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CONVERGENCE-RATE AND ERROR ANALYSIS OF SECTIONAL-VOLUME
AVERAGE METHOD FOR THE COLLISIONAL BREAKAGE EQUATION WITH
MULTI-DIMENSIONAL MODELLING

PRAKRATI KUSHWAH, ANUPAMA GHORAI, AND JITRAJ SAHA

ABSTRACT. Recent literature reports two sectional techniques, the finite volume method [Das et al., 2020,
SIAM J. Sci. Comput., 42(6): B1570-B1598] and the fixed pivot technique [Kushwah et al., 2023, Commun.
Nonlinear Sci. Numer. Simul., 121(37): 107244] to solve one-dimensional collision-induced nonlinear particle
breakage equation. It is observed that both the methods become inconsistent over random grids. Therefore,
we propose a new birth modification strategy, where the newly born particles are proportionately allocated in
three adjacent cells, depending upon the average volume in each cell. This modification technique improves
the numerical model by making it consistent over random grids. A detailed convergence and error analysis
for this new scheme is studied over different possible choices of grids such as uniform, nonuniform, locally-
uniform, random and oscillatory grids. In addition, we have also identified the conditions upon kernels
for which the convergence rate increases significantly and the scheme achieves second order of convergence
over uniform, nonuniform and locally-uniform grids. The enhanced order of accuracy will enable the new
model to be easily coupled with CFD-modules. Another significant advancement in the literature is done
by extending the discrete model for two-dimensional equation over rectangular grids.

1. INTRODUCTION

In disperse system, particles are encountered by several physical processes such as aggregation, breakage,
nucleation, evaporation etc. The particle encounters can be induced by some external force or due to
Brownian motion among the fellow particles. During such encounters, particles disintegrate into smaller
fragments, thus leading to the breakage process.

Thus, particle volume evolves in a closed system over a period of time and the equations representing
these mechanisms are called breakage population balance equations (PBEs). PBEs are initial valued integro-
partial differential equations. Mathematical model where breakage PBEs are induced by external force is
represented by a linear equation [16]. On the other hand, mathematical model for breakage PBEs, driven
by the collisions between particles is nonlinear equation [11]. Note that the collisions between two mother
particles can lead to an outcome in which one mother particle breaks into smaller fragments while other
remains unchanged, acting as a catalyst. This study focuses on the collision-induced nonlinear breakage
process that has several applications in real life. The collision-induced breakage process can be experienced
during the formation of raindrops and bubbles. Prat et al. [15] have identified that during the formation of
raindrop and bubbles, the collisions occur among the raindrops (which can also be treated as particles) and
raindrops disintegrate into smaller ones. They have modeled this phenomena with the help of the discrete
nonlinear equation and explored the solution (which is the raindrop size distribution) through Monte Carlo
simulations. On a furthernote, the collisional nonlinear breakage equation plays crucial role for productions
of powders with particular density distribution for drug formation and to create specified sizes tablets from
wet granulation process [17]. Various other applications of such breakage model are found in dense disperse
system for fluidized beds [13], astrophysics [14], the crushing or milling processing, mineral processing,
material science and both batch and continuous granulation processes.

1.1. The continuous collisional nonlinear breakage model. In this article, we consider the continuous
collision-induced nonlinear breakage equation which is first introduced by Cheng and Redner [1,[2]. The
time evolution of density distribution function n(x,t) of particles of volume x > 0 at time ¢ > 0 due to the
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collision induced breakage process is governed by the following equation:

3n (z,t) i
(1.1) = [ [ el .t on 0dz — [ K pntednty. o
0
with the initial condition
(1.2) n(x,0) =ng(z) >0, forany x >0.

Here, functions S(z|y; z) and K(y, z) are the breakage distribution function and the collisional rate kernel
respectively. The first term on the right hand side (R.H.S.) of is the birth term which represents the
formation of z volume particles as a result of collision between two particles of y (> x) and z volume. The
mother particle of y volume breaks into the smaller particle of volume x whereas particle of volume z acts
like a catalyst and remain unchanged during collision. The second term on R.H.S. of is the death term
that accounts the depletion of particles of volume z from the system. In general, the collisional kernel and
the breakage distribution function satisfies the following properties:

(i) K(y, z) is nonnegative and symmetric with respect to the arguments y and z i.e. satisfies the conditions,

(1.3) 0<K(y,z) =K(z,y), forall y,z>0,

(i1) B(x|y; z) is nonnegative satisfying the condition 8(x|y;z) = 0 when 2 > y and the volume conserving
property,

y
(1.4) / zB(zly;z)de =y, forall y,z>0,
0

and total number of fragments produced during a breakage event is calculated as

(1.5) /,Bx|y, =((y,2), where 2<((y,2)<(<oo, foral y,z>0.

