20 / 82.38 / 88.03 82.86 / 79.86 / 85.85
+ STDF 85.83 / 82.80 / 88.87 85.18 / 82.27 / 88.09 82.90 / 79.92 / 85.89
+ S2SVR 86.05 / 83.09 / 89.01 85.05 / 82.07 / 88.04 82.64 / 79.63 / 85.65
+ Metabit 85.47 / 82.04 / 88.90 84.95 / 81.57 / 88.33 82.32 / 79.04 / 85.59
+ Ours 86.08 / 83.13 / 89.03 85.31 / 82.38 / 88.25 82.88 / 79.83 / 85.92
QDMN 85.16 / 82.20 / 88.11 84.16 / 81.20 / 87.12 79.39 / 76.61 / 82.18
+ MFQE 2.0 85.13 / 82.20 / 88.06 84.15 / 81.18 / 87.13 79.51 / 76.75 / 82.27
+ STDF 85.32 / 82.38 / 88.27 83.36 / 80.44 / 86.27 79.64 / 76.69 / 82.59
+ S2SVR 85.28 / 82.32 / 88.23 83.64 / 80.65 / 86.63 79.02 / 76.15 / 81.89
+ Metabit 84.50 / 81.14 / 87.87 83.68 / 80.30 / 87.06 79.47 / 76.41 / 82.52
+ Ours 85.34 / 82.41 / 88.27 84.37 / 81.42 / 87.32 79.78 / 76.92 / 82.65

Table 4. Quantitative results of VOS, where the best and second
best results are highlighted with bold and underline.

our method consistently reduces the EPE and F1-all loss
across all baseline models, demonstrating its effectiveness
in improving optical flow estimation. In contrast, meth-
ods such as MFQE 2.0, STDF and Metabit fail to deliver
consistent improvements. For instance, MFQE 2.0 fails to
improve the performance of RAFT on CRF15, STDF and
Metabit detrimentally affects the performance of DEQ and
KPAFlow on CRF15. Visualizations of predicted optical
flow are shown in Fig. 13, where inaccurate boundaries are
highlighted with red arrows. As can be seen, optical flow es-
timated from compressed inputs contains inaccurate bound-
aries, especially near-motion ones. The proposed method
helps to deliver more accurate results in these regions com-
pared to others. For instance, it effectively corrects the op-
tical flow near the car that was mispredicted by DEQ, while
MFQE 2.0 and S2SVR provide limited improvement.
Video object segmentation. For video object segmentation
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STCN + MFQE 2.0 + STDF + Ours GT+ S2SVR + Metabit

Figure 9. Qualitative results of VOS. As can be seen, directly performing VOS on compressed inputs leads to inaccurate masks, whereas
pre-enhancing with our method effectively improves the accuracy, especially for the regions of irregular shapes (e.g., the windshield).

Masked frame 𝐸!FGVI + Metabit+ MFQE 2.0 + STDF + S2SVR + Ours

Figure 10. Qualitative results of video inpainting. As can be seen, pre-enhancing the compressed inputs with the proposed method helps
to reduce the artifacts and color distortion in the removed region, providing more visually pleasant results.

(VOS), we adopt STCN [15], DeAoT [63] and QDMN [38]
as representative baselines. Evaluations on DAVIS-17 val
dataset [46] are summarized with the following metrics: the
J (average IoU), the F score (boundary similarity), and
the average of the above metrics (denoted as Avg). Higher
values indicate better segmentation accuracy. As shown in
Tab. 4, the proposed method shows the best performance
in improving accuracy across VOS models. For instance, it
elevates the average accuracy for up to 2.37% (79.20% to
81.57%) on STCN at CRF35, while MFQE 2.0, STDF and
S2SVR yield limited improvement of 0.08%, 0.57% and
0.84%, respectively. And Metabit provides no improvement
on STCN at CRF35. The results of VOS are included in
Fig. 14, where accurately segmenting objects in compressed
videos is challenging for VOS baselines (e.g., inaccurate
mask of the windshield predicted by STCN). Pre-enhancing
the compressed videos with MFQE 2.0 and S2SVR strug-
gles to address this issue, whereas the proposed method sig-
nificantly refines the segmentation results, demonstrating its
effectiveness in assisting the VOS task.
Video inpainting. We take E2FGVI [35] as the video
inpainting model and perform video object removal on
DAVIS-17 val dataset [46]. The qualitative results are
shown in Fig. 15. As can be seen, compression-included
misalignment between objects and masks hinders the abil-
ity to remove specified objects, causing color distortions
(e.g., the horse region). Pre-enhancing the compressed in-
puts with the proposed method notably refines the artifacts
and distortions, yielding more visually pleasing results.

