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Abstract

Recent reasoning models through test-time scaling have demonstrated that
long chain-of-thoughts can unlock substantial performance boosts in hard
reasoning tasks such as math and code. However, the benefit of such long
thoughts for system-2 reasoning is relatively less explored in other domains
such as perceptual tasks where shallower, system-1 reasoning seems suffi-
cient. In this paper, we introduce LongPerceptualThoughts, a new synthetic
dataset with 30K long-thought traces for perceptual tasks. The key chal-
lenges in synthesizing elaborate reasoning thoughts for perceptual tasks
are that off-the-shelf models are not yet equipped with such thinking be-
havior and that it is not straightforward to build a reliable process verifier
for perceptual tasks. Thus, we propose a novel three-stage data synthesis
framework that first synthesizes verifiable multiple-choice questions from
dense image descriptions, then extracts simple CoTs from VLMs for those
verifiable problems, and finally expands those simple thoughts to elaborate
long thoughts via frontier reasoning models. In controlled experiments
with a strong instruction-tuned 7B model, we demonstrate notable im-
provements over existing visual reasoning data-generation methods. Our
model, trained on the generated dataset, achieves an average +3.4 points
improvement over 5 vision-centric benchmarks, including +11.8 points on
V∗ Bench. Notably, despite being tuned for vision tasks, it also improves
performance on the text reasoning benchmark, MMLU-Pro, by +2 points. 1

1 Introduction

Reasoning models, such as OpenAI’s o1 (OpenAI et al., 2024) and Deepseek’s R1 (DeepSeek-
AI et al., 2025), have demonstrated remarkable capabilities in solving complex reasoning
problems by scaling test-time compute. Intuitively, they increase the number of tokens
generated at inference-time, allowing the model to “think longer”—producing longer chain-
of-thoughts (CoTs) that go beyond typical linear rationales that mimic textbook responses.

However, despite numerous attempts to match the performance of models like o1 or R1
on challenging math benchmarks (MAA, 2024; Lightman et al., 2023), less effort has been
directed toward tasks beyond mathematical reasoning. Most notably, how to generate
synthetic, long-form CoT reasoning traces that solve vision-centric tasks—suitable for both
supervised fine-tuning and preference-based RL—remains largely underexplored.

Vision-centric tasks have proven challenging for vision-language models (VLMs), especially
when the tasks require object counting and localization, scene understanding, and 2D/3D
spatial reasoning (Liao et al., 2024a; Rahmanzadehgervi et al., 2024; Campbell et al., 2024).
Prior works have addressed these challenges by helping VLMs “see” better. Common
approaches include modifying the input image (e.g., through cropping) or incorporating
intermediate representations, into the CoT (Wu & Xie, 2024; Shao et al., 2024a; Wu et al.,
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Question:  
What is written at the top of the green pamphlet? 
(A) SNOW (B) PUSH-BUTTON (C) BUTTON (D) BEN MILAM

By examining the text on the pamphlet, I can see that it reads 
"SNOW" at the top. The answer is (A)

Standard (Short) CoT 

…  
Hmm, but wait, let me double check 
with the details. There’s also a word 
"PUSH-BUTTON" on the top of the 
pamphlet. So the top part has both 
words.  

But the question specifically asks 
what is written at the top. Since 
"PUSH-BUTTON" is on the very top, 
that must be the primary answer.  

However, "SNOW" is written in big red 
letters in the center, so maybe that's 
more prominent. Wait, the question is 
about the top, so I think "PUSH-
BUTTON" is at the top, making (B) the 
correct answer.  
The answer is (B)

LongPerceptualThoughts (Ours)

Subgoal setting: 
Break down question

Verification: 
Checking intermediate 
results

Backtracking: 
Explicit revision when 
errors are detected

👍

👎

Figure 1: LongPerceptualThoughts is a new synthetic dataset with 30K long-thought
traces for vision-centric tasks. Each trace contains diverse cognitive behaviors (e.g., ver-
ification, subgoal setting, and backtracking), akin to system-2 reasoning. CoTs generated
by open-source VLMs often produce linear, rigid reasoning traces (top). In contrast, our
novel data synthesis framework effectively expands these simple thoughts using frontier
reasoning models, equipping VLMs with complex reasoning structures and rich cognitive
behaviors—effectively distilling system-2 reasoning into instruction-tuned VLMs.

2025b). In contrast, we propose to synthesize data that implicitly equips VLMs with an
internal search mechanism—one that unfolds through a textual inner monologue, enabling
the model to explore multiple potential solution paths: revisiting different image regions,
verifying intermediate conclusions, identifying inconsistencies, and self-correcting when
necessary. Our approach is complementary to prior methods and mirrors the behavior
observed in reasoning models like R1 and commercial VLMs such as o1, where reasoning
performance improves by scaling test-time inference. We emphasize we do not claim that
long textual CoTs are inherently superior or the only way to scale test-time inference in
VLMs. Rather, our goal is to synthesize data to equip models with such capability—an
approach shown to be effective in SoTA reasoning models. Furthermore, given the difficulty
of building reliable process verifiers for search in perceptual tasks, our data-centric method
offers a practical alternative.

In this work, we take a first step toward a scalable method that synthesizes long CoT
data for vision-centric tasks. Specifically, we propose a novel three-stage data synthesis
framework that: (1) generates synthetic verifiable multiple-choice questions from dense image
captions, (2) extracts simple CoTs from VLMs for those questions, and (3) expands these
simple CoTs into richer, long-form reasoning traces using frontier reasoning models. Notably,
our framework performs three layers of synthesis: one to generate questions , one to think,
and the last one to think harder. As shown in Fig. 1, using our framework, we generate
LongPerceptualThoughts, a dataset of 30k examples for both supervised fine-tuning (SFT)
and direct preference optimization (DPO), and use it to fine-tune a strong instruction-tuned
VLM. The resulting model shows an average +3.4 points improvement across 5 vision-
centric benchmarks, including a gain of +11.8 points on V∗ Bench, while typical multimodal
reasoning datasets fail to improve the base VLM due to overthinking. Notably, despite
being tuned for vision tasks, it also improves on the challenging text reasoning benchmark
MMLU-Pro by +2 points.
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2 Synthesize Long CoT Data for Vision-Centric Tasks

In this section, we introduce a novel data synthesis framework to synthesize long chain-of-
thought (CoT) data for fine-tuning a vision-language model (VLM). Inspired by DeepSeek’s
R1, we are interested in collecting data consisting of thoughts and answers in the format
of <think> thought </think> <answer> answer </answer>. We start by discussing two
desired properties of reasoning data for vision-centric tasks in Sec. 2.1. Based on these
two properties, we explain our data synthesis framework in Sec. 2.3. Finally, we use the
synthesized long CoT data to construct LongPerceptualThoughts, consisting of both SFT
and preference datasets in Sec. 2.4.

