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Abstract. We obtain constraints in a 12 parameter cosmological model using the recent
DESI Data Release (DR) 2 Baryon Acoustic Oscillations (BAO) data, combined with Cos-
mic Microwave Background (CMB) power spectra (Planck Public Release (PR) 4) and lensing
(Planck PR4 + Atacama Cosmology Telescope (ACT) Data Release (DR) 6) data, uncali-
brated type Ia Supernovae (SNe) data from Pantheon+ and Dark Energy Survey (DES) Year
5 (DESY5) samples, and Weak Lensing (WL: DES Year 1) data. The cosmological model
consists of six ΛCDM parameters, and additionally, the dynamical dark energy parameters
(w0, wa), the sum of neutrino masses (

∑
mν), the effective number of non-photon radiation

species (Neff), the scaling of the lensing amplitude (Alens), and the running of the scalar spec-
tral index (αs). Our major findings are the following: i) With CMB+BAO+DESY5+WL, we
obtain the first 2σ+ detection of a non-zero

∑
mν = 0.19+0.15

−0.18 eV (95%). Replacing DESY5
with Pantheon+ still yields a ∼1.9σ detection. ii) The cosmological constant lies at the edge
of the 95% contour with CMB+BAO+Pantheon+, but is excluded at 2σ+ with DESY5,
leaving evidence for dynamical dark energy inconclusive, contrary to claims by DESI collab-
oration. iii) With CMB+BAO+SNe+WL, Alens = 1 is excluded at > 2σ, while it remains
consistent with unity without WL data — suggesting for the first time that the existence
of lensing anomaly may depend on non-CMB datasets. iv) The Hubble tension persists at
3.6–4.2σ with CMB+BAO+SNe; WL data has minimal impact.
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1 Introduction

The nature of dark energy (DE) remains one of the most pressing mysteries in modern
cosmology. While the Λ-Cold Dark Matter (ΛCDM) model has been widely successful in
explaining a range of low and high-redshift cosmological observations, the recent cosmological
constraints from the Dark Energy Spectroscopic Instrument (DESI) collaboration [1–4] have
provided tantalizing evidence for evolving dark energy, with a potential phantom crossing
at a redshift of z ≃ 0.5 considering various popular parameterizations for the dynamical
nature of dark energy [4]. Combined with the CMB and type Ia Supernovae observations,
the DESI Data Release (DR) 2 measurements of the Baryon Acoustic Oscillations (BAO)
presently rejects the cosmological constant at the level of 2.8, 3.8, and 4.2σ depending on
the supernovae dataset used (PantheonPlus [5], Union3 [6], and Dark Energy Survey Year 5
(DESY5) Supernovae [7] respectively), while using an 8 parameter cosmological model, with
the Chevallier-Polarski-Linder (CPL) parameterization [8, 9] for the equation of state (EoS)
of the dynamical DE. The EoS in CPL parameterization given by w(z) ≡ w0 +wa z/(1+ z),
where z is the redshift. The evidence for an evolving dark energy has strengthened slightly
from the previous paper related to the first data release (DR1) of DESI [1]. However, contrary
to the DESI DR1 BAO results, currently even the CMB+BAO dataset combination also
rejects the cosmological constant at more than 2σ [3]. The significant implications of these
results have sparked a substantial number of subsequent studies on dark energy [see, e.g.,
10–55].

Another important result from the DESI collaboration is on the neutrino masses. CMB
data combined with DESI DR2 BAO puts a stringent constraint of

∑
mν < 0.0642 eV

(95%) in the ΛCDM+
∑

mν model (assuming three degenerate neutrino masses) with no
evidence for a detection of a non-zero neutrino mass sum [3, 56], which also rules out the
inverted mass hierarchy of neutrinos (that requires a minimum

∑
mν of 0.096 eV [57]) at more

than 2σ. However, given that the DESI results prefer a dynamical dark energy model over
ΛCDM, it is debatable how much importance should be put on the neutrino mass bounds
obtained in the ΛCDM+

∑
mν model. In a model extended with dynamical dark energy

(i.e., w0waCDM+
∑

mν) this bound relaxes to
∑

mν < 0.129 eV with CMB+BAO+DESY5,
which still allowes for both the normal (that requires a minimum