For population balance equations, conservation of particles properties such as mass and number of particles
of the system plays a key role to determine the density evolution for certain kinetic rates. In this regard,
some integral properties of the density function play a crucial role to indicate several significant physical
properties. For this purpose, the r*" order moment is denoted by M,.(t) and is defined by

(1.6) M,.(t) :/ x'n(z,t)de forall ¢>0 and r=0,1,2,.....
0

Consider, a function ¢(z) of positive real numbers. Now, multiplying the breakage equation (1.1) with ¢(z)
on both sides and taking integration over x, we obtain the corresponding moment equation for the collisional
nonlinear breakage equation

(1.7) %/ o(z)n(z, t)der = / / (/ )B(x|y; z)dx — cp(y)) Ky, z)n(y, t)n(z, t)dydz.

Setting ¢(z) = 1 in equation (|1.7) and using property (1.5, we obtain the time evolution of zeroth moment
given as

(18) Mol® / / 1)Ky, 2)nly, t)n(z, H)dydz,

Likewise, setting ¢(z) = x in equation (1.7]) and by property (|1.5), we obtain the time evolution of the first
moment of the particles as

%}t(@ =0 implies /\/ll(t) = Ml(O), for all ¢ > 0.

provided all the integrals in the R.H.S. of equation (|1.7) exists. Thus, for a suitable choice of kinetic rates
the volume conservation law holds appropriately.
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1.2. The state of art and motivation. The evolution of raindrop size distribution undergoing the colli-
sion induced nonlinear breakage process [15}/18] is extensively used to describe the precipitation dynamics,
weather modeling, and radar meteorology. Moreover, several other applications in real life and industrial
processes urge researchers to explore more on the collisional nonlinear breakage equation. In literature, this
equation is mostly theoretically analysed [6}/7] and less numerically investigated. Since achieving analytical
solutions of the collisional nonlinear breakage equation is very challenging, so the primary motivation lies
on securing efficient numerical solutions. In this regard, various numerical methods including sectional dis-
cretization methods [3}|11], Monte Carlo simulations [5] and semi-analytical methods [19] are implemented
in the literature to solve the collisional nonlinear breakage equation. Among these numerical methods, the
sectional discretization methods are formulated on the basis of distributing the particles in the represen-
tatives as well as neighboring nodes (or pivots) for capturing the required integral properties accurately.
Monte Carlo method needs a significant large number of data to achieve higher accuracy, thus involving a
significant computational cost. On the other hand, semi-analytical method uses the analytical toolbox of the
supporting software and hence very slow to produce results for higher iterations. Additionally, this method
fails to give solution of any complex, nonlinear equations in closed form except specific conditions. Thus,
the sectional discretization methods are efficient to address and overcome these limitations for generating
results with better accuracy. In last few decades, these section based methods includes finite volume methods
(FVM) [4,8], fixed pivot techniques (FPT) [9/16] and cell average techniques (CAT) [10,12] to solve the linear
breakage equation. In recent literature, there are few works documented to address the numerical treatment
of the collisional nonlinear breakage equation, employing sectional discretization methods including FVM |[3]
and FPT [11] to solve the equation but these existing schemes have its limitations. For FVM, the
allocation of the new born particles is restricted to a single pivot whereas in FPT, two pivots are used for
birth modification. Moreover, FVM is highly acccurate for a particular choice of grids that is the geometric,
but for other choice of grids it struggles with performance. Additionally, FVM fails on coarser grids. On the
other hand, FPT offers some definite improvement, yet it fails over randomly generated grids. For overall
accuracy, it achieves first order convergence rate. In this context, we propose an improved sectional dis-
cretization method based on particles averaged volume in a particular cell named as volume average method
(VAM). The cell allocation is done in three nighboring cells based on the properties of particles volume
average, which are expected to be preserved. The birth terms are modified in order to achieve consistency
with total volume and number of particles. The nonnegative solution obtained from the numerical scheme
and consistency of the scheme are examined in detail followed by a discussion on discretization error over
different grid types. It is observed that VAM is first order convergent over uniform, nonuniform and locally-
uniform grids. Most significant observation is that VAM shows first order convergent over random grids. We
also study the performance of VAM over oscillatory grids which is first evidence where consistency analysis
is reported for the collisional nonlinear breakage equation in the literature and this new method achieves
first order accurate. An important observation is discussed where conditions depending upon the kernels
for which the VAM shows second order convergence over uniform, nonuniform and locally-uniform grids and
maintains first order accuracy over random and oscillatory grids. The accuracy of the new scheme VAM is
validated against the existing fixed pivot technique. It is worth mentioning here that the existing FPT is
inconsistent over random grids. Furthermore, we carry out the stability analysis of the new scheme using
Lipschitz criterion. The model is further extended for two-dimensional case over the rectangular grids. For
numerical results, two examples are solved, where the total particle properties and the particle hypervolume
are calculated against their exact values. Importantly, the results show that VAM performs better than the
existing FPT.