2.1 Desired Properties in Long Chain-of-Thought

Inspired by the recent success in OpenAI’s o1 and DeepSeeks’s R1, we further define Long
CoT as an extended, structured rationale that mirrors how a human might approach complex
visual reasoning tasks. Unlike the short, linear responses typically produced by current
open-source VLMs, Long CoTs explore alternative solutions, verifying intermediate steps,
and adjusting course when necessary. Drawing on the framework proposed in Gandhi
et al. (2025), we characterize Long CoTs in vision-centric tasks through three core cognitive
behaviors: verification (checking intermediate conclusions for correctness), backtracking
(recognizing and revising failed solution paths), and subgoal setting (breaking down the
task into smaller, solvable components). These cognitive behaviors have been observed in
LLM to increase performance by scaling test-time compute (Muennighoff et al., 2025).

To study cognitive behaviors in vision-centric tasks, we begin by analyzing the outputs of
strong instruction-tuned VLMs, following Gandhi et al. (2025). Despite its general capabili-
ties, the model rarely displays the cognitive behaviors described earlier. The responses are
often shallow and rigid, lacking the iterative, self-corrective reasoning we aim to capture.
Figure 3a quantifies this gap between the response from Qwen2.5-VL-7B-Instruct and Gem-
ini 2.0 Flash Thinking. At the end of this section, we introduce LongPerceptualThoughts
that drastically diversifies the standard CoT with the desired cognitive behaviors.

2.2 Preliminaries

Formally, given an image v, our goal is to construct a quadruple (v, q, Z, a), consisting of a
question q, a long CoT reasoning trace Z, and a final answer a. We also assume the access to
dense image descriptions c. A long CoT is composed of multiple thoughts that incorporate
cognitive behaviors such as backtracking, verification, and subgoal setting. Formally, we
define a long CoT as a sequence of intermediate thoughts: Z := z1 ⊕ z2 ⊕ . . ., where ⊕
denotes concatenation and z is a sequence of sentences, typically delineated by double new
lines, i.e. “\n\n”.

For preference data—used in reinforcement learning—our goal is to construct a preference
pair of (v, q, Z+, a+) ≻ (v, q, Z−, a−) , where the superscripts + and − indicate the pre-
ferred (correct) and non-preferred (incorrect or suboptimal) reasoning trajectories and their
answers, and ≻ denotes that the left-hand tuple is preferred over the right-hand one.

2.3 Thought-Expansion: Distilling System-2 Reasoning into Instruction-Tuned VLMs

For an image v, we begin by assuming access to its dense image description c that provides
comprehensive visual features in the image. While in principle, one could also obtain
such descriptions using a captioning model, here we assume access to such a dataset e.g.,
DOCCI (Onoe et al., 2024) or DCI (Urbanek et al., 2023). In our proposed data synthesis
framework, we leverage three foundation models: an LLM , a VLM that takes interleaved
image and text as input and generates text, and a reasoning LLM that explicitly produces
thoughts and answers. We use MLLM, MVLM, and MReason to denote them, respectively.

Below, we describe the three key stages of our data synthesis process.

Stage 1: Convert dense descriptions to multiple-choice questions We first convert dense
descriptions into multiple-choice questions (MCQs) using an LLM. Specifically, we prompt
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Extended thinking: 
I might be wrong. Let’s double check, the mannequin is 
wearing yellow pattern slacks, …  
The answer is (A)

Stage 1 - Ask: Convert Dense Captions to Multiple-choice Questions with LLM

Dense Caption:  
… The feminine mannequin is wearing 
aqua shiny high healed shoes. …

Multiple-choice Question: 
What type of shoes is the feminine mannequin wearing? 
(A) Aqua Shiny High Heels (B) Yellow Sneakers

Simple CoT: 
To determine what types of shoes … 
The answer is (B)

Stage 2 - Think: Extract Simple CoT from VLM

Stage 3 - Think harder: Pre-condition, then Extend 
thinking with Reasoning LLM

User:  

Assistant: <think>                           . Wait,

Dense Caption Multiple-choice Question

Simple CoT

Figure 2: Ask, Think, and Think Harder: The three stages to synthesize long CoT data for
vision-centric tasks. Assuming the access to an image and its associated dense caption, we
first ask an LLM to convert dense captions to multiple-choice questions. In Stage 2, we extract
simple CoT from VLM. These simple CoTs typically exhibits shallow and rigid reasoning,
especially in vision-centric tasks. Therefore, in Stage 3, we precondition a reasoning LLM
with these simple CoTs and append a subtle cue, e.g., “Wait,”, to elicit more diverse long
CoTs.

MLLM to generate MCQs based on an image and its associated dense descriptions. This
step offers two key advantages that are leveraged in subsequent stages: (1) It ensures
that each generated question is answerable using only the dense descriptions, allowing
us to synthesize the reasoning process purely from the text modality. (2) The multiple-
choice format enables easy identification of prediction correctness, which is essential for
constructing positive and negative pairs in our preference dataset. Formally, this step
produces a triplet (v, q, a⋆) := MLLM(v, c). We use gpt-4o-mini as MLLM to balance the
cost and the quality of MCQs.

