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Canonical ensemble of a d-dimensional Reissner-Nordstrom black hole in a cavity
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We construct the canonical ensemble of a d-dimensional Reissner-Nordstréom black hole spacetime
in a cavity surrounded by a heat reservoir through the Euclidean path integral formalism. The
cavity radius R is fixed, and the heat reservoir is at a fixed temperature T and fixed electric
charge Q. We use York’s approach to find the reduced action by imposing the Hamiltonian and
Gauss constraints and the appropriate conditions to the Euclideanized Einstein-Maxwell action with
boundary terms, and then perform a zero loop approximation so that the paths that minimize the
action contribute to the partition function. We find that, for an electric charge smaller or equal
than a critical saddle electric charge s, there are three solutions 741, 742, and r43, such that
r41 < r42 < r43. The solutions r41 and r43 are stable within the ensemble, while r42 is unstable.
For an electric charge equal to Qs, the solution 7412 merges with 41 and ry3 at a given specific
temperature. For an electric charge larger than @, there is only one solution 74, which can be
seen as the merging of the r41 and r43 solutions, with r44 being stable. Since the partition function
is directly related to the free energy in the canonical ensemble, we read off the free energy and
calculate the thermodynamic variables, namely the entropy, the thermodynamic electric potential,
the thermodynamic pressure, and the mean energy. We investigate thermodynamic stability, which
is controlled by the positivity of the heat capacity at constant area and electric charge, and show
that the heat capacity is discontinuous at the electric charge Qs, signaling a turning point. We
analyze the favorable states, examining the free energies of the stable black hole solutions and the
free energy of electrically charged hot flat space, in order to check for possible first and second order
phase transitions between the possible states. For instance, the two stable black hole solutions r41
and 713 are in competition between themselves, more specifically, for certain ensemble parameters
there exists a first order phase transition from one solution to the other, and at the critical charge
Qs this transition turns into a second order phase transition. We also compare the thermodynamic
radius of zero free energy with the generalized Buchdahl bound radius, which do not match, and
comment on the physical implications, such as the possibility of total gravitational collapse of the
thermodynamic system. We study the limit of infinite cavity radius and find two possibilities, the
Davies and the Rindler solutions. The Davies thermodynamic solution of electrically charged black
holes in d = 4 dimensions is recovered from the general d-dimensional canonical ensemble analysis.
We obtain, in particular, the heat capacity given by Davies and the Davies point. The Rindler
solution describes the black hole horizon as a Rindler horizon, and the boundary, which is at fixed
temperature 7' provided by the reservoir, must have the necessary acceleration to reproduce the
corresponding Unruh temperature. Going back to a cavity with finite radius we find that the three
solutions mentioned above are related to the original York two Schwarzschild black hole solutions
and to the two Davies solutions, with the middle unstable solution 72 belonging simultaneously
to the two sets of solutions. In this sense, York’s and Davies’ formalisms have been unified in our
approach. In all instances we mention carefully the four-dimensional case, for which we accomplish
new results, and study in detail all aspects of the five dimensional case.

I. INTRODUCTION
A. Background

The hypothesis that black holes have a thermodynamic
character emerged through a series of notable develop-
ments. Bekenstein [I] introduced the idea that a black
hole has an entropy proportional to the surface area of
its event horizon and formulated a generalized second
law of thermodynamics. Smarr found a mass formula
involving all the black hole parameters [2], which was ex-
tended in a formal basis to the four laws of black hole
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mechanics [3]. These laws were strikingly similar to the
four laws of thermodynamics. The complete descrip-
tion came with the discovery by Hawking [4] that black
holes radiate quanta with a thermal spectrum at tem-
perature Ty = 5-, the Hawking temperature in Planck
units, where & is black hole’s surface gravity, and for in-
stance, for the simplest nonrotating black hole one has

= ﬁ, so that Ty = ﬁ, r4+ being the event hori-
zon radius. Furthermore, the vacuum state sitting at the
horizon that enables the radiation to be produced was
shown to be described by the Hartle-Hawking vacuum
state [5]. By assuming that the black hole is in thermal
equilibrium with the radiation emitted, it was argued
that black holes must indeed be thermodynamic objects,
and it was found that the entropy S of a black hole has

the expression S = ’%, the Bekenstein-Hawking entropy,
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where A, is the surface area of the event horizon. The
thermodynamics of black holes was expanded for black
holes with rotation and electric charge by Davies [6], by
assigning the first law of thermodynamics together with
the Hawking temperature and the Bekenstein-Hawking
entropy to those black holes. In this case, it was noticed
an abrupt change of the heat capacity of the system,
which was presumed to yield a phase transition.

The rationale for the black hole entropy and thermody-
namics has also been obtained through statistical meth-
ods, in juxtaposition to the results obtained through the
analysis of quantum fields around black holes. The focus
on black hole statistical methods implies one has to set
up an ensemble of a physical spacetime. To build the
ensemble, one needs to know a priori the microscopic
description of the system. Such an accepted descrip-
tion is still unknown for gravity. Nevertheless, the par-
tition function of spacetime can be computed through
the Euclidean path integral approach to quantum grav-
ity. In this approach, the partition function is given by a
path integral of the exponential of the Euclidean action
I[g, ¢], over Euclidean metrics g and fields ¢ that per-
meate the space, where the integral is restricted to met-
rics that are periodic in the imaginary time length, i.e.,
Z = ngD(ﬁe’I[g#’]. Depending on the ensemble con-
sidered, there are always quantities that are fixed at some
boundary, e.g., in the canonical ensemble the tempera-
ture given by the inverse of the imaginary time length
at the boundary is fixed, with this boundary then being
a heat reservoir. This method of computing the par-
tition function inherits the difficulties of the Euclidean
path integral approach to quantum gravity. For exam-
ple, the map between the physical Lorentzian spacetime
and the Euclidean space, that is performed through a
Wick transformation on a time coordinate, is not in gen-
eral well-defined or unique, covering only some sections
of the Lorentzian spacetime. Moreover, there are difficul-
ties on the convergence of the path integral. To put these
difficulties aside, a zero loop approximation of the path
integral is considered, where only the paths that mini-
mize the Euclidean action are taken into account. The
partition function is then given by Z = e/, where now
I is the classical Euclidean action evaluated at one of
these paths, yielding a partition function in the semiclas-
sical approximation. One can then relate the partition
function to a thermodynamic potential depending on the
ensemble chosen, and the thermodynamics of the system
can be worked out through the derivatives of the ther-
modynamic potential.

The application of the Euclidean path integral ap-
proach to known spaces, such as the Schwarzschild
black hole in the canonical ensemble, and the Reissner-
Nordstrém black in the grand canonical ensemble with
fixed electric potential at the boundary, was done with a
heat reservoir at infinite proper distance [7], recovering
the Hawking temperature and the Bekenstein-Hawking
entropy of a black hole. Yet, for those configurations in
the respective ensembles, the obtained heat capacity of

the black hole is negative, which means the configuration
is thermodynamically unstable. It was later found that
the configurations correspond to a saddle point of the ac-
tion [8]. And so, the zero loop approximation is not valid
for these configurations, although one can still treat them
as instantons. A perturbation of the instanton yields a
negative mode that makes the one-loop contribution of
the path integral formally divergent, but the path inte-
gral can still be continued to the complex numbers result-
ing in a nonzero imaginary part. However, when applied
to a Schwarzschild-anti de Sitter black hole, which can be
considered a configuration of a black hole in a box, the
formalism produced consistent results and stable black
hole solutions [9]. It was then found that the negative
mode of the pure Schwarzschild black hole ceases to ex-
ist if the heat reservoir sits at a radius equal or smaller
than the photon sphere radius [10].

Soon after, York realized that the construction of
canonical or grand canonical ensembles should be per-
formed by putting a black hole space inside a cavity with
a heat reservoir at finite radius [I1]. Using the path in-
tegral approach and the zero loop approximation for a
Schwarzschild black hole inside a cavity, he found that
there are two stationary points for the Euclidean action
Iy. From these two, the one with the least mass is unsta-
ble and corresponds to the Hawking-Gibbons black hole
in the limit of infinite radius of the heat reservoir. The
other one has the largest mass and is stable, therefore
the zero loop approximation is valid for this stationary
point. This motivated a series of developments, namely,
the study of the canonical ensemble of a Schwarzschild
black hole inside a cavity by considering a class of paths
in the context of York’s formalism [12], and the applica-
tion of York’s formalism to a system including matter was
sketched in [13]. Moreover, the grand canonical ensem-
ble of a Reissner-Nordstrom black hole inside a cavity was
considered within York’s formalism in [I4], by fixing the
temperature and the electric potential at the boundary
of the cavity. The canonical ensemble for arbitrary con-
figurations of self-gravitating systems was studied in [I5].

There have been applications of the Euclidean path in-
tegral approach, both in Gibbons-Hawking form and in
York’s extended formalism, to asymptotically anti-de Sit-
ter and de Sitter black hole spaces as well as to higher di-
mensions, which we now mention. Black hole spaces with
negative cosmological constant within general relativity
were discussed in three and four dimensions [I6]. The
two dimensional black hole space in Teitelboim-Jackiw
theory which is asymptotically de Sitter was studied
in [I7]. The grand canonical ensemble of the Reissner-
Nordstrom-anti-de Sitter space in four dimensions was
constructed and analyzed in [I8], and of the electric
charged toroidal anti-de Sitter black hole in [19]. The sta-
bility and the negative mode for Schwarzschild-Tangher-
lini vacuum spacetime was described in [20]. The con-
struction of the canonical ensemble of a four-dimensional
Reissner-Nordstrom black hole inside a cavity was ob-
tained in [2I] 22] by adding a boundary term on the



action and fixing the electric charge instead of the elec-
tric potential at the boundary of the cavity. A study of
the canonical ensemble of four and higher dimensional
Schwarzschild-anti de Sitter black holes was done in [23].
The canonical ensemble of black branes in arbitrary di-
mensions along with their phase structure was developed
in [24]. The canonical ensemble has been applied to
Schwarzschild black holes in a cavity in d dimensions
in [25], 26]. The canonical ensemble of gravastars was an-
alyzed in [27]. The first law of de Sitter spaces with black
holes in an ensemble context was identified in [28]. A de-
tailed analysis of the inclusion of matter is given in [29],
with surprising results concerning the equilibrium and
the equation of state of the matter. The grand canonical
ensemble of Reissner-Nordstrom black holes inside cavity
in dimensions d > 4 was considered in [30]. The canoni-
cal ensemble of black hole in a de Sitter background has
been constructed and explored in [3I]. Using the Gibbons
-Hawking action formalism for electrically charged black
holes in the canonical ensemble, the Davies’ thermody-
namic theory of black holes has been recovered in [32].

It should be mentioned that motivated by supergrav-
ity theories, the analysis of ensembles and the Euclidean
path integral approach were extended to black brane so-
lutions. It was found that the mechanical stability of
black branes is related to their local thermodynamic sta-
bility [33]. This relation was further studied and proven
in some cases, see [34H36].

We also note that York’s path integral formalism and
the thermodynamics of a hot thin shell of matter an-
alyzed from a first law of thermodynamics basis share
some similarities. This was found in [37] for thin shells
with an outer Schwarzschild spacetime and in [3§] for
thin shells with an outer Reissner-Nordstrom spacetime.
The analysis of hot thin shells have been extended to
higher dimensions in [39] for Schwarzschild spacetimes,
and in [40] for Reissner-Nordstrom spacetimes. In [41],
the Reissner-Nordstrom case was revisited. A radius that
will appear somewhat naturally in the analysis is the gen-
eralized Buchdahl bound radius, also called Buchdahl-
Andréasson-Wright bound radius [42]. It is a dynamical
radius rather than a thermodynamic one.