∑
mν of 0.057 eV [57])

and inverted hierarchies of neutrinos.1 We note, however, that such strong bounds have

1For earlier bounds on
∑

mν in the literature, see e.g., [58–64]. For more recent studies, see [10, 65–67]
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attracted attention from the particle physics and cosmology community regarding the possible
explanation of a lack of detection of non-zero neutrino masses and apparent possibility of the∑

mν posterior peak occuring at a negative neutrino mass range (i.e.,
∑

mν < 0) [53, 68–70].
In ΛCDM, the DESI BAO data prefers a lower value of Ωm than Planck (see, e.g., Fig. 10
of [3]), which leads to an apparent issue of ωc + ωb > ωm for joint analyses with CMB and
BAO datasets, as pointed out in [69, 70], and that in turn produces such strong bounds on∑

mν in the ΛCDM+
∑

mν model. However, we note that the cosmological data favors an
evolving dark energy instead of Λ, and in a cosmological model with evolving dark energy,
the Ωm tension does not appear [3].

In [10], using CMB data with DESI DR 1 BAO and uncalibrated supernovae measure-
ments, in a 12-parameter cosmological model2, we showed that the evidence for dynamical
dark energy is not robust yet, since CMB+BAO+Pantheon+ still included the cosmological
constant (w0 = −1, wa = 0) within 2σ on the 2D contour plot in the w0−wa plane. We also
noticed that the

∑
mν posterior probability distributions peaked in the

∑
mν > 0 region,

with three dataset combinations producing a 1σ+ detection. The extended model consisted
of the six standard ΛCDM parameters and the following simple extensions: the dynamical
dark energy equation of state parameters (CPL: w0 and wa), the sum of neutrino masses
(
∑

mν) and effective number of non-photon radiation species (Neff), the scaling of the lens-
ing amplitude (Alens), and the running of the scalar spectral index (αs). For CMB data, we
used the latest Planck Public Release 4 (PR4) likelihoods (2020): HiLLiPoP and LoLLiPoP
[76], and Planck PR4 lensing combined with ACT DR6 lensing likelihoods [77]. For BAO,
we used DESI DR1 BAO likelihoods [1], and for supernovae, the latest uncalibrated type Ia
Supernovae likelihoods: Pantheon+ [5] and DESY5 [7].

In this paper, we extend the work in [10] by using the new DESI DR2 BAO data [3],
while using the same CMB and supernovae (SNe) datasets. Apart from that, we also use
the Dark Energy Survey Year 1 (DESY1) data on galaxy clustering and weak lensing [78]3.
Our main goals for this paper are as follows: 1) As in [10], we want to check whether the
evidence for dynamical dark energy survives in a largely extended parameter space with
simple extensions to the cosmological model. 2) We want to re-assess the

∑
mν posteriors

with the new DESI DR2 BAO likelihoods and the DES Year 1 results, in this extended model,
to check whether we can obtain any 2σ detection of positive non-zero

∑
mν . 3) We aim to

further investigate the lensing anomaly or Alens-anomaly [81] situation in the presence of
weak lensing data. 4) We aim to assess the level of robustness of the Hubble tension [82, 83]
in this largely extended parameter space. With the release of the DESI DR2 BAO data,
we believe it is an opportune moment to revisit and update the constraints within such an
extended cosmological model. The resulting constraints will undoubtedly be of significant
value to both the cosmology and particle physics communities.

The structure of the paper is as follows: Section 2 outlines the analysis methodology.
In Section 3, we present and discuss the results of our statistical analysis. We conclude in
Section 4. A summary of the cosmological parameter constraints is provided in Table 2.

1

2For previous studies in such largely extended parameter spaces, see [63, 71–75].
3We note here that a newer data on weak lensing from DES exists (DES Year 3), but the likelihoods are

released only for CosmoSIS [79] and not Cobaya [80], which we use in this paper.
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2 Analysis methodology

We outline the cosmological model, parameter sampling and plotting codes, as well as the
priors on parameters in Section 2.1. Section 2.2 presents a discussion on the cosmological
datasets utilized in this study.