Stage 2: Extract Simple CoTs from VLM To generate long CoTs that the VLM is familiar
with, we use the same VLM that will later be fine-tuned. Specifically, we prompt MVLM
with the image and the multiple-choice question generated in Stage 1 to produce a rationale
and a final prediction, denoted as (z1, a1) := MVLM(v, q). Sampling from the same VLM
ensures that the synthesized CoTs remain within the model’s output distribution, which
we observed to be a key factor in downstream performance. By comparing the predicted
answer a1 with the ground-truth answer a⋆ from Stage 1, we can further categorize the data
into positive (z+1 , a+1 ) or negative examples (z−1 , a−1 ). These can then be reused to construct
either a SFT or a preference dataset. This process is akin to the rejection sampling in self-
training algorithms such as RFT (Yuan et al., 2023) and STaR (Zelikman et al., 2022). We
choose Qwen2.5-VL-7B-Instruct as our MVLM, as the Qwen2.5 series has demonstrated a
non-trivial probability of exhibiting cognitive behaviors (Gandhi et al., 2025).

Stage 3: Thought-Expansion using the Reasoning Model. The analysis in Fig. 3a reveals
that CoTs sampled from open-source VLMs typically exhibit shallow and rigid reasoning,
with limited exploration in the output space. Inspired by the diverse cognitive behaviors
observed in the responses of frontier reasoning models, we aim to leverage a reasoning
LLM to generate long CoTs. However, naively sampling from MReason can produce CoTs
that deviate significantly from the output distribution in VLM, which may degrade the
performance of instruction-tuned models during fine-tuning. The similar findings have
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Figure 3: (a) Analysis of Cognitive Behaviors in Chain-of-Thought (CoT). CoTs from
open-source VLMs often follow rigid structures. In contrast, frontier reasoning VLMs—such
as Gemini 2.0 Flash Thinking—exhibit more diverse cognitive behaviors, including subgoal
setting, backtracking, and verification. Our introduced long CoT dataset, LongPerceptu-
alThoughts, also demonstrates a wide range of such behaviors. (b) Length of CoTs. The
CoTs in LongPerceptualThoughts are significantly longer than those generated by popular
VLMs, e.g. Qwen2.5-VL. (c) Response length vs. aggregated performances. Fine-tuning
VLM on LongPerceptualThoughts with complex reasoning structures lead to higher overall
performances with slightly more output tokens. On the other hand, fine-tuning on other
multimodal reasoning leads to over-thinking and worse performance. Cognitive behaviors
are quantified following Gandhi et al. (2025).

been discovered in LLMs as well (Ren et al., 2024; Li et al., 2025; Wu et al., 2025a). To
address this, we introduce a thought-expansion mechanism that guides the reasoning LLM
MReason to extend the CoT produced in Stage 2, while injecting cognitive behaviors such as
backtracking, verification, and subgoal setting. Specifically, we precondition MReason with
the CoT generated by VLM z1 and append a subtle cue—selected from a set of predefined
markers m (e.g., “Wait,” “Hmm,” “Alternatively,”)—to elicit more reflective or exploratory
responses. Formally, we structure the prompt as:

User: c ⊕ q
Assistant: <think>⊕ z1 ⊕ m

and ask MReason to continue the thought to obtain (z2, a2). This approach enables the
reasoning LLM to expand the familiar reasoning traces while enriching them with non-
linear problem-solving behaviors. Similar to Stage 2, we can also use a2 to categorize the
data into positive or negative examples. Fig. 2 demonstrates the way to construct such
prompt visually. We use DeepSeek-R1-Distill-Qwen-32B as our MReason, as it is derived
from the same Qwen2.5 series as the MVLM. For more details, see the prompt template in
Appendix F.7.

Our proposed framework is scalable and only assumes the access to dense image description
datasets. From Stage 1 to Stage 3, for an image v and its associated descriptions c, we obtain
MCQs (q, a⋆) in Stage 1. Then, in Stage 2 and 3, we obtain two intermediate thoughts and
their associated predicted answers (z1, z2, a1, a2). Finally, we have long CoT data Z obtained
by: z1 ⊕ m ⊕ z2. We will omit m in the following sections for the sake of brevity and clarity.

2.4 Construct SFT and DPO Datasets

In Sec. 2.3, we described a process to obtain long-form CoTs that not only aligns with the
VLM’s output distribution but also contains system-2 reasoning behaviors. To construct a
supervised fine-tuning (SFT) dataset, we collect CoTs that lead to correct predictions. This
includes examples of the form:

(z+1 , a+1 ), (z
+
1 ⊕ z+2 , a+2 ), (z

−
1 ⊕ z+2 , a+2 )

To construct a preference dataset, we follow Setlur et al. (2024); Zhang et al. (2025) and define
pairwise preferences based on correctness and compactness Team et al. (2025). Specifically:
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Correctness:

(z+1 , a+1 ) ≻ (z−1 , a−1 )

(z−1 ⊕ z+2 , a+2 ) ≻ (z−1 , a−1 )

Compactness:

(z+1 , a+1 ) ≻ (z+1 ⊕ z+2 , a+2 )

Akin to Setlur et al. (2024), by constructing the preference pairs of (z−1 ⊕ z+2 , a+2 ) ≻ (z−1 , a−1 ),
we encourage the model to increase the likelihood P(z+2 , a+2 |z

−
1 ) and decrease the likelihood

P(a−1 |z
−
1 ), leading to better credit assignment.

Filtering. Since z2 is generated by a reasoning LLM using dense captions as input, it may
include phrases like “As the description says.” To address this, we define a list of “bad
words” and filter out any thoughts containing them.

Details of LongPerceptualThoughts. We use 500 images and their dense captions from
DOCCI. Stage 1 produces 4590 multiple-choice questions (MCQs). For long CoT data,
we construct an SFT dataset with 30295 examples and a preference dataset with 17208
pairs, following filtering and deduplication. We use gpt-4o-mini as MLLM, Qwen2.5-VL-
7B-Instruct as MVLM, and R1-Distill-Qwen-32B as MReason.

3 Experiments

In this section, we first describe the experimental setup on five vision-centric benchmarks
in Sec. 3.1 and present our main results in Sec. 3.2. In Sec. 3.3, we go beyond vision by
evaluating our fine-tuned VLMs on a challenging text-only benchmark. Lastly, in Sec. 3.4,
we analyze the response of the fine-tuned VLMs.

3.1 Setup

Model. We use Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our base model to fine-tune
throughout the paper. For the sake of brevity, we refer to it as BaseModel in this section.
We adopt full-parameter fine-tuning using LLaMA-factory (Zheng et al., 2024). See more
training details in Appendix F.