5.3. Ablation Studies
We start with a baseline that concatenates reference frames
and current frames as input, without using codec informa-
tion. We then progressively equip the baseline with MV
alignment, region-aware refinement, sequence adaptation,
and frame adaptation to assess their contributions.
MV alignment. As shown in the 2nd row of Tab. 5, incor-
porating MV alignment yields a PSNR gain of up to 0.65
dB on CRF15, demonstrating the effectiveness of MV in

Model
CRF15 CRF25 CRF35

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
Baseline 41.04 / 0.9785 34.92 / 0.9363 29.25 / 0.8238

+ MV Align. 41.69 / 0.9821 35.59 / 0.9437 29.95 / 0.8403
+ RA Refine. 42.04 / 0.9837 35.70 / 0.9449 30.00 / 0.8427

+ Seq. Adapt. 42.08 / 0.9838 35.76 / 0.9458 30.04 / 0.8444
+ Frame Adapt. 42.14 / 0.9839 35.81 / 0.9460 30.09 / 0.8446

Table 5. Ablation studies on MV alignment, region-aware refine-
ment, sequence adaptation, and frame adaptation.

aligning reference frames and current frame.
Region-aware refinement. We further incorporate the
region-aware refinement module to refine the features of
different regions. As shown in the 3rd row of Tab. 5, it
leads to notable PSNR gains of 0.35dB, 0.11dB and 0.05dB
on CRF15, CRF25 and CRF35, respectively.
Sequence adaptation. As shown in the 4th row of Tab. 5,
sequence adaptation brings PSNR gains of 0.04 dB, 0.06 dB
and 0.04 dB on CRF15, CRF25 and CRF35, respectively.
Frame adaptation. As shown in the 5th row of Tab. 5,
frame adaptation improves PSNR by 0.06 dB 0.05 dB and
0.05 dB on CRF15, CRF25 and CRF35, respectively. We
further analyze its effectivness on improving the temporal
consistency in the supplementary materials.

6. Conclusion
In this paper, we introduce a versatile codec-aware enhance-
ment framework that adaptively handles diverse compres-
sion settings and serves as a plug-and-play enhancement
module to consistently boost various downstream tasks. By
reusing the off-the-shelf codec information, our method
minimizes additional computational costs. Compared with
existing compressed video enhancement solutions, it shows
superority in both enhancement performance and robust-
ness, making it possible to deploy pre-trained models on
compressed videos without a significant performance drop.
Acknowledgments. We acknowledge funding from the Na-
tional Natural Science Foundation of China under Grants
62131003 and 62021001.
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Plug-and-Play Versatile Compressed Video Enhancement

Supplementary Material

This supplementary document is organized as follows:
– Section A provides a detailed explanation and pseudo-

code to clarify the procedure for enhancing compressed
frames.

– Section B reports quantitative comparisons for quality
enhancement in highly compressed scenarios (i.e., CRF40,
CRF45 and CRF48) to demonstrate the robustness of the
proposed method.

– Section C provides more qualitative comparisons on
quality enhancement (Section C.1) and downstream tasks
(Section C.2), including video super-resolution, optical flow
estimation, video object segmentation, and video inpaint-
ing.

– Section D presents results of extending the proposed
framework to compressed video super-resolution to demon-
strate its applicability across various domains.

– Section E provides visual results of incorporating MV
alignment and region-aware refinement, analyzing the num-
ber of experts and impact of frame adaption for improving
the temporal consistency.

– Section F introduces details of experimental settings,
including the dataset preparation, baseline methods, and im-
plementation details.

– Section G discusses related works that also focus on
downstream vision tasks, and further analyzes applicable
scenarios of these works and the proposed method.