2.1 Cosmological model and parameter sampling

Here is the parameter vector for this extended model with 12 parameters :

θ ≡
[
ωc, ωb, Θ∗

s, τ, ns, ln(1010As), w0,DE, wa,DE, Neff,
∑

mν , αs, Alens

]
. (2.1)

The first six parameters correspond to the ΛCDM model: the present-day cold dark
matter energy density, ωc ≡ Ωch

2; the present-day baryon energy density, ωb ≡ Ωbh
2; the

reionization optical depth, τ ; the scalar spectral index, ns; and the amplitude of the pri-
mordial scalar power spectrum, As (both evaluated at the pivot scale k∗ = 0.05 Mpc−1).
Additionally, Θ∗

s represents the ratio of the sound horizon to the angular diameter distance
at the time of photon decoupling.

The remaining six parameters extend the ΛCDM cosmology. For the CPL parametriza-
tion of the dark energy equation of state, we use the notation (w0,DE, wa,DE) interchangeably
with (w0, wa). The other parameters, as outlined in the introduction, include the effective
number of non-photon radiation species (Neff), the sum of neutrino masses (

∑
mν), the

running of the scalar spectral index (αs), and the scaling of the lensing amplitude (Alens).
We note that we adopt the degenerate hierarchy for neutrino masses, where all three

neutrino masses are equal (mi =
∑

mν/3 for i = 1, 2, 3), and impose a prior
∑

mν ≥ 0. This
choice is justified since cosmological observations primarily constrain the total neutrino mass
sum through its effect on the energy density [84], and even upcoming cosmological data will
remain insensitive to the small neutrino mass splittings [85]. Furthermore, forecasts indicate
that assuming a degenerate hierarchy instead of the true mass hierarchy introduces only a
negligible bias in the event of a detection of

∑
mν [85]. Additionally, there is no definitive

evidence favoring a particular neutrino mass hierarchy, even when combining cosmological
constraints with terrestrial experiments, such as neutrino oscillation and beta decay data
[86].

Since we allow for variations in the running of the scalar spectral index (αs ≡ dns/d ln k,
where k is the wave number), we assume a standard running power-law model for the pri-
mordial scalar power spectrum, expressed as

ln Ps(k) = ln As + (ns − 1) ln

(
k

k∗

)
+

αs

2

[
ln

(
k

k∗

)]2
. (2.2)

A small value of log10 |αs| = −3.2 naturally arises in slow-roll inflationary models [87],
though certain other inflationary scenarios can yield larger values (see, e.g., [88–90]).

Parameter Sampling: For all Markov Chain Monte Carlo (MCMC) analyses in this
paper, we use the cosmological inference code Cobaya [80, 91]. Theoretical cosmology calcu-
lations are performed using the Boltzmann solver CAMB [92, 93]. When incorporating the
combined Planck PR4 + ACT DR6 lensing likelihood, we apply the higher precision settings
recommended by ACT.

To assess chain convergence, we utilize the Gelman and Rubin statistics [94], ensuring
that all chains satisfy the convergence criterion of R−1 < 0.01. We use GetDist [95] to derive
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Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

τ [0.01, 0.8]
ns [0.8, 1.2]

ln(1010As) [1.61, 3.91]
Θ∗

s [0.5, 10]
w0,DE [-1, -0.33]
wa,DE [-2, 2]
Neff [2, 5]∑
mν (eV) [0, 5]
αs [-0.1, 0.1]

Alens [0.1, 2]

Table 1. Flat priors on the main cosmological parameters constrained in this paper.

parameter constraints and generate the plots presented in this paper. Broad flat priors are
imposed on the cosmological parameters, as detailed in Table 1.

2.2 Datasets

CMB: Planck Public Release (PR) 4: We utilize the most recent large-scale (low-l) and
small-scale (high-l) Cosmic Microwave Background (CMB) temperature and E-mode polar-
ization power spectra measurements from the Planck satellite. For the high-l (30 < l < 2500)
TT, TE, and EE data, we adopt the latest HiLLiPoP likelihoods, as detailed in [76]. The
low-l (l < 30) EE spectra are analyzed using the most recent LoLLiPoP likelihoods, also de-
scribed in [76]. Both of these likelihoods are derived from the Planck Public Release (PR) 4,
the latest reprocessing of data from the LFI and HFI instruments through a unified pipeline,
NPIPE, which provides a slightly larger dataset, reduced noise, and improved consistency
across frequency channels [96]. For the low-l TT spectra, we employ the Commander likeli-
hood from the Planck 2018 collaboration [81]. We collectively refer to this set of likelihoods
as “Planck PR4.”