Benchmarks. We evaluate our models on vision-centric tasks. For benchmarks covering
general knowledge, we only keep their vision-centric splits, such as MME-RealWorld (Zhang
et al., 2024) and MMStar (Onoe et al., 2024). To better clarify the differences, we refer to
them as MME-RW-V and MMStar-V, respectively. Additionally, following Tong et al. (2024a),
we include the vision-centric benchmarks: CV-bench, V∗ Bench, and MMVP, that involve
2D/3D spatial reasoning, fine-trained attribution, coarse scene understanding, etc. In total,
the benchmarks consist of 10284 images and 15315 questions. More details are in Appendix B.

Evaluation metrics. All the benchmarks used in this work are in multiple-choice question
format. We standardize their format and use regex to extract the answers. We report accuracy
across all benchmarks.

Baselines. To explore the vision-centric capabilities of BaseModel, we evaluate its zero-shot
predictions and apply a prompt-based chain-of-thought approach. Specifically, we prompt
the model to generate <think> thought </think> before producing an answer—a method
we refer to as Internal Thinking CoT.

For multimodal datasets, we compare LongPerceptualThoughts with one captioning dataset,
DOCCI, and two multimodal reasoning datasets, Virgo (Du et al., 2025) and VAAL-
thinking (Chen et al., 2025). (1) DOCCI is a human-annotated dense caption dataset, high-
lighting comprehensive descriptions for images. For a fair comparison with LongPerceptu-
alThoughts, we use the exact same set of 500 images and their captions as training data. (2)
Virgo distills reasoning capabilities from the language model QwQ (Team, 2024b) and the
multimodal model QvQ (Team, 2024a). We adopt Virgo’s self-distillation split, generated
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Approach Avg CV-Bench V∗ Bench MMVP MMStar-V MME-RW-V

Qwen2.5-VL-7B-Instruct 58.47 74.74 48.51 73.67 63.73 31.68
+ Internal Thinking CoT 59.18 75.42 55.08 70.60 62.40 32.40

+ DOCCI 36.14 50.82 39.96 48.67 8.67 32.58
+ VLAA-thinking 42.32 68.50 53.53 66.67 0.53 22.38
+ Virgo 50.87 67.22 44.14 57.67 57.60 27.71

+ LongPerceptualThoughts- SFT (Ours) 59.90 76.05 60.53 (+12.02) 70.00 60.67 32.25
+ LongPerceptualThoughts- SFT + DPO (Ours) 61.87 (+3.4) 76.61 (+1.8) 60.31 (+11.8) 75.00 (+1.33) 64.00 (+0.27) 33.45 (+1.77)

Table 1: Main results on five vision-centric benchmarks. We group the approaches into
three categories: training-free methods, existing multimodal reasoning datasets, and our pro-
posed LongPerceptualThoughts. On vision-centric tasks, fine-tuning on other multimodal
reasoning datasets often leads to poorer performance, likely due to reduced instruction-
following ability, domain mismatch, or an inability to capture the complex reasoning learned
by larger models. In contrast, fine-tuning on LongPerceptualThoughts yields an average
improvement of +1.5 points, and this gain increases to +3.4 points when using preference
pairs. Notably, it achieves a 12-point improvement on the challenging V∗ Bench.

by first distilling QwQ into Qwen2-VL-72B-Instruct, then using the fine-tuned model to
produce reasoning data for multimodal questions. The Virgo dataset includes 14, 540 exam-
ples. (3) VLAA-thinking generates multimodal reasoning data by prompting DeepSeek’s
R1 model with additional caption information. It contains 158k examples, from which we
randomly sample 25k for training to match a similar size to our dataset. 2

3.2 Main Results

We report aggregated performances in Table 1 and detail our main findings on five vision-
centric benchmarks:

LongPerceptualThoughts consistently improves performance on vision-centric bench-
marks by +3.4 points via DPO. We first perform supervised fine-tuning on the synthesized
LongPerceptualThoughts. Across 5 benchmarks, we improve BaseModel by nearly +1.5
points on average, especially in challenging tasks such as V∗ bench, improving by +12
points. However, the improvements on the rest of the benchmarks are marginal. We hy-
pothesize that this is due to noisy or erroneous tokens in our SFT datasets, which may
hurt fine-tuning performance. While several prior works suggest the impacts of such erro-
neous tokens are marginal, they either work on models under 300M parameters (Ye et al.,
2024) or target different aspects, such as safety alignment (Zhang et al., 2025). In this work,
we try not to over-engineer the training recipe to highlight the effectiveness of the syn-
thesized datasets. Unlike VLAA-thinking and Virgo that simply distill knowledge from
reasoning LLMs or VLMs, our data generation pipeline allows us to construct preference
data. By fine-tuning on these preference pairs, the aforementioned erroneous tokens might
naturally be mitigated. For example, by performing preference-based fine-tuning such as
DPO, on (z−1 ⊕ z+2 , a+2 ) ≻ (z−1 , a−1 ), the model should naturally increase the likelihood of
P(z+2 , a+2 |z

−
1 ) as opposed to P(a−1 |z

−
1 ). This helps the model reduce the impact of erroneous

tokens. We find that by first applying SFT and then DPO, we obtain consistent improvements
across all evaluation datasets, improving by +3.4 accuracy points. Overall, we find that
LongPerceptualThoughts generally leads to consistent improvements and the preference
data is the key to bring up the improvements.

Off-the-shelf captioning data hurts instruction-tuned VLMs on vision-centric bench-
marks. Since LongPerceptualThoughts is derived from DOCCI, we are interested to see
if fine-tuning BaseModel on DOCCI improves. Table 1 shows that training on DOCCI re-
sults in inferior performances. Perhaps expected, we find that fine-tuning on DOCCI alone
especially leads to bad instruction following.