A. Procedure of Quality Enhancement

The goal of compressed video enhancement is to re-
construct high-quality outputs {ŷ1, ŷ2, ..., ŷT } from com-
pressed inputs {x1, x2, ..., xT }. Our proposed frame-
work achieves this through two key components: the
compression-aware adaptation (CAA) network, denoted as
Gϕ, and the bitstream-aware enhancement (BAE) network,
denoted as Fθi , which ensure adaptively handling different
compression settings and reconstructing high-fidelity con-
tent, respectively. The overall procedure is summarized in
Algorithm 1.
Compression-aware adaptation (CAA) network Gϕ fo-
cuses on hierarchical parameters adaptation, consisting of
sequence-wise weight generator Gϕs

and frame-wise pa-
rameters generator Gϕi to adaptively tailor the enhance-
ment model to the characteristics of compressed frames (see
Step 1 and Step 3). The obtained frame-wise expert layer
fθi further constructs the subsequent bitstream-aware en-
hancement network Fθi (as shown in Step 3).
Bitstream-aware enhancement (BAE) network Fθi

frame-wisely applies techniques such as motion vector

Algorithm 1 Procedure of Enhancing Compressed Frames

Input: Sequence-wise CRFs, Frame-wise CRFi, Input
frames {x1, x2, ... , xn}, Motion vectors MV , Par-
tition map Pi

Output: Enhanced high-quality frames {ŷ1, ŷ2, ... , ŷn}
1: Sequence adaptation

fθs ← Gϕs (CRFs, {fθ1 , fθ2 , ... , fθN })
2: for xi ∈ {x1, x2, ... , xT } do
3: Frame adaptation

Fθi ← fθi ← Gϕi
(CRFi, fθs)

4: Motion vector alignment
x̂i ← [MV (hp

i ), MV (hf
i ), xi]

5: Region-aware refinement
ŷi ←Fθi (x̂i, Pi)

6: end for
7: return {ŷ1, ŷ2, ... , ŷn}

(MV) alignment (as shown in Step 4) and region-aware re-
finement (as shown in Step 5) to enhance temporal consis-
tency and reconstruct fine-detailed results.

B. Quantitative Results

To assess the quality enhancement performance of each
method in highly compressed scenarios, we conduct eval-
uations at CRF values of 40, 45 and 48 and summarize the
results with PSNR and SSIM (the higher the better). Please
note that the above CRF values are not included during
training. The results of the REDS4 dataset [44] are reported
in Table 6. As can be seen, performing frame-wise adapta-
tion with slice type (marked with grey ) achieves a similar
performance (less than 0.03 dB in terms of PSNR) to the
original design. Additionally, the proposed method shows
robust performance in enhancing the highly compressed in-
puts, achieving PSNR gains of 0.74 dB, 0.46 dB and 0.33
dB on CRF40, CRF45 and CRF48, respectively. In contrast,
the other methods provide limited and even no improve-
ment. For instance, STDF [17] and S2SVR [36] achieve
a minor PSNR gain of 0.04 dB and 0.41 dB at CRF40, re-
spectively. MFQE 2.0 [24] and Metabit [19] show no im-
provement on the highly compressed inputs, indicating their
dependency on a well-designed training strategy to cope
with a wide range of CRFs instead of a general mix-training
strategy of various compression levels.
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Frame 018, Clip 015, CRF35 MFQE 2.0 STDF Ours GTS2SVRInput Metabit

Frame 090, Clip 011, CRF35 MFQE 2.0 STDF Ours GTS2SVRInput Metabit

Figure 11. Qualitative results on quality enhancement, where the results are evaluated on the REDS4 dataset [44]. As can be seen, our
method demonstrates its effectiveness in reducing compression artifacts, resulting in visually appealing outputs with clear details. In
contrast, the compared methods fail to fully suppress these artifacts, leaving noticeable distortions (e.g., the car in the 1st row).

Method CRF40 CRF45 CRF48

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
Input 26.69 / 0.7352 24.38 / 0.6452 23.17 / 0.5989
MFQE 2.0 [24] 26.69 / 0.7369 24.37 / 0.6466 23.16 / 0.6001
STDF [17] 27.03 / 0.7477 24.54 / 0.6544 23.26 / 0.6058
S2SVR [36] 27.10 / 0.7506 24.59 / 0.6575 23.30 / 0.6091
Metabit [19] 26.69 / 0.7352 24.38 / 0.6452 23.17 / 0.5988

Ours 27.42 / 0.7619 24.82 / 0.6697 23.47 / 0.6201
27.43 / 0.7619 24.84 / 0.6697 23.50 / 0.6215

Table 6. Quantitative results on quality enhancement, where
the evaluation is conducted in highly compressed scenarios (i.e.,
CRF40, CRF45 and CRF48) and summarized with PSNR and
SSIM (the higher the better). The best and second best results are
highlighted with bold and underline. Results obtained by replac-
ing frame-wise CRFi with slice type are highlighted with grey .