B. Motivation
1. Scales

It is important to know in which physical settings and
at which scales the situations we are studying here pre-
vail and are of interest. Black holes can exist in all scales,
from Planck scales, through micro scales, up to astro-
physical and cosmic scales. Planck scale and micro scale
black holes with very small radii can appear through pair
creation in strong field settings, or produced by head-
on collisions of elementary type particles of enormous
high energy. On the other hand, astrophysical and cos-
mic black holes arise through the gravitational collapse

of huge quantities of matter. Different physical effects
turn up for each range of scales and one should pick the
appropriate ones that have the most impact for the black
holes under study [43], 44].

The scales of interest here are scales where quantum
effects determined by the Hawking radiation in a black
hole environment become important. The quantity that
can be taken to set the scales is then the Hawking temper-
ature Ty. In d = 4, one has Ty = ﬁ for the simplest

black hole, r being the horizon radius of the black hole.
This is a temperature measured at infinity. Surrounding
the black hole there is thus a cloud of radiation created
via quantum processes. The Hawking temperature can

. l .
be written as Ty = % pl, Where the subscript pl means

Planck quantities. Thus, we can write Ty = 1032% K
with r; given in Planck units. We want to study quan-
tum effects that are far from the full quantum gravity
regime. If we put ry = 10%°l,), then the Hawking tem-
perature is Ty = 10*20Tp1. In usual units one has that
in this case the horizon radius has value ry = 10713 cm,
the temperature is T3 = 10'2 K, and the black hole mass
m is m = 10'% g. Such a black hole has the size of a neu-
tron or proton, and the mass of a large Earth mountain,
a really interesting microscopic black hole in our context,
for which semiclassical effects have to be taken into ac-
count. This is the kind of system we are interested, it is a
microscopic system with high temperatures, where quan-
tum effects are important, but not full quantum gravity
[45].

Now, the continual emitting of Hawking radiation de-
pletes the black hole of its energy, the horizon radius
shrinks and eventually the black hole disappears. One
can think of ways to stabilize the black hole. One way is
to enclose the black hole in a cavity and surround it by
a heat reservoir. Another way is to give the black hole
a charge, e.g., an electric or magnetic charge. It is of
interest to implement both ways.

2. Geometric and physical structure

By enclosing the black hole in a cavity surrounded by
a heat reservoir with a definite radius and at a given
temperature, one is able to maintain a thermodynamic
equilibrium between both temperatures, the black hole
and the reservoir temperatures, and treat the system in
a time independent way.

This system, black hole plus reservoir, is relevant when
the temperatures of its components are sufficiently high.
This means that the black hole and heat reservoir have
to be of microscopic size, where the curvature of space
is sufficiently big to generate a significant emission of
radiation from the black holes permitting the emergence
of non-negligible quantum effects within the system.

A heat reservoir at constant temperature is a physi-
cal situation that points to the building of a statistical
mechanics canonical ensemble. Since the scales of the



regime one is interested in are far from quantum gravity
scales, but nevertheless quantum effects are important,
these gravitational systems involving black holes at these
micro scales can be treated semiclassically.

Due to the time independence of the system, one can
use an Euclidean path integral approach to calculate the
partition function of the canonical ensemble [46] by Eu-
clideanizing the chosen time coordinate of the solution.
This allows one to analyze important properties of the
system, like its full thermodynamics, its thermodynamic
phases, and the possible first and second order phase
transitions between black holes and hot spaces. It also
clarifies the reciprocal thermodynamic responses operat-
ing between event horizons and cavity walls kept at finite
temperature. One could think of producing these tiny
black holes in the laboratory and test important features
some of them found here, notably the stability behavior
and the role of the thermodynamic phases.

3. Electric charge

By giving some charge to the black hole, e.g., elec-
tric or magnetic charge, it is possible to stabilize it
thermodynamically. In general relativity, black holes
can have mass, electric charge, and angular momen-
tum. Black holes with mass and angular momentum are
used to describe astrophysical phenomena, whereas black
holes with electric charge are dismissed for such phenom-
ena since they are quickly discharged by the plasma in
the surrounding medium. Notwithstanding, electrically
charged black holes can be of importance when one is
dealing with micro objects. In these black holes, quan-
tum effects come into play. Vacuum polarization at the
black hole event horizon can discharge the black hole, as
particles with opposite charge in the polarized domains
are more probable to be absorbed [47]. This happens
when the temperature is sufficiently high to allow parti-
cle production of massive particles, since electric charge
of contrary sign is superradiantly emitted. However,
when the temperature is sufficiently low, there is not
enough energy to produce charged massive particles and
the black hole does not discharge. One can find different
ways to stabilize the charge. For instance, if the charge
is purely topological, there are no particles to radiate.
Another instance is when the only particles of the theory
are sufficiently massive that their creation is highly sup-
pressed, such as a very massive magnetic monopole in
a magnetically charged black hole background [48] [49].
Central charges that appear in the algebra of supergrav-
ity theories also do not suffer from pair creation insta-
bility. One can also fix the electric charge in the cavity
with the black hole inside. This allows us to find stable
and unstable electrically charged black holes. Indeed, for
small enough black holes and relatively small tempera-
tures all the packets of energy with positive or negative
electric charge are trapped within the gravitational field
of the black hole which is then electrically stable, i.e., it

does not discharge. Thus electrically charged black holes,
in particular Reissner-Nordstrom black holes, have inter-
est in practice.

Now, Reissner-Nordstrom black hole spacetimes can
be asymptotically anti-de Sitter, asymptotically flat, and
asymptotically de Sitter [50]. Certain particle theories,
notably, supergravity theories, work with a negative cos-
mological constant, and their black hole solutions have
anti-de Sitter asymptotics. Pure general relativity has
black holes which are asymptotically flat, with these
spacetimes yielding the appropriate environment in the
study of a sufficiently large neighborhood surrounding
a black hole. In a cosmological setting and in other set-
tings, one might want to use black holes in asymptotically
de Sitter spacetimes.

4. Higher dimensions

The world seems to have d = 4 spacetime dimensions,
but speculations on higher dimensions has always been
in the forefront of gravitational theories. For instance,
Schwarzschild and Reissner-Nordstrom black holes in
higher dimensions, d > 4, were first conceived in a dis-
cussion connected to the problem of the dimensional-
ity of space [51]. Properties of the spaces might dif-

fer, the Hawking temperature is now Ty = ﬁ;‘i for the

Schwarzschild-Tangherlini d-dimensional black hole, r4
being the horizon radius of the d-dimensional black hole
52].

Moreover, certain theories are well formulated only in
higher-dimensional spacetimes, d > 4, such is the case
of several supergravity theories, and of string and su-
perstring theories, which makes the study of black hole
solutions in d-dimensions important. In connection to
these theories, there is a correspondence between black
hole physics in anti-de Sitter backgrounds and a confor-
mal field theory physics in the boundary of those same
backgrounds, the AdS/CFT conjecture, which is formu-
lated in different dimensions [53} [54].

The extra dimensions can be small, normal, or large
when compared to the usual d = 4 ones. If one conceives
relatively large extra dimensions, then one can in prin-
ciple produce higher dimensional black holes in future
particle accelerator machines, see, e.g., [59].

As well, in studying spacetimes with d generic dimen-
sions, d > 4, one has the possibility of understanding
what is peculiar to d = 4 and what is generic, with some
results for the particular case d = 4 being recovered.

C. Aim

Our aim is to understand more deeply the quantum
and thermodynamic properties of microscopic gravita-
tional systems involving black holes, notably the inter-
action of a black hole with a heat bath, using an electri-
cally charged black hole in general relativity. For that,



in this work, we construct the canonical ensemble of a
d-dimensional Reissner-Nordstrom-Tangherlini, or sim-
ply Reissner-Nordstrom spacetime, inside a cavity. The
construction is made by obtaining the partition function
through the Euclidean path integral approach in zero
loop approximation. The canonical ensemble is defined
by adding a boundary term to the action, by fixing the
inverse temperature as the Euclidean time length at the
boundary of the cavity, and by fixing as well the elec-
tric flux, i.e., by fixing the electric charge. We find three
black hole solutions for the ensemble for an electric charge
smaller or equal than a critical charge from which two are
stable, and one black hole solution for an electric charge
larger than a critical charge which is stable. We study the
thermodynamics of the stable solutions and also analyze
the thermodynamic stability. We perform an analysis
of the thermodynamic phases, namely the phases corre-
sponding to the two stable black holes and the phase of
hot flat charged space, and discuss the possible first and
second order phase transitions. We compare the radius
of zero free energy with the generalized Buchdahl bound
radius, also called Buchdahl-Andréasson-Wright bound
radius [42]. We make the analysis of the system in the
limit of infinite radius of the cavity for generic d, and find
two possible limits, the Davies and the Rindler solutions.
Applying the results to d = 4, we recover Davies’ thermo-
dynamic theory for electrically charged black holes from
the canonical ensemble in the limit of infinite radius, and
we also retrieve the Davies point showing that it signals
a turning point rather than a second order phase transi-
tion as originally argued. The Rindler limit reveals that
the cavity boundary is accelerated at the corresponding
Unruh temperature. We note that the d = 4 canonical
ensemble was mentioned in [I4] and analyzed in [21] 22].
When we specifically put d = 4 in our analysis, we con-
firm the results obtained in [21 22], as well as find other
interesting new results, such as the recovering of the full
thermodynamic analysis of Davies from the canonical en-
semble when the cavity radius, i.e., the reservoir, is at
infinity.

D. Organization

This paper is organized as follows. In Sec. [ we
construct the canonical ensemble through the Euclidean
path integral approach. In Sec. [[TI, we apply the zero
loop approximation, find the solutions to the canonical
ensemble, and analyze their stability and the dimension
dependence. We comment on the four-dimensional case
and cover in detail the five-dimensional case, a feature
that will be provided in all sections. In Sec.[[V] we study
the thermodynamics given by the canonical ensemble in
the zero loop approximation. In Sec. [V] we study the
favorable states, comparing the stable black hole solu-
tions with a configuration of an electrically charged shell
with gravity turned off that emulates hot flat space with
electric charge. We also find and comment on the ther-

modynamic black hole configurations that have horizon
radii higher than the Buchdahl radius. In Sec. [VI we
study the canonical ensemble in the limit of infinite ra-
dius of the cavity, recovering the Davies thermodynamic
theory of black holes and finding the Rindler solution at
the Unruh temperature. In Sec.[VII we conclude. There
are two important appendices. In Appendix [A] the Eu-
clidean action for the canonical ensemble, the boundary
conditions, the Ricci scalar, the Euler characteristic, and
the reduced action are derived and explained in detail.
In Appendix [B] we perform the calculation of the radius
where the free energy of the electrically charged black
hole is zero and give the results for different ensembles
and the generalized Buchdahl radius.