The article is organized as follows: in section [2| we describe the cell adaptive mathematical formulation
of VAM for the collisional nonlinear breakage equation (L.1). Section [3| discusses the convergence and
consistency analysis. Two-dimensional model is presented in section [f] and numerical discussion is done for
different text problems in section [5] The findings of the work are highlighted in section [6]
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2. THE CELL VOLUME AVERAGE METHOD

We first truncate the continuous collisional breakage equation (1.1)) by considering a finite computational
domain as A = [0, Ziax] With Zpmax < 00 : for all z € A and ¢t > 0 and the truncated equation reads as

671 (z,t) Tmax  (PTmax Tmax
/ / B(aly; 2)K(y, 2)n(y, Hin(z, H)dydz — / K (2, y)n(e, On(y, )dy,
0
with the initial condition

(2.2) n(x,0) =ng(z) for any =z € A.

(2.1)

We now discretize the volume domain A into I(< oo) discrete cells. Let A; denotes the i*® cell, A; :=
[Ti—1/2, Tiy1/2] With 219 := 0 and £;41/2 := Tmax and Az; 1= ;412 — ;1 /2. A finitely discretized compu-

Tiv1/2 t Ti—1/2

tational domain is shown in Figure |I} The midpoint x; := of A; is the cell representatives

or pivots. It is assumed that the particle property is concentrated at these pivots. Consider Ax; < Ax;11

< @, a constant, for all 1 <i < 1. Let N;(¢) be

. ) T
and Azpi, = min Az; < Az; < Ax = max Ax; with
7 7 Amin

the discrete number density in the i*" cell at time ¢ defined by

Tit1/2
(2.3) N;(t) = / n(z,t)dz.
Ti—1/2
I
Using relation n(x,t) ~ Z N;(t)d(x—=;) in the truncated equation (2.1]), we obtain the collisional nonlinear
i=1
breakage equation as
dN; (1)

(2.4) e B;(t) — D;(t),  with initial conditions N;(0) = N?,

forall i =1,2,...,1. Here, birth terms and death terms are defined as respectively

(2.5) ZZB”/C:U],Q% G()NR(t) and  Dy( Z/c i, ;) Ni(t)N; (t),

k=1 j=1
with

P; .
(2.6) Z’C] :/ B(z|zj;vx)dr  and  pj :{

Ci—1/2

Zi, if i= j7
Tit1/2, otherwise.

Note that positivity of all the terms appearing on the R.H.S. of B;(t) and Di(t) defines positivity of the both
B;(t) and D;(t). The 7" order discrete moment is defined as M, ( Z x; N;(t), for all r € N. Recalling
equation (1.7) the discrete moment equation is written as
P I I
(2.7) &Z%—Ni(t) = ZZ’C(ZEJ,:C}C t) N (t (Z/ x|mj,;vk)dm—<pj) )
i=1 k=1 j=1 T 1/2

where {¢;},~, is a sequence of positive real numbers. Consequently, setting ¢; = 1 and z; in equation ([2.7)),
the time evolution of the discrete zeroth moment and first moment are written as respectively

(2.8) dM” S ol ) Ny (N8 [ ) — 1),

k=1j=1

and

I
(2.9) d/\;l;(t) _ ZZK(%’“ () Ny (t (Z/ z;B(x|z;; vp)de — x]> )
1 Ti—1/2

Remark 2.1. The discrete formulation (2.4) is not consistent with discrete first order moment. [5]
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Since the discrete formulation fails to preserve the total mass of the particles in system, it is not
suitable to approximate the collisional nonlinear breakage equation . To overcome this limitation, we
formulate a new numerical method which modifies the birth term of equation and conserves the total
mass as well as number of the particles.

2.1. Cell volume average based birth rate modification. To capture the birth rate of the particles
more precisely, the daughter particles are assigned to the neighboring pivots depending upon the position of
the average volume v; in A;. In this context, to obtain the average volume, the discrete volume flux over A;
is defined as

I T P!
(2.10) Vi) = ZIC(:rj,xk)Nj(t)Nk(t)/ xfB(x|z;; 21)da,
k=1 j=i Ti—1/2
and recalling B;(t) from equation (2.5 the volume average v; of all newborn particles in A; as
7t
(2.11) @i:‘{(), forall ¢=1,2,...,1.
B;(t)

There are two possibilities for the particle allocation in a cell as follows:

(1) (Less likely event) if the average volume o; of the particles in A; matches with the volume of cell
representative (happens very rarely) i.e. ¥; = x;, then the total birth B; can be allocated to the
node x;. Here, all properties corresponding to the average volume of particles are preserved trivially.