CMB lensing: Planck PR4+ACT DR6. CMB experiments also measure the power
spectrum of the gravitational lensing potential, Cϕϕ

l , through 4-point correlation functions.
In our analysis, we utilize the latest NPIPE PR4 Planck CMB lensing reconstruction [97]
along with the Data Release 6 (DR6) from the Atacama Cosmology Telescope (ACT) (version
1.2) [77, 98]. Following the recommendations of the ACT collaboration, we adopt the higher
precision settings [77]. For conciseness, we refer to this dataset combination as “lensing”.

BAO: DESI Data Release (DR) 2.We incorporate the latest measurement of the
Baryon Acoustic Oscillation (BAO) signal from Data Release 2 of the Dark Energy Spectro-
scopic Instrument (DESI) collaboration [3] (for reference to the earlier DR1, see [1]). This
dataset includes observations from the Bright Galaxy Sample (BGS, 0.1 < z < 0.4), the
Luminous Red Galaxy Sample (LRG, 0.4 < z < 0.6 and 0.6 < z < 0.8), the Emission Line
Galaxy Sample (ELG, 1.1 < z < 1.6), the combined LRG and ELG sample within a shared
redshift range (LRG+ELG, 0.8 < z < 1.1), the Quasar Sample (QSO, 0.8 < z < 2.1), and
the Lyman-α Forest Sample (Lyα, 1.77 < z < 4.16). We refer to this complete dataset as
“DESI2.”
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Parameter Planck PR4 Planck PR4 Planck PR4 Planck PR4 Planck

+lensing+DESI2 +lensing+DESI2+PAN+ +lensing+DESI2+PAN++WL +lensing+DESI2+DESY5 +lensing+DESI2+DESY5+WL

Ωbh
2 0.02238± 0.00020 0.02246± 0.00019 0.02253± 0.00019 0.02242± 0.00020 0.02251± 0.00019

Ωch
2 0.1190± 0.0028 0.1191± 0.0028 0.1184± 0.0028 0.1190± 0.0028 0.1184± 0.0028

τ 0.0584+0.0061
−0.0068 0.0586± 0.0066 0.0579± 0.0065 0.0586± 0.0065 0.0579± 0.0065

ns 0.972± 0.009 0.975± 0.009 0.978± 0.009 0.974± 0.009 0.977± 0.009

ln(1010As) 3.042± 0.016 3.043± 0.016 3.039± 0.016 3.043± 0.016 3.039± 0.016

100Θ∗
s 1.04082± 0.00040 1.04082± 0.00039 1.04086± 0.00040 1.04083± 0.00039 1.04085± 0.00039∑

mν (eV)
0.147+0.064

−0.12 (1σ),
< 0.242 (2σ)

0.166± 0.087 (1σ),
< 0.261 (2σ)

0.190± 0.088 (1σ),

< 0.302 (2σ) < 0.313 (2σ) 0.19+0.15
−0.18 (2σ)

Neff 3.10± 0.19 3.15± 0.19 3.16± 0.19 3.12± 0.19 3.15± 0.19

w0 −0.46± 0.23 −0.864± 0.056 −0.859± 0.057 −0.775± 0.061 −0.768± 0.062

wa −1.61± 0.70 −0.44+0.26
−0.22 −0.47+0.27

−0.23 −0.72+0.29
−0.24 −0.76+0.30

−0.26

nrun −0.0031± 0.0074 −0.0018± 0.0072 0.0004± 0.0072 −0.0022± 0.0073 0.0002± 0.0072

Alens 1.061+0.046
−0.54 (1σ) 1.068+0.042

−0.50 (1σ)
1.104± 0.044 (1σ),

1.063+0.043
−0.52 (1σ)