Off-the-shelf distillation hurts performance on vision-centric benchmarks. Both Virgo
and VLAA-thinking are multimodal reasoning datasets. VLAA-thinking is distilled from

2We accessed the dataset in mid-March 2025.
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R1 with the help of image captions. Virgo is distilled from a fine-tuned VLM distilled
from QwQ. While both datasets are equipped with complex reasoning structures, fine-
tuning the BaseModel does not improve vision-centric performance; instead, finetuning on
VLAA-thinking and Virgo hurts the performances by -16.15 and -7.6 points, respectively.
We hypothesize that there are two reasons that lead to the performance drops: (1) Both
datasets are distilled from a much much larger LLMs (671B R1 model) or VLMs (Qwen2-VL-
72B-Instruct), potentially resulting in the learnability gap (Li et al., 2025). (2) In particular,
the multimodal reasoning data from Virgo is math-focused. We hypothesize that there is a
gap between reasoning over perceptual tasks and math-related tasks. On the other hand,
VLAA-thinking consists of a diverse set of datasets including DocVQA (Mathew et al.,
2021), ChartVQA (Masry et al., 2022), etc. When using reasoning data exclusively from
more natural image sources, we surprisingly observe worse performance than random
subsampling. See Appendix D for details.

3.3 Beyond Vision: Evaluation on the Text-Only Reasoning Benchmark

Following the same setup in Sec. 3.1, we evaluates VLMs fine-tuned on multimodal reason-
ing training datasets in out-of-distribution (OOD) tasks. In particular, we adopt MMLU-Pro,
a challenging text-only reasoning benchmark.

Approach Acc

Qwen2.5-VL-7B-Instruct -
+ CoT 48.07

+ DOCCI 32.99
+ VLAA-thinking 21.56
+ Virgo 37.95

+ Ours - SFT 50.77
+ Ours - SFT + DPO 50.20

Table 2: Evaluation on out-of-
distribution tasks text-only reason-
ing benchmark MMLU-Pro.

MMLU-Pro (Wang et al., 2024a). MMLU-Pro is built
on top of MMLU (Hendrycks et al., 2021) by inte-
grating more reasoning-focused questions and ex-
panding the choices set. MMLU-Pro spans 14 diverse
domains including mathematics, physics, chemistry,
etc., encompassing over 12000 questions.

Results. As shown in Table. 2, we find that BaseModel
fine-tuned on LongPerceptualThoughts surprisingly
improves on these text-only reasoning tasks, with
an average gain of +2 points. In contrast, VLAA-
thinking and Virgo hurt performance, suggesting
that directly distilling from stronger teachers may
lead to sharp drops in OOD tasks. We propose two
hypotheses for LongPerceptualThoughts’ effective-
ness: (1) it introduces complex reasoning structures
that improve BaseModel ’s general reasoning abilities; and (2) it remains close to the original
output distribution, making the new reasoning skills easier to learn without disrupting
existing knowledge. Additional MMLU-Pro evaluation details are provided in Appendix E.

3.4 Analysis on Fine-tuned VLM Responses

To better understand our fine-tuned VLM, we visualize its responses with two key factors:
aggregated performances and question difficulties.

Response length vs. performances. There has been growing interest in how LLMs leverage
test-time compute. To investigate this, we aggregated response lengths and performance
across five vision-centric benchmarks. Fig. 3c illustrates the relationship between test-
time compute—measured by response length—and model performance. We observe that
VLMs fine-tuned on LongPerceptualThoughts tend to produce slightly longer responses,
especially after SFT. Interestingly, DPO training results in shorter responses, which aligns
with the compactness encouraged during DPO pair construction. One possible direction is
to exclude such preference pairs to allow models to make fuller use of test-time compute.
In contrast, other multimodal reasoning benchmarks reveal signs of overthinking, where
models generate unnecessarily lengthy responses.

Response length vs. question difficulty. Another desirable characteristic of the thinking
process in LLMs is their ability to allocate appropriate “thinking time” based on a question’s
difficulty. Following prior works (Lightman et al., 2024; Snell et al., 2025), we define question
difficulty with respect to a base VLM, i.e., Qwen2.5-VL-7B-Instruct. For each question, we
estimate the model’s accuracy using 11 samples and bin the questions into two quantiles:
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easy and hard. Our analysis focuses on the outputs of the VLM fine-tuned via DPO on
LongPerceptualThoughts. We observe that the model naturally allocates more test-time
compute—reflected in longer responses—for harder questions, where its original (pre-fine-
tuning) performance was worse. See Appendix C for details and visualization.

4 Related Work

Reasoning in Large Language Models. The complex reasoning abilities of large language
models (LLMs) have been uncovered through various approaches. Chain-of-thought (CoT)
prompting elicits their intrinsic reasoning capabilities, improving performance on language-
based causal reasoning tasks (Wei et al., 2022), and has been extended into tree-based
searches to enhance reasoning further (Yao et al., 2023). Similar search-like behavior can be
induced through verifier guidance (Lifshitz et al., 2025), curated datasets (Shao et al., 2024b),
or supervised fine-tuning on synthetic reasoning data (Gandhi et al., 2024; Lehnert et al.,
2024). More recently, DeepSeek-R1 (Guo et al., 2025) achieved state-of-the-art reasoning
through reinforcement learning, exhibiting human-like traits such as self-correction and
verification. In contrast, s1 (Muennighoff et al., 2025) improves mathematical reasoning
via supervised fine-tuning on 1000 distilled reasoning traces from frontier models. While
most prior work focuses on math and coding tasks, our goal is to explore how such strong
reasoning capabilities can be effectively applied to perception.

Reasoning in Vision-Centric Tasks. Unlike reasoning in math or coding tasks, vision-centric
problems often involve significant uncertainty due to partial information, perceptual noise,
and visual ambiguities. Prior works primarily address this by helping VLMs ”see” better.
For instance, SEAL (Wu & Xie, 2024) uses a search-like cropping mechanism to iteratively
navigate an image, while VisualCoT (Shao et al., 2024a) generates auxiliary visual cues
to guide attention. Other approaches (Wang et al., 2024b; Liao et al., 2024b) decompose
complex tasks into simpler verification steps to enhance model robustness. In contrast, we
aim to teach VLMs to reason better—encouraging them to explore multiple solution paths
by revisiting image regions, verifying intermediate conclusions, and engaging in textual
inner monologue. Concurrent work on multimodal reasoning addresses this challenge,
particularly in math problem solving, using techniques such as distillation from advanced
reasoning LLMs (Du et al., 2025; Thawakar et al., 2025) and reinforcement learning (Liu et al.,
2025; Huang et al., 2025). In this work, we study how system-2 reasoning can improve vision-
centric tasks, and propose a data synthesis framework that generates long CoT examples to
teach visual reasoning through deliberate, step-by-step thinking in the textual space.