II. THE CANONICAL ENSEMBLE OF A
CHARGED BLACK HOLE IN A CAVITY
THROUGH THE EUCLIDEAN PATH INTEGRAL
APPROACH

A. Partition function as a Euclidean path integral

In statistical mechanics, the canonical ensemble of a
system is a statistical ensemble of possible configura-
tions of the system in thermodynamic equilibrium with
a reservoir of temperature T', with fixed particle number
and unspecified energy. Through the canonical ensem-
ble, it is possible to obtain the thermodynamic proper-
ties of the system in equilibrium with the heat reservoir.
The quantity that holds all the thermodynamic informa-
tion of the canonical ensemble is the partition function,
Z=>3, e PEi where the sum of all the possible states
1 is done, (8 is the ensemble inverse temperature, § = %7
and F; is the energy of each state 1.

When the canonical ensemble is applied to a quan-
tum system, one can calculate the partition function as
Z = Te(e ) = ¥, (gl |u), where Tr(e~"H)
is the trace of the quantum operator e #H  H is the
Hamiltonian of the system and the ; are a basis of
a Hilbert space, not necessarily the Hamiltonian eigen-
states. Consider now a quantum system to be in a state
1 at time t; and in a state i at time t;. Then, the
amplitude of a system to evolve from the state ¥ to
b is (i, taltp,ty) = (e 20 |4)) which can be
calculated by the Feynman path integral approach as
(b, taltp, t1) = [ d[y]e”¥], where the functional integra-
tion on ¢ is done from (1) = ¥ to ¥(ty) = 9. If
we now evaluate the amplitude of the system to evolve
from a state i to the same state i in a time interval
(t2 — t1) = —if and sum the amplitudes for all the ba-
sis states, we have that this sum is the partition func-
tion now written in the Euclidean path integral form
Z = Tr(e PH) = [dipe !¥], where I is now the Eu-
clidean action of the system and the integration is done
for every possible periodic function ¢ with period 5 = %
This is the Euclidean path integral approach to construct
the canonical ensemble.



It is reasonable to extend this approach to self-
gravitating systems. Moreover, such extension provides
a way to describe quantum gravity, i.e., the Euclidean
path integral approach to quantum gravity. The parti-
tion function is then given by the Euclidean path integral

Z = /DgD¢e_I[g’¢], (1)

where ¢ is the Euclidean metric obtained from the
Lorentzian metric by making a Wick transformation
t = —iT, i.e., time is Euclideanized, ¢ represents all the
matter fields that might be present in the system, and
Dg and D¢ mean integration measures of the path in-
tegral whose structures are not of concern here. Here,
we construct the canonical ensemble by the Euclidean
path integral approach to a spherically symmetric elec-
trically charged black hole inside a cavity, in arbitrary
d dimensions. The system will be in equilibrium with a
heat reservoir at the boundary of the cavity with fixed
inverse temperature (3, which is given by the total Eu-
clidean proper time of the boundary of the cavity, and
with fixed electric flux, i.e., with the black hole electric
charge @ fixed. The thermodynamics of the system can
then be obtained by considering that the partition func-
tion of the canonical ensemble is tied to the Helmholtz
free energy F through Z = e #F ie., BF = —InZ.
With the free energy determined, the other thermody-
namic quantities are obtained by the derivatives of the
free energy, noting that F = E — TS, where F is the
thermodynamic energy of the system and S its entropy.

B. The Euclidean action for the canonical ensemble

The Euclidean action of the system consisting of an
electrically charged black hole in a cavity in d dimensions
is

1 1
I=—— d'z — — [ (K — Ko)y/d'™!
167 /M R\/g v 8w /aM( O)ﬁ .

L) / FopF*\/gdx
402 Sy

) / F AgnyAd? (2)
Qa-2 Jou

where R is the Ricci scalar given by derivatives and sec-
ond derivatives of the Euclidean metric g4, g is the deter-
minant of gup, K is the trace of the extrinsic curvature of
the boundary of the cavity defined as K, Ky is the trace
of the extrinsic curvature of the boundary of the cavity
embedded in flat Euclidean space, v is the determinant
of the induced metric y,3 on the boundary of the cavity,
Q4_o is the surface area of a d—2 unit sphere and appears
here basically for practical purposes, Fup = 0, Ap — OpAq
is the Maxwell tensor given by derivatives of the vector
potential A, ny is the outward unit normal vector to the
boundary of the cavity, a, b are spacetime indices that run
from 0 to d — 1 in the usual manner, and «, 8 are indices

on the boundary that run from 0 to d — 2. The boundary
term depending on the Maxwell tensor must be present
so that the canonical ensemble may be prescribed, see
[14]. This term allows us to fix the electric flux given by
the integral of the Maxwell tensor on a (d — 2)-surface,
which has the meaning of electric charge. Otherwise, the
potential vector A, must be fixed, which means the grand
canonical ensemble should be prescribed, see [30] for this
case.

C. Geometry, electromagnetic field, and boundary
conditions

1.  Geometry and boundary conditions

We assume that the Euclidean path integral is done
along metrics which are spherically symmetric. There-
fore, the Euclidean space is given by the warped space
product R? x S%~2 with the warping function 2, where
S4=2 is a (d — 2)-sphere with radius 7. The Euclidean
metric of such space is given by

ds® = VX (y)dr® + o®(y)dy® +r*(y)dQG 5,  (3)

where 7 is the periodic Fuclidean time with range 0 <
T < 2m, y is a radial coordinate with range 0 < y < 1,
dQ?_, is the line element of the unit (d — 2)-sphere with

d—1

total area Qg_o = I" being the gamma function,

2m 2
L4’
b(y) and «a(y) are functions of y, and r(y) represents the
radius that gives the area of the (d — 2)-sphere. The
functions b(y), a(y), and r(y) are unspecified for now
and are to be integrated in the path integral.

The hypersurface y = 0 is assumed to correspond to
the bifurcation two-surface of the event horizon of the
charged black hole, so we must impose the conditions

b(0) =0, (4)
r(0) =ry, (5)

where r, is the horizon radius. The conditions given
in Egs. and impose that the y = 0 hypersur-
face corresponds to {y = 0} x S%72, i.e., a point times
a (d — 2)-sphere. The y = 0 point in the (7,y) sector
coincides with the central point of the R? plane in po-
lar coordinates, where 7 is in fact the angular coordinate
and y is the radial coordinate of the plane. The y = 0
hypersurface can be seen as the limit y — 0 of y con-
stant hypersurfaces, with these latter having an S! x S%—2
topology. For the metric to be smooth, as y goes to zero,
the constant y hypersurfaces S* x S4~2 must go smoothly
to {y = 0} x S¥~2. There are more conditions other than
the two above, see Appendix [A] for a detailed derivation
of these conditions. One of the conditions for smoothness

(5)o=-1, ©)



where (%/) (0) = (b—/> . This is a third condition and

«

means there are no conical singularities in the Euclidean
manifold. With Eq. @ considered, one can compute the
Ricci scalar R of the metric of Eq. ( . when the metric
is expanded around y = 0 with the conditions given in
Eqgs. (4) and (5] . One obtains that to have a well-defined
Ricci bcalar R and for the space to be smooth, one must
impose the fourth and fifth conditions

(L)oo, @
(; (f’;)')w) ~0, ®
with (2)(0) = (g)y:O and <; (l;')/>(o)
(; <Z>/>y=o’ see Appendix The condition given in

Eq. is equivalent, in even dimensions, to requiring
that the Euclidean space considered has an Euler char-
acteristic y = 2 by the Chern-Gauss-Bonnet formula. On
the other hand, in odd dimensions, the Euler character-
istic vanishes, and so this requirement is not satisfactory.
Nevertheless, the requirement that the Ricci scalar is
well-defined suffices. One can also see that the condition
given in Eq. @ is equivalent to requiring that the event
horizon of the black hole is a null hypersurface, if one
performs a Wick transformation back to the Lorentzian
signature. The condition given in Eq. . means for
some coordinate y, that if (b'a™')|,—¢ is nonzero finite,
then a|y=¢ must diverge. Indeed, this is satisfied by the
Reissner-Nordstrom line element with coordinate choice
y = r found by solving the Einstein equation, as it is seen
below. We note that the condition given in Eq. is not
referred to elsewhere, in particular it is not mentioned in
[14] [30].

The hypersurface y = 1 corresponds to the boundary
of the cavity, where two conditions are imposed

b = -, )
r(l) =R. (10)

The condition given by Eq. @[) fixes B at the bound-
ary, with 3 being the inverse temperature of the cavity,
8= % This condition enforces that the total Euclidean
proper time of the boundary of the cavity is fixed to be
equal to the inverse temperature of the cavity, and the
condition comes from the definition of the path integral
as stated in Sec. The condition given by Eq. (10))
states that the boundary is at radius R.

2. Electromagnetic field and boundary conditions

For the electromagnetic Maxwell field, due to spher-
ical symmetry and admitting the nonexistence of mag-
netic monopoles, the only nonvanishing components of

the Maxwell tensor Iy are Fy; = —F,,. Moreover, we
choose a gauge where the only nonvanishing component
of the vector potential is A, (y). Therefore, the Maxwell
tensor F; is described only by the term

dA-(y)
Tt (11)

Fy-(y) =

The boundary conditions can now be imposed.
At y = 0, we require that

A (0)=0, (12)

to have regularity. This condition also fixes completely
the gauge of the Maxwell field.

At y = 1, we fix the electric charge by specifying the
electric ﬂux given by fy 1F ®dS,, = 2iQ4_2Q, where

¢ is a constant, @ is the electric charge in the cavity,
dSap = 2u[any) dS is the surface element of the y = 1 and
7 = 0 surface, u,dz® = bdr, nydz® = ady, and dS is the
surface volume, i.e.,

(barH FW)(I) - Q. (13)

D. The action with boundary conditions

Putting together the conditions just found into the ac-
tion Eq. , one finds that it is a function of the radius of
the cavity R, the inverse temperature 3, and the charge
@, which are the fixed quantities of the system, and a
functional of b, a, r and A,. The partition function is
then given at this stage by the action appropriately inte-
grated in all paths in the path integral. We now evaluate
the action Eq. with the considered boundary condi-
tions. Here we sketch the calculation, see Appendix [A]
for full details.

We start by looking at the Ricci scalar R. The
Ricci scalar R is the contraction of the Ricci tensor
R,y which itself is the contraction of the Riemann ten-
sor, and moreover, one can form the Einstein tensor
Gap from Ry, and R, Gap = Rap — %gabR. The Ricci
scalar for the metric in Eq. is given b 167'rR =

m (deb/)l + S%GTT, where G7; is the time-time
component of the Einstein tensor and is given by G, =
o [ (5 -
tive with respect to y. By putting the expression of

the Ricci scalar into Eq. , we observe that the first
term in the volume integration of the Ricci scalar yields

Q. d—2y7/ Qg d—2y/ .
—=2 (u) - =2 (u) , i.e., a boundary
y=1 y=0

[e% «

!
1)} , and the prime means deriva-

term at y = 1 and a boundary term at y = 0. The term
— ‘f(K K)d? 'z is called the Gibbons-Hawking-

y=1 8m
York boundary term, and is given by — fy L \S/;(K -

d—1,. _ (2xbri=3 _r _ Qa—o [(ri72
Kot e = (= (1)) - (),




where it was used that the extrinsic curvature of a con-
stant y hypersurface is K = 2dr + “=dQ2% , and
Ko = rdQ%_, is the extrinsic curvature of the hyper-

surface embedded in flat space and u (d_%ﬁ.
The last term of the Gibbons-Hawking-York boundary
term cancels with the boundary term at y = 1 of the
Ricci scalar. Moreover, by using the boundary condition

Eq. @, the remaining boundary term of the volume in-

tegral of the Ricci scalar becomes —% (Td;zb/) =
y=0

. It is useful to rewrite the Maxwell bound-
ary term in the action Eq. . Using the divergence
theorem and that V,(F®A4,) = —%FabF‘lb + A,V Feb,
one transforms the boundary Maxwell term into bulk
terms, obtaining that the Maxwell part of the action

is _ingi Ju FabFab\/gddx + (s()i;gz) Ju AaVbFab\/gddx~

Qq—2 d—2
4T

(d—3) ab _ _ (d=3) A}? — A
Now, — 10 F,F*° = — 50y a%F where F,; = A/ was
/
(d—3) ab g _ _ _ (d=3) ri AL
used, and o Vo F*®A, = O abrd—? = A,
Ta 1 ri2ar\’
_ 1 - g
where V F'7% = ———— ( - was used.