1.104± 0.044 (1σ),

1.104+0.089
−0.084 (2σ) 1.104+0.090

−0.085 (2σ)

H0 (km/s/Mpc) 64.0+2.0
−2.6 67.9± 1.0 67.9± 1.0 67.0± 1.0 67.1± 1.0

S8 0.823± 0.021 0.808+0.019
−0.016 0.791± 0.015 0.812+0.019

−0.017 0.793± 0.016

Ωm 0.350± 0.023 0.309± 0.006 0.309± 0.006 0.318± 0.006 0.318± 0.006

Table 2. Bounds on cosmological parameters in the 12 parameter extended model. Marginalized limits
are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that H0, S8, and Ωm are derived
parameters.

SNe Ia: Pantheon+.We incorporate the latest Supernovae Type-Ia (SNeIa) luminos-
ity distance measurements from the Pantheon+ Sample [99], which consists of 1550 spectro-
scopically confirmed SNeIa spanning the redshift range 0.001 < z < 2.26. For our analysis,
we use the publicly available likelihood from [5], which accounts for both statistical and sys-
tematic covariance. This likelihood applies a constraint of z > 0.01 to mitigate the impact
of peculiar velocities on the Hubble diagram. We refer to this dataset as “PAN+”.

SNe Ia: DES Year 5. We make use of the luminosity distance measurements from the
latest supernova sample, which includes 1635 photometrically classified SNeIa in the redshift
range 0.1 < z < 1.3, publicly released by the Dark Energy Survey (DES) as part of their
Year 5 data release [7]. We refer to this dataset as “DESY5”.

We note that PAN+ and DESY5 share some supernovae in common. To prevent double
counting, these two datasets are never used simultaneously in our analysis.

Weak Lensing: DES Year 1. We include the likelihood from the combined analysis
of galaxy clustering and weak gravitational lensing, using 1321 deg2 of griz imaging data
from the first year of the Dark Energy Survey [78]. We refer to this dataset as “WL”.

3 Numerical results

The main findings from our cosmological parameter estimation are summarized in Table 2
and illustrated in Figures 1–6.

We provide a brief summary of our findings related to the cosmological parameters
below:

• w0,DE and wa,DE : As shown in Figure 1, when CMB and BAO data are combined with
Pantheon+, the cosmological constant scenario (w0,DE = −1, wa,DE = 0) lies at the
edge of the 95% confidence contour. We also find that a region of the quintessence/non-
phantom dark energy parameter space (w(z) ≥ −1 at all redshifts) is also allowed
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1.0 0.5 0.0 0.5
w0, DE

2

0

2

w
a,

DE

Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5

Figure 1. 68% and 95% marginalised contours in the w0,DE − wa,DE plane for different data
combinations. The area to the right of the vertical dashed blue line and above the slanted dashed
blue line represents the parameter space corresponding to quintessence-like or non-phantom dark
energy.

0.0 0.5 1.0
m

0.0

0.5

1.0 Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5

0.0 0.5 1.0
m

0.0

0.5

1.0 Planck PR4+lensing+DESI2+PAN++WL
Planck PR4+lensing+DESI2+DESY5+WL

Figure 2. A comparison of the 1D marginalized posterior distributions for
∑

mν [eV] across various
data combinations. The panel in the right shows results with the DES Year 1 Weak Lensing data
(WL) included. Note that in the right panel, the Planck PR4+lensing+DESI2+DESY5+WL dataset
combination leads to a 2σ+ detection of non-zero

∑
mν . The two vertical black dashed lines (in both

panels) indicate the minimum mass thresholds for the normal (0.057 eV) and inverted (0.096 eV)
neutrino mass hierarchies, respectively.

within 2σ with Pantheon+. However, when using the DESY5 SNe Ia data, we find
that the cosmological constant is excluded at more than 2σ, with a ∼2σ level tension
also observed for non-phantom (quintessence-like) dark energy models. Therefore, we
conclude that the evidence reported by the DESI BAO collaboration for a dynamical
dark energy equation of state is not yet conclusive. We note that the addition of the WL
data has negligible effect on the constraints on the DE equation of state parameters,
and thus it does not change any conclusions regarding the same.