(2) (Most likely event) if the average volume v; of the particles in A; does not match with the volume
of cell representative, that is either v; > x; or v; < x;, then the particles are distributed to the
neighboring pivots such that the total number of particles and mass are preserved. Then, depending
upon the position of average volume, we see the contribution of fractions of birth term in the
neighboring pivots.

[ : Cellboundary
: Pivot
_ A :Particle

x.
Xi—1 i Xit1

I U |
Xi-3/2 Xi-1/2 Xit+1/2 Xi+3/2

(i — DM cell it" cell (i+ D™ cell

FIGURE 1. Particle allocation

Consider v; > x; (see Figure and x; and ;1 are the two neighboring nodes associated with ;. Consider
the terms ¢1(9;,2;) and co(0;, x;41) are the fractions of the birth terms B;(t) to be allocate at z; and x;41
respectively. Then, to preserve number of particles and volume allocated in ¢ and i + 1 cell, the fractions

should satisfy the following relations:

(2.12) Cl(’lji7.%'i) + oV, miyr) = BZ' and  z;c1(0;, zi) + Tig102(0i, Tig1) = ’T}i.éi.
Solving relations (2.12), we get

_ A _ _ Ay— (- T — Tit
(2.13) c1 (Ui, ;) = BiAf (0;) and  ea(0i, wiq1) = Bid;,(v;), where A (z) = x—ixill

Now, there arise four possible birth fractions that can be considered during a birth assignment at x;.
Among these, two birth fractions arise from the ‘" cell and other two arise from the neighboring cells (see
Figure [2).
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Vis1 >, v < x; v > x Vg < Xipq
el e — = + f— + =
Bi—l’:l’i {vi—l} Bi‘;l"z {vi} Bi‘;l"i {vi} Bi+']_‘;|";j {vi+'l}
Xi_1 xX; Xi+1
1 i
3 I
Yi-1/2 Xit1/2
(i —1)™cel it" cell (i + D cell

FIGURE 2. Particle contribution at x; from all possible cells

Considering all possible birth assignments, the following semi-discrete system obtained due to cell volume
average method is defined as

dN;(t) 4 R R X
(2.14) dt( ) = B,(t) — D;(t), with initial conditions, N;(0) = N? >0,

for all i = 1,2,...,I and N;(t) be the solution of (2.14). Here, the modified birth term is defined as

b + 0%, i=1,
(2.15) Bi(t) =4 o+ 463 i=2,3,... 11,
bV + 07, i=1,
where
bil_)l :)\; (li]ifl)H(’ljifl — (Eifl)Bifl(t), bEQ) = A;(@l)H("El — ﬁl)Bz(t) + )\:F(T)Z)H(T)z - Z'z)Bz(t)a
( R 1, x>0,
bgi)l =AS (V1) H (2341 — 0ip1)Big1(t) and H(z) =< 1/2, x =0, is the Heaviside function.
0, z <0,
The death term is defined by
A I A~ A
(2.16) Di(t) =Y K(ai, z;)Ni ()N, (t).
j=1

Throughout the study we take the following assumptions as:
(i) The collisional kernel satisfies K € C(R3.). Therefore, for all y, z € [#min, Tmax), there exists a constant C
depending on x,,x only such that

(2.17) sup IK(y, 2)| < C(&max)-

(¥,2) €[Tmin;Tmax)?

Note that using the inequality (2.17) together with equation (1.6) in the discrete equation (2.14]) the time
evolution of the discrete zeroth moment is defined as

(2.18) P < €~ 10 M0,

Thus, the time evolution of the discrete zeroth moment or the total number of particles is bounded on a
finite time interval [0,7]. So, there exists a constant §(7") such that

(2.19) Mo(t) < B(T), forall te|0,T].

Proposition 2.1. The discrete scheme (2.14)-(2.16)) satisfies the volume conservation law and consistent
with the temporal evolution of zeroth moment.
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Proof. Multiplying x; to the equation (2.14) and summing over ¢, we obtain

I I
(2.22) =2 D willwi, 2 Ni ()N (8).