One can proceed with the integrations at the cavity,
since the integrands do not depend on time or on the
angles, and one obtains from Eq. the full action

118.Q. Rib,ovr, A = DB (1 - (T) (1))

7] (6%
O, _ d—QA/ !
S (T s
abrt—2 dr(d—3) A
T o 2\ YT Qg
+/M 8m (G . Qg2 a2b? drdydfla-z,
(14)

where it was used that the time length at the cavity is
given by Eq. @, i.e., 8 =2mb(1), and that from Eq. (10)
one has (1) = R. We have then the action as a func-
tional of b, a, r and A, to be integrated in all paths, in
the path integral.

III. THE ZERO LOOP APPROXIMATION:
REDUCED ACTION, SOLUTIONS, AND
STABILITY

A. Constraints and the reduced action

Due to the aforementioned difficulties in dealing with
the path integral, we perform the zero loop approxima-
tion. We do this in steps. First, we find the reduced ac-
tion by imposing the Hamiltonian and momentum con-
straints to the metric and the Gauss constraint to the
Maxwell field. Second, we implement the zero loop ap-
proximation, i.e., we only consider the path that mini-
mizes the reduced action.

The Hamiltonian constraint is G™, = 87T/TT7—, with G7 ;

given by G™, = qu,lr% [rd_3 (’%2 - 1)} ,and T7, =

2
(5;32) 225172 , where T7 . is the time-time component of the
stress-energy tensor T%,. Thus, the Hamiltonian con-
straint is

A=2 [as(r?
2plpd—2 a2

The momentum constraint is trivially satisfied since the
metric Eq. is diagonal and does not depend on the
Euclidean time. The Gauss constraint is V,F™ = 0,

which explicitly is
rd=2 47\’
( o ) =0, (16)

The two constraint equations, Egs. (15) and (16|, are
coupled, nevertheless they can be integrated. It is better
to start first by integrating Eq. . Its integration yields

QY:MWi3ME. (15)

Qd,2a2 b2

q
rd—2

Al =—i b, (17)

where ¢ is an integration constant. If one evaluates

Eq. (17) at y = 1 and uses the boundary condition
Eq. (13]), then one obtains that

=Q, (18)

and so the integration constant ¢ of the Gauss constraint
is precisely the fixed electric charge @ of the ensem-
ble. From this point onward we work with ). By us-
ing Eq. and Eq. , the Hamiltonian constraint

, /
becomes 2rtfr_"'2_2 [rd’3 (;—; — 1)} = —%7 which
can be integrated to obtain
,,,/2
? = f(rv Q7T+) ) (19)
where
7“173 + fﬁz uQ2
— +
f(ﬁ Q7T+) =1- rd—3 + r2d—6 (20)
with
8
x (21)

ST

The function f in Eq. is defined for convenience,
and the regularity conditions Eqgs. and @ were used
to determine the integration constant ro. Although the
condition Eq. is not used anywhere, notice for book-
keeping that, if y = r is chosen, 7’ = 1 and « diverges
at 7 = r4, therefore the condition Eq. should be sat-
/
isfied if (%)y—o is finite. The function A/ in Eq. is
related to the Coulomb electric field in Lorentzian curved
spacetime as n,FE* = zba, = ﬂ%’ where E¢ is the elec-
tric field. It is important to write explicitly the extremal




case, i.e., when rid76 = u@Q?, and we write this special

radius as 7, which is thus given by

1

rre= (1@?) 7 (22)

The function f(r,Q,r+) in Eq. in the extremal case
is then f(r,Q,ry,) = (1 - ﬁ%) .

The Hamiltonian, momentum, and Gauss constraints
simplify the action of Eq. considerably. One can see
that the third term in Eq. has an integrand pro-
portional to G", — 87717 and so, applying the Hamil-
tonian constraint given in Eq. (15), this term vanishes.
Moreover, the last term in Eq. (14) is proportional to

— !
’r’d 2A/

T’) which vanishes also if the Gauss constraint

given in Eq. is applied.
Eq. becomes

Therefore, the action

d—3 O d—2
L(5.Q Rirs] =20 (1 VAR Q) -~
(23)

where I, is the reduced action, which is the Euclidean
action evaluated on the paths that obey the Hamiltonian
and Gauss constraints, and (r'a™!),—; was substituted
by the solution to the Hamiltonian constraint given in
Eq. . From Eq. we have that f(r,Q,r;) appear-
ing in Eq. evaluated at the cavity radius R is given
by

d-3 | pQ?
r + ==
+ Td+ 3 N /J'Qz

R2d—6°

f(R7Q7T+) =1-

T3 (24)

The extremal case characterized by Eq. has this
2
function at R given by f(R,Q,7+,) = (1 — ]{5‘2) .

The Hamiltonian, momentum, and Gauss constraints,
together with the boundary conditions and the require-
ment of spherical symmetry, restrict the path integral
substantially. The Euclidean space is determined by the
functional 1 and so the path integral is the sum of spaces
with all possible ;. Indeed, the partition function is
given by the path integral, i.e.,

7 = /Dr+e_l*[5’Q»R;"+] , (25)

with I,.[8, @, R; 4] being the reduced action described in
Eq. . There is formally another functional which is
A, i.e., the Maxwell field, but the action does not depend
explicitly on A, it only depends on the electric charge
which is fixed at the cavity. This means the integration
over paths of A can be absorbed by a normalization and
does not yield any contribution to the constrained path
integral.

B. Reduced action evaluated at stationary points,
Ip: Analytic investigation of the existence of
stationary points in generic d dimensions

1. Reduced action evaluated at stationary points, Iy

To further simplify the path integral in the partition
function of Eq. , we perform the zero loop approx-
imation, i.e., we only consider the path that minimizes
the action given in Eq. . The partition function in
this approximation is given by

Z[B, R, Q] = e~ PIFRCL (26)
where

Io[ﬁaRaQ] :I*[ﬁaRaQ;r"r[B?RvQ”? (27)

is the action in Eq. evaluated at its minimum with
respect to r. The function r[8, R, Q] corresponds to a
black hole solution that is in equilibrium with the cavity
and it is determined by a stationary point of the action,

ie., (gl*)
"/ ri=ri[8,R.Q]

2. FEquations for the d-dimensional stationary points

Thus, the stationary points of the reduced action I,
oL

given by (mi ) ri=ry[8,R,Q]

Eq. to give

4 rd=2
B=ure), dre) = ri*;— o VIRQ,r4),

-3

= 0, can be found through

T‘d
+

(28)

where «(r4) is the inverse temperature function, defined
here for convenience. Note that for fixed R and Q, ¢ is
indeed a function of r alone. The solutions r[8, R, Q]
of Eq. are stationary points of the action in Eq.
and are obtained from inverting Eq. (28)). To help in
the analysis, we define in this section a horizon radius
parameter x and an electric charge parameter y as

pQ?

_ T+
f’ y*RQd—6'

(29)

Rearranging Eq. we obtain

2
(de—G_y)Q(m)—x?’d_7(1—xd_3)(xd_3—y)=0. (30)

The equation above, Eq. , can be reduced at most to
sixth polynomial order for d = 5, while for other dimen-
sions the polynomial order is higher. Therefore, we did
not find any analytical solution to this equation for any
specific value of d.



It should be noted that the nonextremal condition for
the black hole is best seen by putting in the form

r. <z <1, (31)

where x. is the extremal x related to the extremal vy,
denoted as y., by

Yo = 22976 (32)

see Eq. .

3. Saddle points of the action in d dimensions

Although it is not possible to find exact solutions for z
and y, nevertheless, we are able to obtain analytically the

limiting values for the solutions. These are determined by

the saddle points of the action I, described as (3;712 ) =
+/0

0, where the subscript 0 means that the quantity inside

parenthesis is evaluated at the stationary point. Now,

(%i{{)o = %B 18; , so the saddle points

= 0 together
with Eq. . This condition can be put as a function
of the Variables x and y and it simplifies to

d—1 4d—12
72 T

+(2d — 5)y(1 + y)x?73 —

_ (1 + y)x3d—9 _ 3(d _ 3)y.’1]2d_6

3d2_ 7y2 =0. (33)

Equation is a polynomial equation of order four in
2973 and it can be solved analytically. We enumerate the

solutions.

For y = 0, one has the electrically uncharged case and
it was discussed in [I1] for d = 4, [25] for d = 5, and [20]
for generic d.

For 0 < y < ys, there are four real roots of Eq. ,
from which only two obey the condition 0 < y < 224=6
which is the nonextremal condition, see Eq. , and
where y; is a saddle or critical electric charge parameter
to be determined. We designate the two saddle points of
the action, i.e., the two solutions of interest of Eq. ,
as Ts1 = Te1(y) and zs0 = T52(y), where 251 < x42. Now,
we find explicitly the saddle points of the action. They

are
1
W = sy T *1/277+§—4§2 (34)

I SC

_ 1—|—y
d—3 __ -
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where
3(14y)? +12(d—1)(d — 3)y
= 2(d*1)2 ’
1+
C_((d_ly))g(2_(4c13—24d2+48d—30)y+1)a
12 2 o2 + 09
5—2\/3”3«1—1) o (36)

1
_ (01 + \/J% 403) ?
i (R m— ;

o0 = 3(2d = 5)y(1 —y)?,
o1 = 54(d — 3)(d — 2)*(1 — y)%y* .

For y = y5, both saddle points merge into a single one.
We write the value of the saddle point &, = x4 = x4 at
Yy = ys, which is a saddle point with the feature that the
third derivative of the action also vanishes. The saddle
point x5 = x41 = x4 is given by

_ 1
243 —

s T 9(d—1)(2d—5)

x| (d = 1)(3d — 7)(3d® — 16d + 22)

—3V3(d—2*d—3)\/(d—1)Bd-7)|, (37

which occurs at y = ys given by

1
4(d—1)(2d — 5)3(3d — 7)

Ys =

X {(d —1)(3d — 7)(3d* — 16d + 22)

2

—3V3(d—-3)(d—2%/(d=1)Bd—7)| . (38)

Of course, to xs corresponds an 744 through rys = xR,

2d—6
and to ys corresponds a Qs through Q, = %,

where we have not put the subscript s in R in these
formulas because, for finite R, one can always assume
R fixed. Putting the values given in Egs. and (| .
into Eq. ., one finds RT%,

RT, = RT,(zs,ys) (39)

the temperature parameter at which x, is a solution of
the black hole for y = ys. The values of x,, ys, and RT;
are displayed for different values of d in Fig.[I} It can be
seen that both zs and RT; increase as d increases, and
ys decreases as d increases.