•
∑

mν : Figure 2 shows the 1D marginalized posterior distributions of
∑

mν for different
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Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5
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1.2
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A l
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Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5

0.0 0.5 1.0
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0.75

0.80

0.85

0.90

S 8

Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5

0.0 0.5 1.0
m

0.30

0.35

0.40

0.45

m

Planck PR4+lensing+DESI2
Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+DESY5

Figure 3. A comparison of the 2D correlation plots between
∑

mν [eV] and various other parameters
across various data combinations.

dataset combinations, while Figure 3 displays the 68% and 95% 2D confidence contours
between

∑
mν and several other cosmological parameters. We notice in the left panel

of Figure 2, that without the WL data, there is no 2σ detection of non-zero neutrino
masses, but still, we do find that the posteriors peak in the

∑
mν > 0 region for Planck

PR4+lensing+DESI2 and Planck PR4+lensing+DESI2+DESY5. In fact, there is a
1σ+ detection with Planck PR4+lensing+DESI2. However, with the addition of the
WL data, we find clear peaks in the

∑
mν posteriors, with a 2.1σ detection with Planck

PR4+lensing+DESI2+DESY5+WL at
∑

mν = 0.19+0.15
−0.18 eV and a 1.9σ detection with

Planck PR4+lensing+DESI2+PAN++WL. As far as we are aware, this is the first 2σ+
detection of a non-zero

∑
mν with DESI DR2 BAO data. The detection with WL

follows from the strong negative correlation between S8 and
∑

mν , as visualized in the
middle bottom panel of Figure 3. The lower S8 values due to the WL data leads to
rejection of smaller neutrino masses. We note here that the DES Year 1 WL data used
in this work provides a value of S8 = 0.783+0.021

−0.025 in the ΛCDM model [78], which is
only discrepant at the level of 0.95σ with the S8 value in this 12 parameter model using
CMB+BAO+PAN+ and 1.07σ with CMB+BAO+DESY5. Thus it is okay to combine
the WL data with the CMB+BAO+SNe combination. Also note that if we consider a
12 parameter model with WL data alone, then the errors on S8 will likely be larger,
thereby reducing the discrepancy further. Previously in [10], we had also noted that the
S8 tension is only at the level of 1.4σ with the DES Year 3 data (see also [76]), which
prefers slightly lower values of S8 than DES Year 1 [100]. Therefore, had we used the
DES Year-3 likelihoods instead, we would likely have obtained stronger evidence for a
non-zero

∑
mν . It is worth noting, however, that recent results from the completed

KiDS survey report slightly higher constraints on S8, with S8 = 0.815+0.016
−0.021 within the

ΛCDM framework [101]. Therefore, it remains uncertain whether a non-zero
∑

mν

detection would persist when using the KiDS dataset. However, caution is warranted,
as the model favored by the DESY5 data deviates significantly from the standard
ΛCDM framework, and thus, the S8 inference from KiDS data might also differ from
ΛCDM. We also observe that with the CMB+BAO+SNe combination,

∑
mν exhibits
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0.30 0.32 0.34
m

0.0

0.5

1.0

Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+PAN++WL
Planck PR4+lensing+DESI2+DESY5
Planck PR4+lensing+DESI2+DESY5+WL

0.75 0.80 0.85
S8

0.0

0.5

1.0

Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+PAN++WL
Planck PR4+lensing+DESI2+DESY5
Planck PR4+lensing+DESI2+DESY5+WL

Figure 4. A comparison of the 1D marginalized posterior distributions for Ωm and S8 across various
data combinations. Note that the Ωm posteriors remain similar with the addition of WL data, but
the S8 values are lowered.

0.9 1.0 1.1 1.2 1.3 1.4
Alens

0.0

0.5

1.0

Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+PAN++WL
Planck PR4+lensing+DESI2+DESY5
Planck PR4+lensing+DESI2+DESY5+WL

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Alens

0.75

0.80

0.85

0.90

S 8

Planck PR4+lensing+DESI2+PAN+
Planck PR4+lensing+DESI2+PAN++WL
Planck PR4+lensing+DESI2+DESY5
Planck PR4+lensing+DESI2+DESY5+WL

Figure 5. The left panel shows the 1D posterior distributions of Alens for various data combina-
tions. The right panel shows its 2D correlation plots with the S8 parameter. We note that dataset
combinations with WL included leads to a 2σ+ lensing anomaly due to the strong correlation with
S8.

mild correlations with Neff , Ωm, and w0, while its correlations with Alens, wa, and S8

are notably stronger. These parameter correlations contribute to the loosening of the
constraints on

∑
mν .