(see Appendix |A| to derive equation (2.21)) for detailed calculation). Changing order of summations of the
h

above equation ([2.22]), we get
qd R I I R R i ppl
T inNZ-(t) :ZZIC(mj,xk)Nj(t)Nk(t) Z/ zf(x|x;; xp)de
i=1 k—lj—l i=1"%i-1/2
(2.23) —sz (a5, 25) Ns (D) N3 (1)

i=1 j=1

Using volume preserving property (1.4]) in equation (2.23)) and simplifying calculation, it yields
I I
d . . .
&inNi(t):ZijlC(xj,mk) i (E)N] Zlesz,x] N;(t)N;(t) =0,
=1 k=1 j=1 =1 j=1

that is M (t) = M, (0) for all ¢ > 0, which is the volume conservation law.
The time evolution of the discrete zeroth moment is calculated by taking summation over i on discrete
equation (2.14)) and calculating in similar way as volume conservation and using property E

! I
%ZJ\A/} ZZ/C xj,ka Z/ Blzlxj; xx) dxfzz (z4,2;) N Nj(t)
i=1 Ti-1/2 i=1 j=1

k=1 j=t
I I I I
=3 K, w) N (ONe (¢ (g, 20) = > > K, ;) Ni ()N, (t)
k=1 j=1 i=1j=1
I I R R
=3 Ky, we) N (8) Nk (t) [, 20) — 1].
k=1 j=1
This is equivalent with the time evolution of discrete zeroth moment ([2.8]). ([l

Here, we are a position to introduce the semi-discrete system in a vector form described by reformula-
tion(2.14]) as follows: N = {Nh Na, ..., NI} € R! is the numerical solution of the following semi-discrete
system

dN . .

(2.24) n =B(N)-D(N):=J(N) with N(@0)=N >0,
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where i'" components of B,D € R are defined by B; (2.15) and D; (2.16) and also the numerical flux
J= {jl, Ja, ... , J}} € R’ is a non negative vector whose i*! component is given by Ji = B; —D;.

3. STABILITY AND CONSISTENCY

3.1. Preliminary definitions and theorems. Here, we assume the space X = R! equipped with the
discrete L'-norm defined by

1
(3.1) IN@®) =Y INi(t)], forall 0<t<T.
i=1

Definition 3.1. (Spatial truncation error). The discretization residue obtained due to the substitution of
the exact solution in the discrete scheme (2.24]) is called truncation error and is mathematically calculated
as

AN (t) dN(t)

. = - - ——= <t <
(3.2) o(t) & T forall 0<t<T

dN;(t dN. (¢
b component is given by o;(t) = i(t) i )

d d

Definition 3.2. (Global discretization error). A numerical method is called the pth order convergent if for
Az — 0

(3.3) IN(t) — N(t)|| = O(AzP) forall 0<t<T.

where 0 = {01,09,...,07} is a vector whose i*

Definition 3.3. (Lipschitz condition). A mapping J which follows
(3.4) 1i(g) = F(h)I| < ~llg — kI for all g,h e RY,
is said to be satisfy the Lipschitz condition with v < co as Lipschitz constant.

Definition 3.4. (Nonnegativity). The system of ODEs in R! defined by (2.24)) is called nonnegative or
nonnegativity preserving if

(3.5) N(0) >0 implies N(t) >0 forall 0<t<T.
Definition 3.5. (Consistency). A numerical scheme is called p'" order consistent if for Az — 0
(3.6) [lo(®)]| = O(AzP) uniformly for all 0 <¢ <T.

Proposition 3.1. Let J € R be the numerical flux defined by the equation (2.24) in the new scheme VAM.
Then J satisfies the Lipschitz condition.

Proof. Let M, N € R! be two solutions satisfying the discrete system (2.24]).
I

IB(M) -~ B(N)|| =)

i=1

A~ ~ A~

A (Ui—1)H (Ui-1 — i-1) (Bi—l(M) - Bi—l(N)>

AT () H (2 — ) (BZ-(M) _ Bi(N)) F A () H (5 — ) (BZ-(M) _ B»(N))

N

+ A (i) H (zig1 — Diga) (Bi-i-l(M) - Bi+1(N)) ‘

I
< Z A (0—1)H (0i-1 — 2i-1) |Bi—a (M) — B;_1(N)

i=1

I
+ Y A () H (@i — v;) | By(M) — B;(N)
i=1
I
+ Z )\j(@)H(’Ei — {EZ) Bl(M) — EZ(N)
=1
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1
(3.7) Z (i) H (wig1 = Vit | Bt (M) = Bipa (N)] .
By the definitions of A (z) and H(z), we have
0< A (2)H(z) < 1.
Thereby, estimation can be written as

1B(M

(3.8) + Z ‘B’iJrl(M) — Bipa (V)]

Using definition of f; and property (L.5), bounds of I (2.17)) and boundedness of the discrete zeroth moment
Mo (12.19), we deduce that