For ys < y < 1, there are no roots of Eq. . 33) that obey
the condition 0 < y < 22476 which is the nonextremal
condition, see Eq. (3 , i.e., there are no saddle points of
the action.
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FIG. 1: Plots of the saddle point (xs,ys, Ts) of the
action, where the third derivative of the action also
vanishes, as functions of the number of dimensions d.
(a) Plot of z, = & as a function of d; (b) plot of

2
Ys = R’Lz?fs as a function of d; (c) plot of RT; as a

function of d.

4. The solutions in d dimensions: Qualitative analysis

For y = 0, one has the electrically uncharged case and
it has been discussed in [11] for d = 4, [25] for d = 5, and
[26] for generic d.

For 0 < y < ys, from the results for the saddle points of
the action, one can make a qualitative analysis and find
that there are three solutions z(f8,y), or if one prefers
z(T,y), of Eq. . These three solutions we desig-
nate by x1, x2, and x3. The solution x; exists in the
interval of temperatures 0 < T < Tj and is bounded
by z. < x1(T,y) < zs1(y), where the values of the
solution at the bounds are z1(0,y) = z., with z. de-
fined in Eq. , and z1(Th,y) = xs1(y), with T7 be-
ing defined by the latter relation. The solution zy ex-
ists in the interval of temperatures 77 > T > 15 and is
bounded by xs1(y) < z2(T,y) < zs,(y), where the val-
ues of the solution at the bounds are z2(T71,y) = =51 (y)
and zo(T2,y) = xs2(y), with Ty being defined by the
former relation. The solution x3 exists in the inter-
val of temperatures T, < T < oo, and is bounded by
zs2(y) < z3(T,y) < 1, where the values of the solution at
the bounds are 23(T%,y) = zs2(y) and z3(T — oo, y) = 1.
As ys decreases with the increase of d, this means that
the area of the region of existence of these solutions de-
creases with the increase of d, as it is squeezed toward
lower values of the electric charge.

For y = ys, there are still three solutions z1, x5, and x3,
with the solution zs having been reduced to a point, more
precisely to the saddle point of ¢(r4) given as xo (T, ys) =
xs, with Ts being defined by the latter relation. The
bounds of x1 and x3 are the same as the case 0 < y < ys,
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except that xs1(ys) = xs2(ys) = x5 and Ts = Ty = Ts.

For y; < y < 1, there is only one solution x4 that
exists for all T' and is bounded by z. < z4(T,y) < 1,
where 24(0,y) = z. and z4(T — o0,y) = 1.

C. Stability condition

To determine if the solutions are minima of the ac-
tion and thus stable, we must go beyond the zero loop
approximation and expand the action and the path in-
tegral around the stationary point. Thus, we write

I, =1+ (gf:;)o ory + (82[* )0 (57"_2H where the subscript

or?
0 means that the quantity+inside parenthesis is evalu-
ated at the stationary point, Iy = I.(8, Q, R; (r4+)o), and
dry =1y — (r4)o. Then, the partition function can be
expanded as

I ’(%212*> ori
Z =e "0 /D5r+e "+ . (40)

The partition function in Eq. contains one loop con-
tributions that obey the spherical symmetry of the ge-
ometry, the boundary conditions, and the Hamiltonian
and Gauss constraints. For the path integral to be well
defined, we must have

0%I
( 2*) >0, (41)
ot ),
so that the stationary point is a minimum and sta-
ble, otherwise the integral may blow up or be contin-
ued to a complex function, indicating that the station-

ary point is not a minimum and is therefore an instan-
ton. The second derivative of the action Eq. (23] can

. . . Qg_o(d—2)r?—3
be simplified into (%ZTI{)O = —% 62: . Thus,
the stability condition reduces to 8‘% < 0, meaning
+

that the solution is stable when % increases with a de-
crease in the inverse temperature, and so with an in-

crease in the temperature. Now, 6?_: = % [(d=2)—(d—

3) T’id75+#Q2 n d—S( 1Q? _

d—6 d—3 pd_
T-2i— O,HQQ 2f L 3Rd—3

sion of ¢ in Eq. was used, and so stability means

- %)], where the expres-

P26 1,02 d—s3 2 =3
(d_Q)_(d_3)m+7(ﬁ%_%) <0.
In terms of the variables z and y defined as = = % and

y = R“%,ZS, see Eq. , the stability condition is

d—1
£L'4d_12 _ (1 + y)x3d—9 _ 3(d _ 3)y1‘2d_6

2
3d -7
+(2d — 5)y(1 + y)x?73 — Ty? >0. (42)

The range of x is . < x < 1, where z. is a function
of ye, see Eq. (32). In the case of 0 < y < ys, the
condition of stability reduces to two intervals in z, one
is 0 < & < z(y) and the other is zx(y) < z < 1.



Therefore, the solutions 1 and z3 are stable, while the
solution x5 is unstable. Moreover, the points x = x4
and x = x4 are saddle points of the action as previously
stated, and so they are neutrally stable. In the case of
Yy = ys, the same applies as the previous case. In the case
of ys < y < 1, the stability condition is satisfied in the
interval . < x < 1 and so the solution x4 is stable.

It is of interest to pick specific dimensions d. Due to
its real importance we study d = 4, and as a typical case
of higher dimension we analyze carefully d = 5.

D. d=4: Stationary points and stability in four
dimensions

We now comment on the particular case of four di-
mensions, d = 4. The original results were presented in
[21, 22], we show here that they are in agreement with
ours and we also display new and interesting features for
this case.

First, we want to understand qualitatively © = 7+ as a
function of the temperature parameter RT, i.e., z(RT),
for the several distinct electric charge parameter y re-
gions. Recall that the value of y, is important since it
separates the behavior of the solutions. From Eq. ,
ind=4itis ys = (V5 — 2)% = 0.056, the latter equality
being approximate. The solutions can then be divided
using the electric charge parameter y in the solution for
the no charge case y = 0, solutions for the charge param-
eter in the region 0 < y < (v/5 — 2)2, the solution for
y =y, = (v/5—2)2, and solutions for the charge parame-
ter in the region (v/5—2)% < y < 1. We can comment now
on z(RT') within each y division. For y = 0, it describes
the uncharged case and the solution is known, it is the
original York solution [I1], and consists of two solutions,
here represented as x5 and x3. The solution x4 happens
when x5 and x3 meet at temperature RT = % = 0.207,
the latter equality being approximate. For the electric
charge in the range 0 < y < (\/5 — 2)2, there are three
solutions x1, x2 and x3, where x is stable, x5 is unstable,
and z3 is stable. For very small charges, the temperature
T1, which is the temperature at which x4 is a solution for
the black hole at the given charge, is very high, tending
to infinite when the charge tends to zero. For very small
charges, the temperature 75, which is the temperature
at which x4 is a solution for the black hole at the given
charge, is very near the minimum temperature of the so-
lutions of the canonical ensemble of the Schwarzschild
black hole in four dimensions, i.e., RT = ?}S—ﬂ‘/g, mentioned
above. Increasing the electric charge from small values,
one has that the saddle points z4 and x4y approach
each other. For the electric charge parameter given by
y = (V5 —2)? = y,, the saddle points z,; and ., meet,
and at this electric charge, the solution z; is described
by a curve, the solution x5 is now reduced to a point that
coincides with x4 = x451 = 42, and the solution x3 is de-
scribed by another curve. All solutions are stable, more
precisely, x; is stable, x5 is neutrally stable, and x3 is sta-
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ble. For electric charge in the range (\f -2)2<y<1,
there is only one solution x4 which represents the union
of 1 and x3, with x5 having disappeared. Also, the so-
lution x4 is stable.

Second, we want to understand qualitatively © = % as

a function of the electric charge parameter y = ”}%Z, with
= 1here, i.e., z(y), for the several distinct temperature
parameter RT regions. Recall that the value of RT, and
the value of minimum temperature in the uncharged case

RT = 3%7\/5 are important since they separate the behavior
of the solutions. In d = 4, the value of the temperature
corresponding to ys and zs is RTs = 0.185, this equality
being approximate. Thus, the temperature parameter

regions are 0 < RT < 0.185, RTs = 0.185, 0.185 < RT <

% =0.207, and % < RT < oco. We can comment now
on z(y) within each RT division. For 0 < RT < 0.185,
there are only two solutions, which are x; in the interval
0 < y < ys and x4 in the interval y; < y < 1, with
ys = (V5 —2)%2. For RT, = 0.185 corresponding to ys
and x4, with this equality being approximate, there are
four solutions, but two of them are degenerate. Indeed,
there is the x1 solution, there are the x5 and z3 solutions
that degenerate into a point zo = x3 at y = y,, and
there is the x4 solution. For 0.185 < RT < % = 0.207,
the latter equality being approximate, there are the four
solutions 1, =2, x3 and x4. The solutions z1, x5, and
x3 lie in the range 0 < y < ys, and the solution x4 exists
only for y; < y < 1. We can note again that the solution
T4 is a continuation in y, i.e., in @, of the solutions z;
and x3, and so in a sense x4 is the union of z; and x3.

For 38# < RT < o0, there are also the four solutions but
To and z3 are discontinuous.

E. d=>5: Stationary points and stability in five
dimensions

1. Behavior of the solutions and plots

We now present in some detail the particular case of
five dimensions, d = 5, as a typical higher dimensional
case. The behavior of the solutions will be developed for
this case with explanations and plots.

First, we analyze x = % as a function of the tempera-
ture parameter RT, for the several regions of the electric
charge parameter y. Once more, the value of y, is im-
portant for the analysis since it separates the regions of
different behavior for the solutions. From Eq. , in

2
d=751itis ys = W = 0.014, the latter equality
being approximate. We can divide the analysis into the
following regions of the electric charge parameter y: the

no charge case y = 0, the electric charge parameter in the
(68—27/6)>

region 0 < y < “——z——, the specific case of the crit-
2

ical charge y = ys = %, a?d the electric charge

parameter in the region % <y < 1l. We now

describe the solutions z(RT) for each region of y, and



for that we display in Fig. [2] the plots of the solutions
T = % as a function of RT of the canonical ensemble

in five dimensions, d = 5. An important line in such

1.0

0.2F

020 0.25 0.30 035 0.40
RT

FIG. 2: Plots of the solutions z = % as a function of

RT of the canonical ensemble in five dimensions, d = 5,
2

for four values of the electric charge parameter y = -,
with p = % here. The four values of the electric charge
parameter y are y = 0 in dotted lines, y = 0.005 in full

lines, y = W = 0.014 in dot dashed lines, the
latter equality being approximate, and y = 0.05 in an
orange full line. The solution x; = % is represented in
red, x5 = S5 is represented ilg blue, z3 = 52 is
represented in green, and x4 = —5* is represented in
orange. The gray curve describes the trajectory of the
saddle points of the action x5 = “5* and x4 = 52
by changing the electric charge parameter, and it
separates the regions of existence of the solutions

T4 T42 T4+3
vy =5, T2 = 5, and 3 = 5.

plots is the line in gray in the figure, that represents the
trajectory of the saddle points x4, and xo of the action
by varying the electric charge. This gray line separates
the regions where the solutions x1, x2, and z3 can be
found. More precisely, the two saddle points x4 and =g
are the bounds of the solution z5. For y = 0, we have
the uncharged case. The solution has been analyzed in
[25], and consists of two solutions, here represented as o
and x3. At the saddle point x4, the solutions x5 and x3

meet at temperature RT = % For the electric charge
< (68—27/6)?

parameter y in the region 0 < y 550> Which can
be visualized by the y = 0.005 case in the plot, there are
three solutions z1, x2, and x3, where again z; is stable,
To is unstable, and x3 is stable, see below for the discus-
sion of thermodynamic stability. This case is represen-
tative of small electric charges. For very small charges,
the temperature 717 corresponding to the saddle point
41 assumes very large values and tends to infinity when
the charge tends to zero. Moreover, the temperature 75,
corresponding to the saddle point z s is close to the min-
imum temperature of the solutions of the canonical en-
semble of the Schwarzschild black hole in five dimensions
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RT = % Note that the figure with the plots for small
electric charge parameter yields a unification of York and
Davies, as the two solutions are here represented. More
precisely, the blue and green lines correspond to the un-
stable and stable black holes of York [1I], respectively,
and the red and blue lines correspond to the stable and
unstable black holes of Davies [6], respectively, see below
for these latter black holes. Increasing the electric charge
from small values, one sees that the saddle points x4, and
g2 approach each other along the gray curve. For the

saddle electric charge y = ysw = 0.014, with the
latter equality being approximate, the saddle points x4
and x4 are equal as x41 = T2 = Ts. While 1 and z3 are
described by a curve, the solution xs reduces to a point
T9 = s that connects both solutions x; and x3. Regard-
ing stability, z; is stable, x5 is neutrally stable, and x3 is
stable. For the electric charge parameter y in the region

W < y < 1, which is represented in the plot by

the case y = 0.05, there is only one solution x4, that is
in a sense the continuation of x; and z3, with x5 having

disappeared. We note that x4 is a stable solution.