5 Conclusions

In this work, we explore how system-2 reasoning can enhance vision-centric tasks. We intro-
duce a novel, scalable data synthesis framework that requires only dense image captions.
The framework generates verifiable multiple-choice questions, extracts simple chains of
thought (CoTs) from vision-language models (VLMs), and expands them into rich, long-
form reasoning traces using frontier reasoning models. This process yields LongPerceptu-
alThoughts, a synthetic dataset containing 30k detailed reasoning traces for perceptual tasks.
Fine-tuning Qwen2.5-VL-7B-Instruct on LongPerceptualThoughts improves performance
by +3.4 points across five vision benchmarks, including ann +11.8-point gain on V∗ Bench.
Remarkably, despite being trained on vision tasks, the model also improves by +2 points on
the out-of-distribution text-only reasoning benchmark MMLU-Pro.
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CV Bench V∗ Bench MMVP MMStar-V MME-RealWorld-V Total

# Images 2638 191 300 750 6405 10284
# Questions 2638 191 300 750 11436 15315

Table 3: Vision-centric benchmark statistics.

A Table of Content

1. Sec. B elaborates the details of the considered five vision-centric benchmarks
2. Sec. D provides additional experimental results including additional comparison

with self-training and our efforts to improve VLAA-thinking and Virgo.
3. Sec. E provides the full evaluation results on text-only reasoning benchmark,

MMLU-Pro.
4. Sec. F provides implementation details in dataset generation, VLM training, and

VLM inference.
5. Sec. G provides additional qualitative results of our dataset generation pipeline.
6. Sec. C provides the analysis of fine-tuned VLM’s response length versus question

difficulties.

B Benchmark details

We describe the details of each benchmark:

1. CV-Bench (Tong et al., 2024a) is a comprehensive benchmark of over 2k manually-
inspected examples, evaluating visual understanding across domains such as object
recognition, scene understanding, and visual reasoning.

2. V∗ Bench (Wu & Xie, 2024) targets fine-grained visual reasoning tasks that demand
detailed analysis of visual elements.

3. MMVP (Tong et al., 2024b) tests visual pattern recognition using “CLIP-blind
pairs”—visually distinct images perceived as similar by CLIP—highlighting sys-
tematic limitations in VLMs.

4. MMStar-V includes tasks assessing instance-level reasoning, fine-grained perception
(detecting subtle visual details), and coarse perception (understanding overall scene
context).

5. MME-RW-V. MME-RealWorld evaluates real-world visual understanding across
domains such as autonomous driving, remote sensing, monitoring, diagrams, tables,
and OCR, testing both perception and reasoning. From these, we select three per-
ception tasks—Remote Sensing, Monitoring, and Autonomous Driving—and two
reasoning tasks—Monitoring and Autonomous Driving—to form MME-RealWorld-
V.

As a result, our evaluation provides a comprehensive view on the perceptual capabilities
enabled by the training datasets under consideration. Table 3 shows the basic statistics of
the considered benchmarks.

C Response length vs. question difficulty

Following prior works , we define question difficulty with respect to a base VLM, i.e.
Qwen2.5-VL-7B-Instruct. For each question, we estimate the model’s accuracy using 11
samples and bin the questions into two quantiles: easy and hard. Our analysis focuses on
the outputs of the VLM fine-tuned via DPO on LongPerceptualThoughts. Fig 4 shows the
distribution of response lengths across the easy and hard bins for four different tasks. We
observe that the model naturally allocates more test-time compute—reflected in longer
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Approach Avg CV-Bench V∗ Bench MMVP MMStar-V MME-RW-V

Qwen2.5-VL-7B-Instruct 58.47 74.74 48.51 73.67 63.73 31.68

VLAA-thinking 42.32 68.50 53.53 66.67 0.53 22.38
+ only natural images 34.96 61.91 28.86 55.00 6.20 22.86

Virgo 50.87 67.22 44.14 57.67 57.60 27.71
+ improved formatting 52.58 68.94 46.54 66.33 53.47 27.60

Table 4: Attempted improvements on top of VLAA-Thinking and Virgo baselines.

Avg Biology Business Chemistry CompSci. Econ. Engin. Health History Law Math Phil. Physics Psych. Other

Qwen2.5-VL-7B-Instruct 48.07 68.62 55.77 44.79 49.51 61.26 34.26 47.68 43.57 24.89 50.41 38.88 47.19 60.65 45.56

DOCCI 32.99 51.60 42.33 22.61 37.32 43.48 18.89 32.76 22.31 10.26 40.19 29.46 25.56 51.13 33.98
VLAA-Thinking 21.56 25.24 27.76 15.11 20.73 25.47 7.64 24.45 29.40 13.35 26.72 20.04 17.78 21.43 26.73
Virgo 37.95 64.02 44.36 28.98 36.59 50.36 10.63 38.63 37.27 21.16 41.67 33.07 33.18 53.88 37.45

Ours - SFT 50.77 71.83 56.78 50.35 51.22 62.68 38.49 50.86 42.78 25.07 64.25 40.88 50.65 60.78 44.16
Ours - SFT + DPO 50.20 73.08 55.26 45.94 48.29 62.09 37.98 51.10 45.41 28.25 59.07 40.68 48.73 62.28 44.70

Table 5: Results for all categories of the MMLU-Pro dataset.

responses—for harder questions, where its original (pre-fine-tuning) performance was
worse.

D Additional Results

VLAA-Thinking and Virgo adjustments. As we saw degradation in performance when
training on both, Virgo and VLAA-Thinking, we spent additional time investigating the
datasets and the model behavior they are causing which lead to these results.

We found that VLAA-Thinking consists of large proportions of math questions whereas
natural image data is dominating the considered benchmarks as we focus on perceptual
tasks. We hypothesize that this distribution shift might lead to lower performance. To
investigate, we consider a version of VLAA-Thinking where we only keep the image subsets
containing natural images, i.e., ALLaVA-LAION and VizWiz, and randomly sample a subset
of the same size. For Virgo, we found that predictions would not consistently respect
the system prompt when formatting answers leading to inconsistencies with our regex-
based evaluation. We thus explore a version of the dataset where we only copy the answer
provided inside \boxed{} into <answer> tags, discarding the justification part of the answer,
while keeping the thinking part of the dataset the same.