Bi(M) — B;(N)

k=1 j=1
CClema) o5 .
< 2max X 2 ZM]—FN])(Z‘M]C—N]C‘)
j=1 k=1
(3.9) <20C(Tmax) B(T)|| M — N
In similar way, for death term we obtain
(3.10) (V) = D(I)]| < 20 (0ma) BTV — NI

Thereby birth term from and death term from , combinedly we may write
| (B1) — D(vr)) — (BIN) ~ D)) || <IIBONT) — B(N)|| + || D(NT) — D(N)|

<2+ 1)C(2max) B(T) ||M - N||

<n||M - N||,
where 7 := 2(¢ + 1)C(2max)B(T) < oo is a constant, independent of the grids.
Finally, we can write

|F(M) — J(N)|| < nl|M - NJ|,

which implies that the J satisfies the Lipschitz condition irrespective of the grids. O
3.2. Nonnegativity of the solution.

Theorem 3.1. Let j(N) be a continuous mapping satisfying Lipschitz condition with respect to N. Then
the semi-discrete system ([2.24)) is nonnegative, if and only if for any vector N € R! satisfying

(3.11) N >0, with N;=0 implies J(N) >0,

which proves that the solution by the new scheme VAM ([2.14]) is nonnegative.

Proof Assume that the semi-discrete system is nonnegative. Let N be the solution of the systerm
with initial conditions N(0) > 0. By deﬁnltlonof the ODE system, we have N > 0. Now, N > 0
w1th N; = 0 implies B;(N) > 0 and D;(N) = 0 for all i e {1,2,...,I}. So, N > 0 with N; = 0 deduces

that J;(IN) > 0 for all i = 1,2,...,1 which implies J(N) > 0.
Conversely, we have the criteria

N >0, with N; =0 implies J(N) > 0.
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dN;
The above expression implies d—tl > 0. To prove the nonnegativity, we will use the Lipschitz condition on

J. Since the solution N can not cross the hyperplane H; = {N eRI:N, = O} so there exists sufficiently
small € > 0 such that

. . dn;
N >0, with N; =0 implies a >e>0.
This will satisfy the the perturbed ODE system with
Ji=Ji+e, forall i=12,...,1.

By the Lipschitz condition of J and using the standard stability argument for ODEs, if ¢ — 0, the solution
of the unperturbed system with given initial condition will be approximated with exact solution of the
perturbed system. This above argument and the criteria , we can write that the system is
nonnegative.

For the second part, we have already proved that the system of ODEs is nonnegative in the first part.
This directly implies that the solution by the new scheme VAM is nonnegative. |

3.3. Consistency. To find the error estimations of approximated birth term, death term and total volume
flux, we need to integrate the birth term and death term of equation (2.1)) with total volume flux over A;
and hence define

Tiy1/2 Tmax Tmax

(3.12a) B;(t) ::/ / / Blx|y; 2)K(y, z)n(y, t)n(z, t)dydzde,
Ti—172 Y0 z
Lit1/2 Tmax

(3.12b) D;(t) :z/ / K(z,y)n(z, t)n(y,t)dyde,
Zi—12 Y0
Tit1/2 ZLmax Tmax

(3.12¢) Vi(t) :z/ / / xB(x|y; 2)K(y, 2)n(y, t)n(z,t)dydzdx.
ZTi—12 Y0 z

Lemma 3.1. Let B;, D;, Vi, B;, D;, V; are defined by the equations (13.12), (2.5) and (2.10) respectively.

Then we have the following error estimates:

(3.13a) (i) B;= +O(Afc ),
(3.13b) (ii) D; = D; + O(Az?),
(3.13c) (dii) %=%+O( 7).

Proof. Considering B;(t) and the fact that z is independent of 2 and y, so we change the order of integration
and rearrange the integrals in simplified discretized form to get

Tr41/2 Tit1/2 Yy
=[] Bl . (e oy
Ti—1/2 Ti—1/2
Tr41/2 Tr41/2 i+1/2
s [T el 2Kt e sy

Tit1/2 Ti—1/2

Applying the midpoint quadrature rule for first two integrals of above equation, we get

ZIC Xy g ) NG (8) Ny (¢ )/Il B(x|2i; 2z )de + O(Az?)

i—1/2

P Kl M) [ el nodr + oaed)
k=1j=i+1 Ti—1/2
I p!
=37 S Kl s (ONe(t) [ Blalayin)de + O(as)

k=1 j=1 Ti-1/2



CONVERGENCE-RATE AND ERROR ANALYSIS OF SECTIONAL-VOLUME AVERAGE METHOD 11

I I
= > 8K (s, xi) N (D) Ne(t) + O(Az}).