Second, we want to describe z = % as a function of
. 2 .
the electric charge parameter y = <~ with y = &

here, for the several regions of the temperature param-
eter RT. Here, the value of RTs; and the value of the
minimum temperature of the uncharged case RT = %
are important since they separate the regions of different
behavior for the solutions. In d = 5, the temperature
corresponding to z,(ys) is RTs = 0.302, with this equal-
ity being approximate. We then consider the tempera-
ture parameter regions 0 < RT < 0.302, RT, = 0.302,
0.302 < RT < % = 0.318, the latter equality being ap-
proximate, and = < RT < oo. We now describe z(y)
within each RT region, and for that we display in Fig.

plots of the solutions x = %“ as a function of y = “1534 ,
= %, of the canonical ensemble in five dimensions,
d = 5. For the temperature parameter RT in the range
0 < RT < 0.302, of which RT = 0.15 is represented in
the figure, there are only two solutions to display, which
are xj in the interval 0 < y < y,, and x4 in the interval

ys <y < 1, with y;, = (&;_jﬂ' For the temperature
parameter RT given by RT = RTs = 0.302, this equality
being approximate, one has the curves of the z; solu-
tion and the x4 solution, while the x5 and x3 solutions
degenerate into a point xo = x3 at y = ys. For the tem-
peratures 0.302 < RT < % = 0.318, of which RT = 0.31

and RT = % are represented in the figure, one has the so-
lutions x1, x5 and x3 lying in the range 0 < y < ys, while
the solution x4 lies in the range y; < y < 1. The figure
shows explicitly that the solution x4 is a continuation in
the electric charge parameter y of the solutions x; and
x3. Note also that the gray curve in the figure bounds
the solution z5. For % < RT < oo, which is represented
by RT = 0.4 in the figure, one has also the four solutions
but the segments of xo and x3 are discontinuous.




2. Interpretation of the results

These results merit some underlying understanding of
the physics, which we now give in terms of the thermal
wavelength A which is proportional to the inverse of the
temperature, A = % We give the reasoning for the plots
of the solutions x = % as a function of RT of the canon-
ical ensemble shown in Fig. 2l We analyze the solutions
from small electric charge to large electric charge, and
from low to high temperature T" with R fixed. We note
that small RT corresponds to low T here.

To start with, we analyze the case for a given small
electric charge. For small T’ the associated thermal wave-
length A is large and is stuck to the cavity walls, which
means that if there were no electric charge, there would
be no black hole. But since there is a fixed electric charge,
there is a small black hole with radius r4 of the order of
the length scale set by the charge itself. This black hole
does not form by collapse, its presence comes from topo-
logical constraints. The black hole is stable, small per-
turbations cannot evaporate it. For the smallest possible
T, T = 0, the black hole is an extremal black hole. For
small temperature, there is only one black hole solution
which is this one. For an intermediate T', as the tem-

1.0

RT=0302 0 oo ]

T T RT=0.15
“—_RT=0318
Et RT=0.31
%800 0.01 0.02 0.03 0.04 0.05
v
R*

FIG. 3: Plots of the solutions = = =+ as a function of

R
2
Y= M}% of the canonical ensemble in five dimensions,

d = 5, for five values of the temperature parameter RT,
with g = -=. The five values of RT are RT = 0.15 in

3’

double dashed lines, RT = RT, = 0.302 in dot dashed
lines, RT = 0.31 in dashed lines, RT = + = 0.318, in

full lines, the latter equality being apprgximate, and

RT = 0.4 in dotted lines. The solution =1 = ”él is
represented in red, x5 = % is represented in blue,
x3 = £ is represented in green, and x4 = 5 is
represented in orange. The black line, corresponding to
Y=Ys = %, separates the solution x4 = %
from the remaining solutions. The gray line corresponds

to the trajectory of the saddle points of the action

Ty = =2t and x, = S22, which bounds the region
where zp = 552 exists.
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perature increases, one has that the associated thermal
wavelength A decreases. The black hole with small
is still there, but there is now the possibility of forming
black holes via collapse, indeed the thermal wavelengths
are no more stuck to the cavity walls and the existent
thermal energy can collapse. One black hole that can
form in this way has radius r; of the order of A and is
thermodynamically unstable since clearly it can evapo-
rate. The other black hole that can form in this way has
radius 7 large such that R —ry is of the order of A, and
is thermodynamically stable, the reservoir and the black
hole exchange quanta of X\ in a stabilizing way. For in-
termediate temperatures, there are thus three black hole
solutions for each temperature. For high T, as the tem-
perature increases and the associated wavelength A\ gets
even smaller. The smallest black hole r; ceases to exist
because, due to the turbulence created by the high tem-
perature, there is no way to maintain the electric charge
coherently at the center of the cavity. The intermediate
black hole 7, ceases to exist because the electric charge
repulsion is sufficient to halt gravitational collapse of this
black hole with intermediate r,. The large black hole r
still exists, as it has sufficient mass to overcome the elec-
tric repulsion and still collapses. For high T, therefore
only the large black hole exists. This is for a typical rea-
sonably low electric charge @), and we see there is an in-
terplay between the two quantities that characterize the
ensemble, namely, the temperature 7' and the electric
charge Q.

We now analyze the case of high electric charge. Again
here, for small T, the associated thermal wavelength A is
large and is stuck and cannot collapse. But since there is
a fixed electric charge, there is a small black hole with ra-
dius 74 of the order of the length set by the charge itself,
its presence comes from topological constraints, is sta-
ble, i.e., small perturbations cannot evaporate it. T = 0
yields an extremal black hole. At intermediate 7', there
is turbulence to disperse the black hole with topologi-
cal features but it is possible to have sufficient mass to
collapse the existent thermal energy into the large black
hole, with R — r starting to be comparable to A\. Note
that the intermediate black hole does not exist because
the electric charge is large enough to counter its collapse.
For high T, as the temperature increases and the associ-
ated wavelength A\ gets smaller, the large black hole r
has sufficient mass to overcome the electric repulsion and
the thermal energy collapses, being stable. For all tem-
peratures, there is thus one black hole solution only for
each temperature. It is in a sense the union of the topo-
logical black hole with the large collapsed black hole as
the temperature T' increases, the intermediate one hav-
ing disappeared. Following this reasoning, one can also
extend this interpretation to the plots of the solutions

=Tt function of “9” in Fj
x:Wasa unction o R m rig.




IV. THERMODYNAMICS FROM THE
CANONICAL ENSEMBLE OF A CHARGED
BLACK HOLE INSIDE A CAVITY IN d
DIMENSIONS

A. Free energy, entropy, pressure, electric
potential, and thermodynamic energy

With the zero loop approximation performed, the par-
tition function is Z = e Lo[AE.Ql and simultaneously,
in the canonical ensemble, it is also given by Z = e A,
where F' is the Helmholtz free energy. Therefore, we have
the relation Iy[8, R, Q] = BF, i.e., the action is related
to the free energy of the charged black hole in the cavity
by

F=TI[sR,Q]. (43)

The free energy of the system containing the charged
black hole is then

2

d—3 Q. d—
Pt (1= VFRQr) -T2 )

d—3_ nQ?

Ty +T — 5

with f(R,Q,r4) = 1~ —pri— + 295, see Eq. [21).
The Helmholtz free energy is given in terms of the in-
ternal energy F, the temperature T, and the entropy S

by the relation

F=FE-TS. (45)
By definition F' has the differential
dF = —=5dT — pdA + ¢dQ , (46)

where, in addition to the entropy S, the area A, and the
electric charge @, there is the thermodynamic pressure
p, and the thermodynamic electric potential ¢. And so,
we can obtain the thermodynamic quantities from the

derivatives of the free energy F', more precisely, the en-

tropy is § = — (%)A,Q’ the pressure is p=—- (%)T,Q’

and the electric potential is ¢ = (g—g) R where here
T

the subscript indicates the quantities that ‘are fixed while
performing the derivative. In Eq. , some of the de-
pendence on T, A, and @ is implicit on the solution for
the horizon radius ry = r (T, A,Q), as it is evaluated
at the minima of the action. To simplify the calculation
of the derivatives, we can perform the chain rule and the
fact that, since r = ro (T, A, Q), the derivative of the

reduced action obeys grl = (g—F) = 0,
T/ T,RQ "/ T.RQ
to get for example S = — (g;)A,Q = — (%)R,Q,r+ -
oF ory _ oF :
(ar‘*)TRQT% = _(GT)R,Q,7-+’ and this also holds

similarly for the computation of the pressure and the
electric potential. Therefore, the thermodynamic quan-

tities can be computed to be S = — (%)RQ”a p =
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1 oF _ (oF _
_(d—Q)Qd—2Rd_3 (@)T7Q7T+a d) - (@)TRT+ and £ =
F —TS. The entropy is then given as

A

where A, = Qd,grfif2 is the area of the event horizon,
and so this is the usual Hawking-Bekenstein expression
for the entropy of a black hole. The thermodynamic pres-
sure is

d—3 2 pQ?
o (VP ) )

the thermodynamic electric potential is

1 1
(b_\?f(ri_?’Rd_?’)’ (49)

and finally, from Eq. , the thermodynamic energy is
given by

R (U (e
= - (1-2 ) (1- -4 ,
p res )\ R

(50)

p

Collecting Egs. —, one finds that the first law of

thermodynamics in the form
dE =TdS — pdA + ¢dQ , (51)

holds. It is interesting to note, and surely not a coinci-
dence, that these thermodynamic quantities are identical
to the ones calculated for a self-gravitating charged shell,
where the first law of thermodynamics is imposed, and,
the charged shell assumes the temperature equation of
state of a black hole and the thermodynamic pressure
equation of state of the cavity, see [40].