C. More Qualitative Comparisons

C.1. Quality Enhancement

We provide visual comparisons on the task of quality en-
hancement in Figure 11. As can be seen, MFQE 2.0 [24]
and Metabit [19] fail in eliminating the compression arti-
facts, leading to the texture distortion (e.g., the car in the
1st row). Despite STDF [17] and S2SVR [36] effectively
refining the compressed frames, they struggle to eliminate
the color distortion and provide artifact-free results (e.g., the
building in the 2nd row). In contrast, the proposed method
effectively eliminates the compression artifacts and corrects
the color distortion, achieving visually satisfying results.

C.2. Versatility Evaluation

Video super-resolution. As shown in Figure 12, it is chal-
lenging to apply video super-resolution (VSR) models that
are tailored for clean data to compressed inputs, leading to
the amplification of compression artifacts, as observed in
the 1st column. Equipping the baselines with pre-enhancing
methods such as MFQE 2.0 [24] and Metabit [19] pro-
vides limited quality improvement, and STDF [17] strug-
gles to adequately suppress these artifacts (e.g., the car
in the 3rd row). In contrast, pre-enhancing with our
method and S2SVR [36] achieves artifact-free results, pre-
serving the sharp edges and details of the content. No-
tably, our approach outperforms S2SVR [36] in terms of
model complexity and computational efficiency, achieving
significantly lower model complexity and faster processing
speeds, as detailed in Tab. 1.
Optical flow estimation. Figure 13 presents the visualiza-
tions of predicted optical flow, with inaccurate boundaries
highlighted by red arrows. As can be seen, when estimating
optical flow from compressed inputs, the inaccuracy is par-
ticularly prominent near motion boundaries (e.g., the front
of the car in the 1st row). In contrast, the proposed method
demonstrates superior performance in addressing these is-
sues, delivering more accurate results in these challenging
regions compared to other methods. For instance, in the
1st row, our method effectively corrects the optical flow er-
rors produced by RAFT [55], whereas both MFQE 2.0 [24]
and S2SVR [36] fail to provide notable improvements, and
Metabit [19] perturbs the performance of downstream opti-
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Input + STDF + OursBasicVSR + MFQE 2.0 GT+ S2SVR + Metabit

Input + STDF + OursBasicVSR++ + MFQE 2.0 GT+ S2SVR + Metabit

Figure 12. Qualitative results of ×4 video super-resolution on the REDS4 dataset [44]. As can be seen, pre-enhancing compressed frames
with our method effectively prevents the amplification of compression artifacts. While the other enhancement methods struggle to eliminate
the artifacts and even severe the distortions in some cases (e.g., STDF [17] in the 4th row).

+ STDF + OursRAFT + MFQE 2.0Frame + S2SVR + Metabit

+ STDF + OursKPAFlow + MFQE 2.0Frame + S2SVR + Metabit

Figure 13. Qualitative results of optical flow estimation on the KITTI-2015 dataset [23], where we mark the inaccurate boundaries with
red arrows. As can be seen, equipping the baseline models with our method effectively improves the accuracy at the boundaries of moving
objects (e.g., the moving car of the 1st row).

cal flow estimation. This highlights the effectiveness of our
method in assisting the downstream optical flow estimation
on compressed videos.
Video object segmentation. The results of video object
segmentation are visualized in Figure 14. As can be seen,
accurately segmenting the objects in compressed images is
challenging for VOS baselines (e.g., under-segmented mask
of the tail predicted by DeAoT [63]). Nevertheless, such
inaccuracy is not adequately -addressed by pre-enhancing
the input videos with methods such as MFQE 2.0 [24],
S2SVR [36], and Metabit [19]. In contrast, the proposed

method effectively mitigates errors and improves mask ac-
curacy, underscoring the effectiveness of our method in sup-
porting VOS on compressed video data.
Video inpainting. To further investigate the versatility of
our method, we extend the downstream task to video in-
painting, a generative task that needs to handle blurred ob-
ject boundaries due to image compression [70]. The results
of removing the specified objects from compressed frames
are shown in Figure 15. As can be seen, due to the mis-
alignment between compressed objects and their masks, it
is hard for E2FGVI [35] to adequately remove the speci-
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DeAoT + MFQE 2.0 + STDF + Ours GT+ S2SVR + Metabit