Therefore, we have
(3.14) Bi(t) = Bi(t) + O(Azd).
Similarly, the death term (3.12)) can be written as

I
(3.15) Di(t) =Y K(wi, ;) Ni(t)N;(t) + O(Ax}) = Dy(t) + O(Ax)),

and the volume flux is written as

Vilt) = 37 3 Klay m)Ns (0N (e) [

k=1 j=i Ti-1/2

i

Pj

zf(z|z), z)d + (’)(Ax?) = Vl(t) + (’)(Axf).

O

We now recall the discrete scheme VAM and simplify each term in the scheme separately. By using the
definition of A; and B;(t), we can write the following term as

(5 1) B _bmi g 2 o B e B
(3.16) N (B)Bia(t) = B (1) = g {vl_lBl_l(t) w1 B ()]
Substituting the values of Bi,l(t) (2.5) and v;_1 in equation ([3.16)), we obtain
I I i—1
. 2 . . 3
A (0;1)Bi_1(t) =——— K(xz;, xi)N;(t)N, t/ zf(x|x;; xp)de
S B () AM[’;:Z e S O80 [ el
I ) ) pit
i1y Y lC(xj,xk)Nj(t)Nk(t)/ B(x|xj;xk)dx]
k=1j=i—1 Fi-3/2
9 I pi=t
= K(x;,x Ni(t)N, t/ T — T Tz x dx}
AM[;_Z e X080 [ e Btelai
9 I . R Ti—1
- @ @@ . N._ N, — T T
e PILCRRALROLTY R ECURETE
I I N N Ti—1/2
(3.17) +ZZIC(xj,xk)Nj(t)Nk(t)/ (m—xil)ﬁ(ﬂxj;xk)dx}
k=1 j=i Ti-3/2

Assume sufficient smoothness on 8 with respect to x and consider g(z) := (x — z;-1)8(x|x;—1; xx). Applying
Taylor series expansions about z = x;_;1 of function g(z) having nonzero derivatives upto second order, we
obtain

(3.18) 9(x) = g(zim1) + (x — i1)g (wim1) + O(AZ]) = (& — @i_1) B(wiz1|wi1; 7)) + O(Ax]).
By applying the similar argument on h(z) := (x — x;-1)B(x|x;; x1), we obtain
(3.19) h(z) = (z = zi1)B(@ii|zj; or) + (¢ = 2521) B (@i |zy; 2x) + O(Ax).
Now substituting the estimates of g and h in (3.17)) and using (2.3)), it yields
I v
— A _ 2 N N Ti—1
A, (Di—1)Bi—a1(t) v v— L_l K(zi—1,25)N;—1(t) Nk (t) /GCi_3/2 g(x)dx
I I . . Ti—1/2
+ Z Z Kz, k)N (t) Nk (t) / h(m)dx] + O(Ax?)
k=1 j=i Fi-3/2
2 1< . s 2
:m - g Z5(«Ti—1|$i—1;$k)lc(xi—17xk)Ni—l(t)Nk(t)A$¢71

k=1
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I I
ZZ (2 1|xj,xk)x(xj,xk)Nj(t)Nk(t)Ax§_1> + O(Az?).
2 =

Let h(z;_1) = B(xi_1|zie 1;2)K(zim1, k) Ni—1(t) and g(w;—1) = Be(zi—1]|zj; 7x) from the above equation.
Applying forwarded difference on h and g about x; in the above equation, we obtain

2
Azi

A (o) Bia(t) = - o — i Blas|ws: o) K (1, 20) Ns () Ni (8)

(2

Bl
~ ~
—

sz ]

I
1 G
R ae X 5 2 O Balwilegs oK, m) Ny (ONi(0) + O(Ax)

k=1 j=i
Similarly, we can obtain the second term as
A Vi — Tig1 p Ui =T\ A
AN (0)Bi(t) =———"LB(t) = (1 - ———— | B(t
; (0i)Bi(t) Ti — T i(t) Tt — 7 i(1)
. Ax? 1 X

K3 1 . \
=B;(t) + Azy + Arrey X7 ;5($1\$17$k)K($z7$k)N i (t) Nk (t)

Az? 1~ o "
A g 2 elwleaK (s, ) NiONk(0) + O(Aa?).