The results of both adjustments can be found in Table 4. We observe that training on only
natural images in VLAA-Thinking hurts performance further, likely due to the limited data
diversity. One the other hand, when applying improved answer formatting the results on
Virgo improve slightly from 50.87% to 52.58%. However, despite these adjustments, the
datasets still fail to improve beyond the base model.

E Full MMLU-Pro Evaluation Results

We provide the detailed results on all MMLU-Pro categories in Table 5. We observe that
the model fine-tuned on our LongPerceptualThoughts dataset consistently outperforms
the baselines and provides improvements on top of the base model except for the Other
category.

F Implementation Details

F.1 LongPerceptualThoughts

Data generation. Our framework consists of three stages: generates verifiable multiple-
choice questions using MLLM, extracts simple chains of thought (CoTs) from vision-
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language models MVLM, and expands them into rich, long-form reasoning traces using
frontier reasoning models MReason.

1. In Stage 1, we use gpt-4o-mini-2024-07-18 with temperature 0.7. First, we prompt
GPT-4o using the prompt in Fig. 5 to generate multiple-choice questions. Then, we
parse the outputs by prompting GPT-4o again using the prompt in Fig. 6.

2. In Stage 2, we use Qwen2.5-VL-7B-Instruct with temperature 0.7, top p 0.8, repeti-
tion penalty, 1.05, and set number of samples per input to 3

3. In Stage 3, we use R1-Distill-Qwen-32B with temperature 0.7, top p 0.8, top k 50,
repetition penalty, 1.05, and set number of samples per input to 3. To avoid out-
puts include phrases like “As the description says”, we explicitly define bad words
as “describe, description, described, describes, descriptions, mention, mentions,
mentioned, misread, text, stated, says, mental”

F.2 Training details

SFT Training. We fine-tune the language decoder with a batch size of 256, sweeping learning
rates over {10−5, 8 × 10−6, 6 × 10−6}. Training runs for up to 5 epochs with early stopping
based on the average validation accuracy. We set the maximum image resolution to 512× 512
and the input cutoff length to 1024.

DPO Training. We fine-tune the language decoder with a batch size of 256, sweeping
learning rates over {1 × 10−6, 5 × 10−7, 1 × 10−7}. Training runs for up to 3 epochs with
early stopping based on the average validation accuracy. We set the maximum image
resolution to 512 × 512 and the input cutoff length to 1024. For DPO, we set β to 1. and
following Pang et al. (2024), we include SFT loss with a weight of 0.5.

F.3 DOCCI Captions

We select the same 500 images used to generate our dataset. Next, we format the training
dataset with the user prompt ”Provide a detailed description of the image.”, prepending
the image token and use the dense description provided in the dataset as the target answer
of the model without further processing. We train the model using learning rate 8 × 10−6

with batch size 256 for a maximum of 20 epochs. The training reaches maximum average
accuracy on the validation set in the third epoch and we subsequently use this checkpoint
to report results in the main paper.

F.4 VLAA-thinking

We preprocess the dataset into two different versions, discarding samples where no reason-
ing trace could be extracted. The first version uses 24, 035 randomly selected samples from
the original dataset containing 158, 827 samples. The second version also 24, 035 random
samples, however, we filter the dataset for images from ALLaVA-LAION and VizWiz. The
latter specifically contains natural images - similar to the setting we train and evaluate on.
We use the official dataset3 provided and apply some minor processing to the dataset to for-
mat the samples into a similar format as ours. In particular, we extract the thinking process
and the answer from the ds answer column of the dataset and place these into <think> and
<answer> tags respectively. We use the same system prompt as for our model (see Sec. F.7).

Training. We finetune the language decoder using batch size 256. For both versions, we
perform hyper parameter tuning by sweeping learning rates {10−5, 8 × 10−6, 6 × 10−6}. We
train for a maximum of 5 epochs and perform early stopping based on the average accuracy
on the validation datasets.

F.5 Virgo

We use the dataset introduced in Virgo (Du et al., 2025) as DSD
4 as other versions are not

publicly available and it provides the best average performance in their experiments. As
3https://huggingface.co/datasets/UCSC-VLAA/VLAA-Thinking
4https://huggingface.co/datasets/RUC-AIBOX/Virgo-Visual-Long-Thought-Dataset
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instructed on the webpage we use the ”conversation” column of the dataset which the
authors report to be the final data used to train the Virgo-7B model. The conversation
column is constructed as the correct response with the shortest length of 5 samples given
each prompt.

We apply minor processing to the dataset to follow our format by replacing the
<|begin of solution|> and <|end of solution|> with <answer> and </answer>. Similarly,
we replace <|begin of thought|> and <|end of thought|> with <think> and </think>. Fi-
nally, we append ”Format the answer with the letter of the correct option in parentheses.”
to the system prompt if the question is a multiple choice question. Overall, the resulting
training dataset contains 14, 540 samples.

Training. For training, we follow the setup described in F.4, i.e., performing basic hyper
parameter tuning, with the only change to limit training to 3 epochs as we found that the
model performance peaks early during training. Surprisingly, we achieve the best validation
performance before the first epoch ends.

F.6 Evaluation

Inference setup. We use vLLM (Kwon et al., 2023) for inferencing all models with greedy
decoding. Detailed settings can be found in Tbl. 6. Further, we resize images’ longer side to
512 pixels preserving the aspect ratio if necessary. As the reasoning traces for MMLU-Pro
tend to be longer for all models due to the difficulty of the task, we double the maximum
number of new tokens generated. We use four NVIDIA RTX6000.

Setting Value

cutoff length 2048
max new tokens 1024 (2048 for MMLU-Pro)
temperature 0.0
top p 1.0
dtype half

Table 6: vLLM inference settings.

F.7 Training and Evaluation Prompts

We provide the prompts for training and evaluation:

1. Fig. 7: The prompt used to train VLMs on DOCCI descriptions.
2. Fig. 8: The prompt used to evaluate VLMs to provide direct answers.
3. Fig. 9: Inspired by the prompt provided by DeepSeek-R1 (DeepSeek-AI et al., 2025),

we design the prompt used to evaluate VLMs to provide thoughts and answers.