QDMN + MFQE 2.0 + STDF + Ours GT+ S2SVR + Metabit

Figure 14. Qualitative results of video object segmentation on DAVIS-17 val dataset [46]. Directly performing VOS on compressed images
often results in inaccurate masks (e.g., results in the 1st column). In contrast, pre-enhancing the compressed inputs with our proposed
method significantly improves mask accuracy (e.g., the tail in the 4th row).

Masked frame 𝐸!FGVI + Ours+ MFQE 2.0 + STDF + S2SVR + Metabit

Figure 15. Visual results of video inpainting on the DAVIS-17 val dataset [46]. As can be seen, pre-enhancing the compressed inputs with
the proposed method significantly reduces artifacts and color distortions in the removed regions (e.g., the horse hoof in the 3rd row).

fied object, resulting in noticeable artifacts and color distor-
tions in the removed region (e.g., the wall in the 1st row).
In contrast, pre-enhancing the compressed inputs using our
proposed method substantially improves the inpainting re-
sults, effectively mitigating artifacts and delivering results
with consistent structures, demonstrating our capability of
enhancing generative tasks under compression conditions.

D. Compressed Video Super-Resolution

The proposed method is designed to be versatile, without
any assumptions about downstream tasks, which ensures
broad applicability across various domains. Yet, it can
be readily adapted for specific applications when required.
Here we demonstrate this adaptability with the application
to 4× video super-resolution for compressed videos. By
expanding 30 region-aware refinement-integrated residual
blocks and incorporating a pixel shuffle layer at the end
of the network, we convert the enhancement network into

a VSR-specific one. We follow COMISR [33] to prepare
the compressed training dataset and adopt the same train-
ing configuration. The quantitative results at the compres-
sion level of CRF25 are summarized with PSNR/SSIM,
and reported in Figure 16. As can be seen, although the
proposed method is not tailored for VSR, it still provides
competitive results with minimal computational complex-
ity. For instance, the proposed method outperforms Icon-
VSR [7] by 0.86 dB in terms of PSNR, costing only 0.41×
of FLOPs. Additionally, our method achieves a PSNR gain
over COMISR [33] (specifically designed for compressed
VSR) by 0.23 dB, while taking 0.58× FLOPs. This indi-
cates the versatility and potential of our method to serve as
a general solution for leveraging codec information in spe-
cialized tasks.

E. Ablation Studies
In this section, we present visual results from ablation stud-
ies to assess the impact of incorporating MV alignment and
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Figure 16. FLOPs and performance comparison of 4× compressed video super-resolution on the REDS4 dataset [44], where the compres-
sion level is set to CRF25. Despite not being tailored for VSR, the proposed method shows competitive performance.

Frame 076, Clip 000, CRF35

Input Baseline + MV Align. + RA Refine. GT

Figure 17. Qualitative results of the ablation study on MV align-
ment (MV Align.) and region-aware refinement (RA Refine.). As
can be seen, incorporating the region-aware refinement effectively
reduces distortions and enhances the textures.

region-aware refinement into the baseline model (as illus-
trated in Sec. 5.3 of the submission). Additionally, we an-
alyze the effect of varying the number of experts (N ) on
model performance. These experiments are conducted on
the REDS [44] dataset, with models trained for 50K itera-
tions for fast evaluation. The results are summarized with
PSNR and SSIM.
MV alignment. As shown in Figure 17, aligning frames
with motion vectors (denoted as + MV Align.) effectively
improves the texture inconsistency, as highlighted by the
yellow arrow. This demonstrates the effectiveness of MV
alignment in aligning and propagating high-quality refer-
ence frames, therefore improving the overall quality of
compressed videos.
Region-aware refinement. As shown in Figure 17, refin-
ing features with the guidance of partition map (denoted as
+ RA Refine.) effectively reduces distortions and enhances

y

t GT+ Seq. Adapt. + Frame Adapt.