As in previous way, the third term is

A7 () By (t) :MBi(t) = (1 + N)Bi(t)

Ti — Tj—1 i — Ti—1
i = (1o ) B
Ti — Tig1 Tit1 — Ty
- Ax? 1< . .
=Bi(t) - ——H— X ~ i|T45 iy T ) N (8) N (¢
®) Azi + Azips 4/;5(33 [is 2 )R (@i, 2 ) Nilt) N (1)
A3 1<~ &
o X = N; ()N, Az?).
A oEy v DD 2;6 (i35 21K g, )N (8) N (1) + O(Aa?)
The fourth term is given by
— = A ﬁi—le ~
A; (Uig1)Big1(t) =—DB;(t
i (v+1) +1() Ti— Tin ()
Ax? 1< N .
1+1
= — X~ i\ ; N;(t)N,
Aot ar " 426@4%@)&(%,%) ((HN(1)

=1

Ax? 1
Lit1 ,Z Z Bz xz\xj,a:k (x],xk)N (t )Nk( )+@(Am§).

Axi + AmiJrl 6 k=1j=i+2

Without loss of generality, the summation appearing in all the above four expressions can be started from
(i 4+ 2) since the terms being omitted have 4th order accuracy. By error estimation Lemma and setting
F(zly; 2) = B(zly; 2)K(y, 2) and Fy(x|y;2) = Bu(zly; 2)K(y, 2), all four expressions rewritten in more
simplified form as

2
Azi

1 A
Azi+ Az 1 F(a]2i; ) Ny (£) Ny (t)

A (Tio1)Bia(t) = —

(3

B
~ ~
[

sz 1

I
1 . .
xS N R YN (N Az
TRt Ar 62 ol@iles; o) N (ONe () + O(Az7),

1j5=i+2
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. Axf 1
A () Bi(t) =Bi(t) + Aot Ao, <1

Axf’ 1 i
Axl + Azt 6 5
. Ax? 1<
A (9;)B;(t) =B; L Z
TR0 =B~ S < F
ALI’,‘? 1< !
AazlJrAxl 1 6; Z

and

. Axf
A (Dig1)Biga (t) = N

Az3

I
1 .
e ilwss ) N (8) N (¢
Az, + Aayp, 4 Fwilws; o) Ni(t)Ni(¢)

(zzlmz,wk)N( )N(2)

k=1
I
1
7+1 3
— A X% E E F, N;(t)N Az?).
Az + Az 6 (wilzg; 2) N5 () Nk () + O(Azi)

k=1j=14+2

Depending on the position of volume average #;, there arise two cases arise: (see Figure [3)
Case I: Consider the particle average volume o; in the right side of the pivot z; that is

Xi—1 Xi Uy
1 I i "
I ] A i
Xi—3/2 -1/2 Xi+1/2
(i — 1" cell " cell
v; > X;
T
Xi-1 ! X;
Il : =
i
Xi-3/2 Xi-1/2 Xi+1/2
(i — 1) cell R cell

FIGURE 3. ©; > z; and v; < x;

Vi1 > Ti—1, Ui > Ti, Vip1 = Tiy1. Then

5 Ax? Az? |
(1) =B;(t L C
i) =Bi) + (A
Az3 Az} |
B (Al’l + Al’iJrl B Al’l + Aacll) Z Z

- Ami +A$i—1> ZF xl|x17xk ( )Nk( )

v (x5 2e )N () Ny () + O(AzD).

k 1j=i+2

13
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Case II: Consider the particle average volume v; in the left side of the pivot x; that is
Vi1 <1, U < T, Uiy1 < Tip1. Then

R Az A .
(1) =B, (¢ i+l F (]2
Bi(t) <>+<A$i+mm Y. ) 42 (a5 ) Ny (H) Ny (1)

3
_( Azy, A ) ZZFxZ\x],wk) () ()+O(Ax)

Az; + AJL‘H_l Al‘z + Al‘, 1 k P

12z

Remark 3.1. Consider breakage kernel S(x|y; z) = 7 (1 - z>, therefore F'(z;|z;;x;) = 0. Then, Case I

gives

~ A3 Az? 1 1 ! !
() =Bi(t) — i i - Fy(zi N;()N A
Bi(?) i(®) <Axi + Az Az + Axi—l) - 6 ;j;m =(alesi sV M) + OlAw0)
and Case II gives
. Az} Az? 1~ o .
i(t) = By(t) — il - L = Fy(xilzy; 21)Nj(t)N, Azxd).
Bi(?) ®) (Awi + Az Az + Awil) * 6 ;jzzﬂ:& (ol 2 Ny ON{) + OLAe)

In order to investigate the consistency of the scheme, we will use these following results:
Lemma 3.2. Let 0 < h € RT and B(xz,t) € CY(RT x RY), then for all v € RT we have

/v+h(v ) B(e,t)da {> 0, i B(x,t) is monotonically decreasing for x € [v— h,v + h]
v—h

<0, i B(x,t) is monotonically increasing for x € [v— h,v + h].
Proof. Using Taylor’s series, we have

(3