• Ωm and S8: From the 1D posterior distributions in the left panel of Figure 4, we
find that while the inclusion of WL data has minimal effect on the estimation of Ωm,
the DESY5 dataset favors slightly higher values of Ωm compared to Pantheon+. In
contrast, the right panel of Figure 4 shows that, as expected, adding the WL data
shifts the preferred S8 values to lower values.

• Alens: The right panel of Figure 5 reveals a strong negative correlation between S8 and
Alens. Examining the left panel, we observe that the inclusion of WL data shifts the
Alens values to higher values—a direct consequence of this correlation. As shown in
Table 2, with the addition of WL data, the inferred Alens deviates from unity by more
than 2σ. This is a significant result because, for the first time in literature, we find
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Figure 6. The left and middle panels show the 1D posterior distributions ofNeff andH0 (km/s/Mpc)
respectively, for various data combinations. The dashed vertical line in the left panel corresponds to
the standard model value of Neff = 3.044. The right panel shows the 2D correlation plot between the
two parameters, showing a strong correlation between them.

proof that the existence of the lensing anomaly might depend on non-CMB datasets as
well, like the WL data here.

• Neff and H0: From the left-most panel of figure 6, we find that the obtained posteriors
of Neff are in complete agreement with the standard model value of Neff = 3.044.
Whereas, from the middle panel, we notice that the H0 values are not high enough to
solve the Hubble tension. Indeed, if one uses the values of H0 from table 2, one finds
that the Hubble tension is present at the level of 3.6-4.2σ depending on the supernovae
dataset used. Thus, one can consider that the Hubble tension is robust against the
simple extensions to ΛCDM studied in this paper. Addition of the WL data does
not change these numbers significantly. The right-most panel in Figure 6 shows the
expected strong correlation between Neff and H0.

4 Conclusions

Building upon our previous work [10], in this paper, we have presented updated cosmological
constraints within a 12-parameter extended cosmological model, utilizing a comprehensive
combination of recent datasets. These include Baryon Acoustic Oscillations (BAO) from the
DESI Data Release 2, Cosmic Microwave Background (CMB) temperature and polarization
power spectra from Planck PR4, and CMB lensing data from Planck PR4+ACT DR6, un-
calibrated type Ia Supernovae (SNe) from both the Pantheon+ and DES Year 5 (DESY5)
surveys, and Weak Lensing (WL) measurements from the DES Year 1 survey. The parame-
ter space extends the standard six ΛCDM parameters by including the dark energy equation
of state parameters (w0, wa), the sum of neutrino masses (

∑
mν), the effective number of

non-photon relativistic species (Neff), the lensing amplitude scaling (Alens), and the running
of the scalar spectral index (αs). Our key results are summarized as follows:

• Neutrino Mass Detection: Using CMB+BAO+DESY5+WL, we report the first
2σ+ preference for non-zero neutrino mass with

∑
mν = 0.19+0.15

−0.18 eV (95%). A sim-
ilar, though slightly weaker, ∼1.9σ signal is obtained when DESY5 is replaced with
Pantheon+. Without the WL dataset, while there is no significant detection of non-
zero neutrino masses, we still find that the

∑
mν posteriors peak at the

∑
mν > 0

region for CMB+BAO and CMB+BAO+DESY5. The detection with WL data is
driven by a strong negative correlation between S8 and

∑
mν , with lower S8 values
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preferring larger masses. We note that there is no significant S8-tension between WL
and CMB+BAO+SNe, thus it is okay to combine them.

• Dynamical Dark Energy: We find that the cosmological constant lies at the edge of
the 95% confidence contour when using CMB+BAO+Pantheon+, and is excluded at
more than 2σ when DESY5 is included instead of Pantheon+. This suggests that the
evidence for dynamical dark energy still remains dataset-dependent and inconclusive;
and less robust than recently claimed by the DESI collaboration [3]. We note that a re-
gion of the quintessence/non-phantom dark energy is also allowed by the datasets when
we use Pantheon+. Addition of the WL data has negligible impact on the dynamical
dark energy constraints.