G Qualitative dataset example

We provide an example of our dataset in Fig. 10.
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Figure 4: Response lengths vs. question difficulties. We analyze the responses of the VLM
fine-tuned on LongPerceptualThoughts via DPO. Interestingly, we find that the model
finetuned in our data naturally allocates more test-time compute for hard questions. We
follow Lightman et al. (2024); Snell et al. (2025) and determine question complexity using
rollouts on the base model.
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System: You are an assistant that converts image descriptions to
multi-choice visual questions.↪→

User: Task:
You are given a detailed description of an image. Your goal is to

generate diverse vision-centric, detailed questions that require a
careful examination of the image for subtle visual details. Each
question should be answerable in a brief sentence or single phrase.

↪→

↪→

↪→

Instructions:
- Focus on Visual Detail:

- Ask questions that require examining fine details such as textures,
patterns, and small or hidden elements.↪→

- Encourage the reader to analyze spatial relationships like object
overlap, perspective, and layout.↪→

- Include aspects of lighting, shadows, and color gradients that
affect the image's mood and depth.↪→

- Comprehensive Coverage:
- Ensure that the questions, as a group, address the majority of

important details mentioned in the image description.↪→

- Design for Multiple-Choice:
- For each question, provide 4 answer options labeled A, B, C, and D.
- Include one correct answer and three plausible distractors.

- Encourage Careful Inspection:
- Design each question so that it cannot be answered without a close,

careful visual inspection of the image.↪→

- Avoid generic or overly broad questions; each should target specific
visual cues mentioned or implied in the description.↪→

- Clarity, Specificity, and Brevity in Answers:
- Formulate questions that are clear and focused on visual elements.
- Ensure each question is detailed enough to challenge the reader to

look beyond the surface.↪→

- Avoid questions that can be answered with general knowledge or
assumptions.↪→

- Each question should be answerable in a brief sentence or even a
single phrase.↪→

- Structured Output:
- Provide the questions in a numbered list.
- Example Format: 1. <question> question here </question> <choices>

(A) ... (B) ... (C) ... (D) ... </choices> <answer> short answer
here </answer>

↪→

↪→

Image Description:
[IMAGE DESCRIPTIONS]
Assistant:

Figure 5: Text prompt converting descriptions to multi-choices questions.
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User: You are given a text containing multiple multi-choice questions.
Each question includes a question statement, several choices, and an
answer. Your task is to reformat the text so that each multi-choice
question follows the structure below:

↪→

↪→

↪→

1. <question> question text here </question> <choices> (A) choice A text
(B) choice B text (C) choice C text (D) choice D text </choices>
<answer> answer text here </answer>

↪→

↪→

Please ensure that:
- Each question is numbered sequentially (e.g., 1., 2., 3., . . . ).
- The question portion is enclosed within the `<question>` tags.
- All answer options are enclosed within the `<choices>` tags, with each

option clearly labeled (A), (B), (C), (D).↪→

- The answer is enclosed within the `<answer>` tags.
- The original content is preserved, but any formatting issues are

corrected according to the template above.↪→

Here is the original content: [PREVIOUS_RESPONSE]
Assistant:

Figure 6: Text prompt to parse the response of Fig. 5 to multi-choices questions.

System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The answer are enclosed within
<answer> </answer> tags, respectively, i.e., <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

↪→

↪→

↪→

↪→

User: <image>Provide a detailed description of the image.
Assistant: [IMAGE DESCRIPTION]

Figure 7: Training prompt for training on DOCCI descriptions.

System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The answer are enclosed within
<answer> </answer> tags, respectively, i.e., <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

↪→

↪→

↪→

↪→

User: <image>[QUESTION]
Select from the following choices.
[CHOICES]
Assistant:

Figure 8: Evaluation prompt for direct answers.
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System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The assistant first thinks
about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

User: <image>[QUESTION]
Select from the following choices.
[CHOICES]
Assistant:

Figure 9: Evaluation prompt for thoughts and answers.
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Question: How is the smaller tennis racket decorated within its strings?
Select from the following choices.
(A) A smiley face
(B) A floral design
(C) A logo
(D) A pattern of stars
% Correct answer: (A) A smiley face

Simple CoT
<think>
Upon examining the smaller tennis racket, I can see that there is a

distinct pattern of stars within its strings. This pattern is
consistent across the strings, making it clear what the design is.

↪→

↪→

</think>

<answer> (D) </answer>

Ours
<think>
Upon examining the smaller tennis racket, I can see that there is a

distinct pattern of stars within its strings. This pattern is
consistent across the strings, making it clear what the design is.
Wait, no, hold on. Actually, the image shows a smiley face inside the
strings, but it's upside down. So that must be the decoration.

↪→

↪→

↪→

↪→

Wait, maybe I got confused. Let me double-check. The smaller racket has a
smiley face printed in black within the strings. So the correct
answer should be A smiley face. But wait, the options include both A
and C. Hmm, could it be a logo? No, because the Wilson racket has a
logo, but the smaller one has a smiley face. So the decoration is a
smiley face, which is option A.

↪→

↪→

↪→

↪→

↪→

</think>

<answer> (A) </answer>

Figure 10: Qualitative example of our LongPerceptualThoughts dataset performing verifica-
tion.

24


	Introduction
	 Synthesize Long CoT Data for Vision-Centric Tasks
	Desired Properties in Long Chain-of-Thought
	Preliminaries
	Thought-Expansion: Distilling System-2 Reasoning into Instruction-Tuned VLMs
	Construct SFT and DPO Datasets

	Experiments
	Setup
	Main Results
	Beyond Vision: Evaluation on the Text-Only Reasoning Benchmark
	Analysis on Fine-tuned VLM Responses

	Related Work
	Conclusions
	Table of Content
	Benchmark details
	Response length vs. question difficulty
	Additional Results
	Full MMLU-Pro Evaluation Results
	Implementation Details
	LongPerceptualThoughts
	Training details
	DOCCI Captions
	VLAA-thinking
	Virgo
	Evaluation
	Training and Evaluation Prompts

	Qualitative dataset example