Figure 18. Visualization of the temporal profile, which tracks a
specified column (marked with the yellow dotted line) over time.

Number of Experts

CRF15 CRF25 CRF35

PN
SR
(d
B
)

Parameters
1.6 M
2.2 M

5.7 M

4.6 M
3.4 M

Figure 19. Ablation study on the number of experts. The design of
mixing experts leads to notable performance improvement, and the
configuration of 6 experts is selected to balance the performance
and model complexity.

the fine details (e.g., the boundary of bricks marked by the
yellow arrow), obtaining results with coherent textures.
Frame adaptation. To assess its impact on temporal con-
sistency, a comparison of the temporal profile is included
in Figure 18. As can be seen, frame-wise adaptation helps
to adaptively enhance each frame, resulting in a smoother
temporal transition (as indicated by the yellow arrows).
Number of experts. We investigate the number of ex-
perts by setting different values for N . As shown in Fig-
ure 19, compared to a simple single-expert network, in-
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creasing N effectively improves the performance but does
not yield consistent performance gains. Based on the re-
sults, we adopt N = 6 as it achieves optimal results with
manageable model complexity.

F. Experimental Settings

Dataset preparation. We adopt the widely-used
H.264 [51] standard and FFMPEG to generate compressed
videos by specifying the CRF values (i.e., 15, 25 and 35).
The CRFs value and slice type of each compressed se-
quence are extracted from the header. MVmed [4] is applied
to extract motion vectors and partition maps.
Compared methods and downstream models. For the
task of quality enhancement, we follow the official sug-
gestions to locate keyframes with slice types for MFQE
2.0 [24]. For STDF [17], we adopt the STDF-R3L vari-
ant. Since Metabit [19] only addresses I/P frames, we reim-
plement it to adapt the adopted dataset that contains I/P/B
frames. For the task of video object segmentation (VOS),
we adopt the SwinB-DeAOT-L variant from DeAoT [63] to
ensure strong VOS performance.
Implementation details. In practice, expert layers are im-
plemented with convolutional layers initialized with Kaim-
ing initialization [26]. The sequence-wise weight genera-
tor is constructed with two fully connected layers followed
by a softmax activation. The parameters re-weighting is
implemented with dynamic parameters mechanism [25].
The frame-wise parameters generator is constructed with
two fully connected layers and a sigmoid normalization.
Introducing parameters △θi for fθs is implemented with
dynamic transfer mechanism [34]. The bitstream-aware
enhancement network is constructed with 8 region-aware
refinement-integrated residual blocks. Each block contains
64 channels. The FLOPs and inference speed are computed
with an input size of 320×180 on a GeForce GTX 1080
Ti GPU. We merge the training splits of the REDS [44]
and DAVIS [46] datasets for training, and further augment
the dataset by downsampling the REDS dataset [44] using
the Bicubic interpolation at a scaling factor of 4. During
training, input frames are sampled from uncompressed data
and compressed data with probabilities of 0.2 and 0.8, re-
spectively. The compressed input frames are sampled from
CRF15, CRF25 and CRF35 with equal probability. These
frames are then randomly augmented with horizontal flips,
vertical flips, and rotations. The length of input sequences
is set to 15 and the batchsize is set to 10. The input patch
size is set to 128×128. We adopt the Adam optimizer [31]
with β1 = 0.9, β2 = 0.99. The initial learning rate is
set to 2 × 10−4 and adjusted with the Cosine Annealing
scheme [39]. The whole training takes iterations of 250K.
We use 2 Nvidia GeForce RTX 3090 GPUs to complete
these experiments.

G. Discussions
We explore the role of video enhancement in improving the
performance of downstream tasks. Recent advancements in
video codecs also introduce task-aware encoding [22] and
decoding [48] frameworks to better support downstream
tasks. However, these approaches typically require joint
training of the compression model and target downstream
tasks. In contrast, our approach serves as a plug-and-play
adapter to enhance the performance of downstream models,
making our method more practical, particularly in scenar-
ios where the downstream task is unknown or subject to
change. A promising strategy would be prioritizing our ap-
proach when the downstream task is ambiguous or not spec-
ified, while leveraging the aforementioned methods when
the task is well-defined and can directly benefit from the
integrated task-aware compression.
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