B. Euler relation equation and Gibbs-Duhem
relation

With the thermodynamic quantities obtained in
Egs. —, one can get an integrated first law of
thermodynamics known as Euler equation. For that, one
rewrites the energy in Eq. in terms of the entropy in
Eq. , the area A = Q4_oR?2, and the electric charge
Q as

d—3 _1_
g :(d —2)A2Q475 y
8T

1— NQsz_z

d—3

(4SA)a==
(52)



We have that the energy is a function £ = E(S, A, Q),
and if a scaling is performed on the thermodynamic quan-
tities S —» vS, A - VA and Q— V= 2Q then it can be
verified that E(vS,vA, nE 2Q) S 2E(S A, Q). Ac-
cording to the Euler relatlon theorem, and con51dering
that the differential of the energy is given by the first law
of thermodynamics Eq. , we have the Euler equation

d—2
E = (IS~ pA) + Q. (53)

One can furthermore differentiate Eq. and use the
first law of thermodynamics to obtain

T (TdS — pdA) + (SdT Adp) + Qdp=0,

(54)

d—
which is the Gibbs-Duhem relation.

C. Heat capacity

A system to be thermodynamically stable must have
positive heat capacity at constant area and constant elec-
tric charge C4,q, i.e.,

Cag >0, (55)

where Cy g =T (g—;) In section [I[II B, we have shown
that the stability condition in the ensemble formalism

was reduced to the condition 8?«: < 0. The derivative

above can be put in terms of thermodynamic variables,
and then in terms of the heat capacity. The inverse tem-
perature function ¢(r;) is a function of r4, R and Q.
The variables @) and R are already thermodynamic vari-
ables. The quantity r, is also a thermodynamic variable

. . Qq_ord2

since we have obtained that S = ——+—. Therefore,
: _ o _ _ 1 (0S8 1
since 8 = u(ry), we have that = (8r+> Thg

where we have used the definition of the heat capacity at
constant area and constant electric charge.
The heat capacity is then

3 2 Qg_or?™2
(d 2)Rd 2f (Rd 3 Rdﬂgd—S) Zdejz
Caq= -

a3 (i’ Q2 ’ ’ Q2 |
2<R§3_7-iléRd—3)_f<Rd 3 (2d 5) Rd—3>

(56)
Since to be thermodynamically stable one has that
Cao > 0, thermodynamic stability reduces to Eq.
after rearrangements and definitions. Thus, the physical
interpretation is that the stability of the solutions is con-
trolled by the heat capacity at constant area and charge,
as it should be in the canonical ensemble. This quantity
is tied to the derivative of the inverse temperature given
by Eq. and so the condition reduces to the intervals
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given by the stationary points of ¢(r+, R, @), or the sad-
dle points of the action. Moreover, solutions where r
increases as T increases are stable and solutions where
r4 decreases as T increases are unstable.

It is interesting to see what happens when one fixes

2
and change the electric charge parameter R"TQ,G. For

T+
R

s
% > ﬁ , the heat capacity is always positive.
The limit of the bound happens for the uncharged black
hole, black holes that obey this inequality and have any

finite electric charge have positive heat capacity. For

0<% < (4 f, the sign of the heat capacity C4 ¢

changes according to the electric charge. C4 ¢ is positive

for sufficiently high electric charge parameter R“%fe, and
is negative for sufficiently low electric charge parameter

R‘2§26 , the change in sign happening at the definite value
of the charge satisfying Eq. (33)) with fixed ” . We note
that this does not indicate a phase tran51t10n since g is
not a thermodynamic variable controlled in the ensem-
ble. At that definite value of the charge parameter, there
is rather a turning point describing the ratio of scales at
which there is stability.

The thermodynamic variables are the temperature and
the electric charge, and therefore the heat capacity must
be analyzed in terms of these quantities, instead of %

and the electric charge. For the range of electric charges

2
0 < % < R”z?fm one has three curves for the heat

capacity as a function of the temperature, one for each
solution. The heat capacity is positive for the solutions
r41 and r1 3, while it is negative for ;9. The heat capac-
ity diverges when the solutions reach the temperatures

of the saddle points of the action, which are the turn-
2

ing points. For the critical charge parameter %, one
has two curves for the heat capacity as a function of the
temperature. In this particular case, the two curves are
described by the solutions r;; and r43 and it is posi-
tive for both. Moreover, there is a discontinuity between
the two curves at RT,, where the heat capacity diverges.
This point indeed does mark a second order phase tran-
sition between 711 and r;3, as both solutions are stable
and it can be seen that the free energy is continuous at
RT; for R’é?i. For the range R“%fﬁ > ;TQ,gw there is
only one curve for the heat capacity as a function of the
temperature, corresponding to the solution r;4 and it is
always positive.

We can now give the thermodynamic expressions with

commentaries for the particular dimensions d = 4 and
d=>5.

D. d=4: Thermodynamics in four dimensions

For d = 4, we write the results explicitly. The en-
tropy is given as S = wri, which is the usual Hawking-

Bekenstein formula S = AT*, with Ay
the area of the event horizon.

= 47rr_%_ being
The pressure is p =



167er ((1 V) - %z) where we have used p = 1

= — r++% Q72 1 1

and f 1 7 + Fz- The electric potential
is ¢ = % (% — %) Finally, the mean energy is
given by E = R [1 - \/(1 - %) (1 - T+R)]' One can

then write the energy in terms of S, A = 47R2, and
Q, ie., E = E(S,A,Q) to obtain the Euler relation
E = 2(TS — pA) + ¢Q. The Gibbs-Duhem relation is
TdS — pdA + 2(SdT — Adp) + Qd¢ = 0.

The heat capacity, the quantity that controls thermo-
dynamic stability, is

Caq= (57)

One could fix % and change the electric charge param-

eter %z in Eq. . As seen in the general d case, we
find that for % > %, the heat capacity is always positive,
and for 0 < &% < %, the sign of the heat capacity C4 g

changes depending on the electric charge, being positive
2

for a region of high electric charge parameter %, and
being negative for a region of low electric charge param-
eter %z. This does not indicate a phase transition but
rather a turning point. To see this fact and verify the
true phase transitions, one must analyze the heat capac-
ity in terms of the fixed quantities of the ensemble, i.e.,

the temperature and the electric charge. For the range

of charge parameters 0 < “RQ; < (v/5 = 2)?, where in

d = 4 one has “R%i = (v/5 — 2)2, the heat capacity has
a curve for each solution r;i, ryo, and r3, being posi-
tive for ry; and r43, and being negative for r;o. When
the solutions reach the temperatures of the saddle points
of the action, i.e., the turning points, the heat capacity
diverges but this only indicates conditions for stability

of the ensemble, there are no phase transitions at these

points. = (v/5—2)2, the heat
capacity has two curves as a functlon of the temperature,
r4+1 and r43, being positive for both solutions. For this
case, there is a discontinuity between the two curves at
RTs; = 0.185, where the heat capacity diverges. This
point indeed signals a second order phase transition be-
tween r41 and r43, as both solutions are stable and it can
be seen that the free energy is continuous at RTs = 0.185

r MQ (\f 2)
N (v/5 — 2)2, one only has that the heat capacity of

r+4 as a function of the temperature is always positive.
In [21) 22] some of these results for d = 4 are presented.

For the range of charge parameters

E. d=>5: Thermodynamics in five dimensions

Here, we make the results explicit for the case d = 5.

. . 7!'27”3
The entropy is given as S = —5+

, matching the usual
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Hawking-Bekenstein formula S = AT:f, with Ay = 2723

being the area of the event horizon. The pressure yields
2
p = 167er ((1 —Vf)? - ;%4), where we have used

2 4Q

T++3-m 4Q
p=z-and f = 1 — ——fz— + 3.51- The electric poten-
tial y1e1de ¢ = W (%2 - #) And the energy has the
+

. T R2 2

expression F = % [1 — \/( — ﬁ> (1 — ?WZLT(?W)J
These thermodynamic quantities are identical to the
ones calculated for a self-gravitating charged shell, where
the first law of thermodynamics is imposed, and the
charged shell assumes the equation of state of the black
hole, see [40]. The energy can be written in terms of
S, A = 27%°R3, and the electric charge Q, as F =
E(S, A, Q) to obtain the Euler relation E = 3(T'S—pA)+
¢Q. The Gibbs-Duhem relation yields % (TdS — pdA) +

3 (SdT — Adp) + Qd¢ = 0.

The heat capacity is

sR3f (s - 492 )Ty
R2 37TR27‘3_ 2R3
CaQ =" 2 , (58)
Iy _ 4Q% R? —f Iy 20Q2 R?
2 3T R4 Ti 2 3mR4 T’i

. . . . r
Regarding the behavior of the heat capacity with fixed -

2
%, one has

that the heat capacity is always positive for % > ‘{, and

as a function of the electric charge parameter

the heat capacity changes signs for 0 < ” < f , being

positive for high electric charge parameter %, and being

negative for low electric charge parameter %i. As already
noted, to understand the turning points and the possible
phase transitions of the solutions, one must analyze the
behavior of the heat capacity through its dependence in
the temperature and the electric charge, see Fig. |4l For

a fixed electric charge parameter in the range 0 < £ Q

%, where in d = 5 one has Ri; = %,
the heat capacity is described by three curves, one for
each solution 711, 749, and 73, being positive for r4
and T3, and being negative for r1o, see Fig. [] for the

case “}g 0.005. The heat capacity in this range of

charges diverges at the turning points of the solutions, as
seen by the dashed black lines, indicating the conditions
for stability of the solutions and not Signaling any phase

transition. For the electric charge “Q = (68— 27‘[)2, the
heat capacity is positive, as it is descrlbed by the curves
of the solution r41 and r43. The heat capacity diverges at
RT, = 0.302, the solid black line, and here one in fact has
a second order transition, from ry; to ry3, as these are
both stable solutions, and the free energy is continuous

there. For “RQ > % the heat capacity is always
positive, as it is described only by the solution 74.
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FIG. 4: The heat capacity C4 ¢ in R® units, R3 , in
d = 5, as a function of the temperature for two values of

the electric charge, & 4 = 0.005 and & R4 = “RQ4 =0.014

approximately, for solutlone r41 in red, r4o in blue, and
r4+3 in green. The dashed black lines mark the turning
points of the solutions and the solid black line marks
the second order phase transition between the stable

solutions r4; and ry3.

V. FAVORABLE PHASES OF THE d
DIMENSIONAL CANONICAL ENSEMBLE OF
AN ELECTRICALLY CHARGED BLACK HOLE
IN A CAVITY AND PHASE TRANSITIONS

A. Black hole sector of the canonical ensemble and
favorable phases

Consider the black hole sector of the canonical ensem-
ble and the corresponding free energy. Since free energy
F and action Iy are related by F = = = T I, the black
hole free energy Fi;, can be taken directly from Eq.
to be rewritten as

d—3 A,

(1-VIERQm) -1 (59)

Fyn =

where in this section we put a bh subscript in F' to de-
note that it is a black hole free energy to distinguish from
other possible free energies. Since Ay = Qd_Qri_Q and
ry =r4+(T, R, Q), the black hole solutions have their free
energies of the form Fy, (7T, R,Q). For a system char-
acterized by the free energy, the one that has the lower
free energy Iy, for given R, T, and @), is the one that is
thermodynamically favored. Thus, we can find the black
hole that is favored.

We have shown that in the zero loop approximation,
there are different black hole solutions depending on
the electric charge and temperature of the reservoir, see
Sec.[[T} For sufficiently low electric charge parameter, i.e.,

2
for 0 < R’g?fﬁ < %, where Q) is the saddle electric
charge value, corresponding to the saddle electric charge

2
parameter ys = Pfﬁ?_ﬂf,, we have seen that there can be

up to three solutions 55+ , &2, and “£.