• Lensing Anomaly: We find that Alens = 1 is excluded at over 2σ when WL data
is included alongside CMB+BAO+SNe. In contrast, without WL, the results remain
consistent with Alens = 1 at 2σ (albeit not at 1σ). This indicates, for the first time,
that the existence of lensing anomaly might be dependent on non-CMB datasets, such
as galaxy weak lensing measurements.

• Hubble Tension: The Hubble tension remains unresolved, with a persistent 3.6–4.2σ
discrepancy between CMB+BAO+SNe and the SH0ES measurement [82], depending
on the SNe dataset used. The addition of WL data does not significantly alter this
tension.

Overall, our analysis emphasizes the critical importance of combining multiple cosmologi-
cal probes and of testing large extensions to the standard model of cosmology to obtain
a better understanding of cosmological parameters. While hints of physics beyond ΛCDM
continue to appear in individual sectors—such as neutrino masses, lensing amplitude, and
dark energy—their statistical significance remains sensitive to dataset combinations.
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[25] W. Giarè, M. Najafi, S. Pan, E. Di Valentino and J.T. Firouzjaee, Robust Preference for
Dynamical Dark Energy in DESI BAO and SN Measurements, 2407.16689.

[26] B.R. Dinda and R. Maartens, Model-agnostic assessment of dark energy after DESI DR1
BAO, 2407.17252.

[27] J.-Q. Jiang, D. Pedrotti, S.S. da Costa and S. Vagnozzi, Non-parametric late-time expansion
history reconstruction and implications for the Hubble tension in light of DESI, 2408.02365.

[28] J.a. Rebouças, D.H.F. de Souza, K. Zhong, V. Miranda and R. Rosenfeld, Investigating
Late-Time Dark Energy and Massive Neutrinos in Light of DESI Y1 BAO, 2408.14628.

– 11 –

https://arxiv.org/abs/2401.02929
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822
https://arxiv.org/abs/gr-qc/0009008
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1103/PhysRevLett.90.091301
https://arxiv.org/abs/astro-ph/0208512
https://doi.org/10.3847/2041-8213/ad8c26
https://arxiv.org/abs/2409.13022
https://doi.org/10.1103/PhysRevD.109.L121305
https://arxiv.org/abs/2404.05722
https://arxiv.org/abs/2404.14341
https://arxiv.org/abs/2405.00502
https://doi.org/10.1007/JHEP05(2024)327
https://doi.org/10.1007/JHEP05(2024)327
https://arxiv.org/abs/2404.06444
https://doi.org/10.1016/j.physletb.2024.138826
https://doi.org/10.1016/j.physletb.2024.138826
https://arxiv.org/abs/2405.03933
https://arxiv.org/abs/2404.08056
https://arxiv.org/abs/2405.13588
https://arxiv.org/abs/2404.12068
https://arxiv.org/abs/2405.12282
https://doi.org/10.1103/PhysRevD.110.123502
https://arxiv.org/abs/2405.19178
https://arxiv.org/abs/2406.00634
https://arxiv.org/abs/2404.18579
https://arxiv.org/abs/2406.07533
https://arxiv.org/abs/2407.05579
https://arxiv.org/abs/2407.16689
https://arxiv.org/abs/2407.17252
https://arxiv.org/abs/2408.02365
https://arxiv.org/abs/2408.14628


[29] S. Bhattacharya, G. Borghetto, A. Malhotra, S. Parameswaran, G. Tasinato and I. Zavala,
Cosmological constraints on curved quintessence, JCAP 09 (2024) 073 [2405.17396].

[30] Y.-H. Pang, X. Zhang and Q.-G. Huang, Constraints on Redshift-Binned Dark Energy using
DESI BAO Data, 2408.14787.

[31] O.F. Ramadan, J. Sakstein and D. Rubin, DESI constraints on exponential quintessence,
Phys. Rev. D 110 (2024) L041303 [2405.18747].
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