Now we com-
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ment on the free energies Fj, of these three solutions.
The solution © —+" has positive free energy for all the tem-
peratures in which the solution exists. The solution #
has also positive free energy always, but it is unstable, so

we are not interested in it here. The solution Tﬁ has a

2
temperature for each electric charge parameter RTQ,G at
which the free energy becomes zero, which we define as

2 B o
Tr,,=0(Q) or prhzo(%), thus 5* can have positive
or negative free energy. For the saddle charge parameter

1@ BQL the solution ZEL has positive f
R2d—6 — R2d—6> R positive Iree energy,
there is a solution where =t = 22 = T2 which has pos-

itive free energy, and the solution % has again a tem-

2
perature T, —o(Qs) or Tth:O(;T%;), at which the free
energy becomes zero, thus T# can have positive or neg-
ative free energy. For higher values of the electric charge
2 2
parameter, i.e., for R‘égfe < % < 1, the solution
2
has also a temperature Tr,, —o(Q), or T, —o( R“z? Les),
at which the free energy becomes zero, thus % can
have positive or negative free energy. The temperature
Tr,—0(Q) can be calculated by solving Fyp = 0, with
By, given in Eq. for either the solution 5% or “%£*.
One can instead put the free energy in terms of the mass

m and electric charge ) through Eq. and through
the relation 2um = 7"173 + ”ﬁz, so that Fi, = 0 re-
T

’I‘+4

duces to a quartic equation for the mass m as a function
of the electric charge, see Appendix [B] After solving it,
one can then recover the value of r and consequently

the value T, —o( Rz? 45¥=%). For temperatures lower than

prhzo(%), the solutions have positive free energy

2
and for temperatures higher than Tth:O(Ié‘TQ,G), the so-

lutions have negative free energy.

There is another important temperature, T, which
depends on the electric charge @, i.e., on the electric

charge parameter R“%:‘, and at which the favorability
of one phase over the other changes. For the electric
charge parameter within the region 0 < R“Z?fe < Rf;?za,
there is a phase favorability temperature 7 at which
the solutions “5 and =% have the same free energy. In
other words, the solutions 5+ and 5% are stable, and
thus within the black hole sector they compete between
themselves to be the most favored phase. Specifically,
for temperatures lower than 7', the solution % is either
more favorable than %, or is the only existing solution
if the temperature is low enough. For a temperature
equal to Ty, the solutions “5* and ¥ are equally favor-
able, i.e., they coexist equally. For temperatures higher
than Tf, either the solution %3 is more favorable than

or is the only existing solution if the temperature is

R )
high enough. For the electric charge parameter given by

2
R‘;? s = }ézg 5, the temperature T is the temperature

at which =22 = =2 = =22 and all have the same free
energy, i.e., % and ”73 coexist. For temperatures lower
than T, the solution % is the only existing solution.

For temperatures higher than T, the solution % is the



only existing solution. For the electric charge parameter
2 2

within the region R*;?fﬁ < ng?_(j < 1, there is only one

black hole solution, it is ”?4. Within the black hole sec-

tor it is surely the most favored state since it is stable

and there is no other solution. It can have positive or

negative free energy.

B. Hot flat space sector of the electrically charged
canonical ensemble

Let us consider a possible electrically charged hot flat
space sector, i.e., a cavity with nothing in it with its
boundaries defined by R, T, and Q, the settings of the
canonical ensemble.

To have such a solution one can think in trying to de-
crease T4 up to zero, to a point where there is no more
a black hole and thus obtain flat space. However, this
is not possible, since there is a minimum limit for r,
given by ry = r,_ corresponding to the extremal black
hole. At 74, the free energy tends to Fin = %, and

it is then impossible to decrease ry further. Regarding
extremal black holes, the only temperature that such so-
lutions exist is at 7' = 0 and we do not consider them
here as it is only one point of the ensemble, although it
is a very interesting one. We simply note, that there is
no other immediate solution of the action that can be a
candidate for a stationary point of the reduced action.
Thus, to emulate electrically charged hot flat space one
has to go beyond the black hole sector. One can consider,
for example, a shell with radius rgpen, coated with the re-
quired electric charge @, and with gravity turned off, i.e.,
the constant of gravitation is set to zero. The action of
the system if one considers terms depending only on the
Maxwell field can be calculated to give the free energy as

2
Fan HZQ*(%—%) Le.
she 2 \rSen R ’ ’
Q2 Td_3
— shell
Finen = 503 1- Rd3 | - (60)
Tshell

Thus, for a given rgpen, one has that Fyney has a given
constant fixed value. There are two limits that one can
mention. One limit is when 74 is very small. One could
see this limit as an electrically charged central point sur-
rounded by hot flat space, where quantum fluctuations of
the hot flat space generate electric charge. But this seems
to lead to a divergent free energy. Note that the behavior
mentioned for rghen very small contrasts with the grand
canonical ensemble case [30], where rgpon = 0 corre-
sponds to a zero grand potential. The other limit is when
Tshell = R and so the free energy is zero. This means that
all the charge is infinitesimally near the boundary of the
cavity, i.e., it is at the boundary of the cavity itself and
there is hot flat space inside the cavity. Thus, the more
interesting limit is the latter one, when rg,en = R, and
the charge is gathered near the boundary of the cavity
giving Fihen = 0. Since in this case the shell emulates
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hot flat space with electric charge at the boundary, one
has Fihenn = Fugs = 0. Nevertheless, it is interesting to
compare the toy model of a shell with free energy Fgpen
given in Eq. (60) for several ™kl and in particular for

Thell = 1, with the black hole free energy Fi;, given in

Eq. .

One could further think in building an equivalent sys-
tem with the constant of gravitation turned on, such as
an electrically charged self-gravitating shell close to the
boundary of the cavity. Still, it is unclear if there is
a possible conversion of this system to a charged black
hole, and vice versa, since the two systems correspond to
different topologies and also to a different action, as here
we do not consider the matter sector. So we stick to the
electric shell with gravitation turned off.

C. Favorable phases: First and second order phase
transitions

It is thus of interest to understand what are the fa-
vorable states of the ensemble, i.e., of an ensemble of
a cavity with fixed radius R, fixed temperature T', and
fixed electric charge @), all values of these quantities set
by the reservoir.

A thermodynamic system tends to be in a state in
which its thermodynamic potential, associated to the en-
semble considered, has the lowest value. In our case, the
thermodynamic potential is the Helmholtz free energy
F, and so a state is favored relatively to another if it has
lower F' for given R, T, and Q. If a system is in a sta-
ble state but with a higher free energy F' than another
stable state, it is probable that the system undergoes a
conversion, i.e., a phase transition, to the stable state
with the lowest free energy. Indeed, in the calculation of
the partition function by the path integral approach, if
there are two stable configurations, i.e., two states that
minimize the action, then the largest contribution to the
partition function is given by the configuration with the
lowest action or, in thermodynamic language, with the
lowest free energy. This type of phase transitions are
first order since the free energy is continuous, but the
first derivatives are discontinuous.

In the case of the canonical ensemble of an electri-
cally charged black hole inside a cavity in d dimensions,
we must compare the free energy between all the sta-
ble black hole solutions of the ensemble, i.e., one has
to compute Fpp given in Eq. , for the possible so-
lution r4 (R, T,Q). For any d we note that in this en-
semble one can have three solutions for the same tem-
perature, two of them are stable. The stable black hole
with lowest Fyy, is the one that is favored. This means
that considering only the two stable black hole solutions,
one would then have a first order phase transition from
r11 to 13, for the electric charge parameter in the range

2
0 < %ﬁﬁ < %, and in the limit of the charge pa-

2 2
rameter with value % = %, this first order phase



transition becomes a second order phase transition. It
is also interesting to compare the black hole solutions
with the nongravitating electrically charged shell case for
the same boundary data, which has free energy given in
Eq. . As we argued above, this shell is useful in mim-
icking charged hot flat space inside the cavity. Depending
on the value of the radius of the shell =l this free en-
ergy can go from infinity, when “xt = 0, to zero, when
Tehell = 1. In the case of ™l = 0, the shell is never fa-
vored, while for “kll = 1, i.e., the case of hot flat space
with the electric charge at the boundary, there is a region
in which it is favored. We proceed, by essentially assum-
ing a shell with ¢l = 1, so that Fihen = Fhgs = 0.

Another issue that should be raised in the connection
to favorable states, although it does not come directly
from the ensemble formalism and its thermodynamics, is
that there is a black hole radius r, more precisely, there
is a ratio %, for which the thermodynamic energy con-
tained within R is higher than the Buchdahl bound or, in
our context, the generalized Buchdahl bound [42]. When
this happens, that energy content should collapse into a
black hole. In this situation there is no more favorable
phase considerations, the unique phase is a black hole.
Indeed, the generalized Buchdahl bound yields the max-
imum mass, or maximum energy, that can be enclosed in
a d-dimensional cavity with electric charge @), before the
system shows up some kind of singularity. At the bound
or above, the system most likely tends to gravitational
collapse. Since the mass of a system is related to the grav-
itational radius, it also sets a bound on the ratio %. In
our context, one should consider this bound as yielding,
for a fixed R, the mass m, or the gravitational radius r,
above which the energy within the system is sufficiently
large that the system cannot support itself gravitation-
ally and collapses. We can now apply this concept to the
case that interest us here.

In the Schwarzschild black hole case in d dimen-
sions it was found in [26], that the canonical ensemble
yields Fi,, = 0 when 2+ has the Buchdahl bound value,

R
(%)Buch. Since we are envisaging R as fixed, we write
F)puen = < to simplify the notation. In a d-
dimensional Schwarzschild spacetime one has ”BiR"d‘ =
1
(%) “?. One can infer that black hole solutions

with higher 7+, i.e., higher temperatures RT', yield grav-
itational collapse. Since zero free energy in this electri-
cally uncharged case, is also the free energy of hot flat
space, Fyts = 0, one sees that in the uncharged case one
passes directly from a situation where a hot flat space
phase is favored relatively to a black hole phase, to a sit-
uation where the phase is a phase where surely there is
a black hole, not merely a phase in which the black hole
is favored.

Now, in our setting, i.e., in the canonical ensemble for a
black hole with electric charge, one finds that for Fy,, = 0
only the bigger black hole exists, and it gives a value for
% that is higher than the Buchdahl bound value. Thus,
there is a definite Fj, value greater than zero where the
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Buchdahl value “’BT“ is met, as we have found by nu-
merical means up to d = 16, but did not prove for all d.
For this definite value of Fjy or lower values of it, the
system has high enough temperature and high enough
self-thermodynamic energy to undergo gravitational col-
lapse. When this happens there is no more coexistence
of phases, there is only the black hole phase. Below the
saddle, or critical, charge, i.e., below the electric charge

parameter given by %;6, it is the black hole solution %
that achieves WT““ Above the saddle charge, i.e., above
R’ﬁ%e, it is the black hole solution % that achieves
TtBuch - Ty contrast, if we consider the grand canonical
ensemble with electric charge, rather than the canonical
ensemble we are studying here, it was found [30] that
Wpn = 0, where Wy, is the grand potential free energy
related to the grand canonical ensemble, gives a value for
% which is lower than the Buchdahl bound value. In the
grand canonical ensemble, there is only one stable black
hole. So, this means that for Wy, = 0, the two phases
black hole and hot flat space coexist equally. For Wy, < 0
up to some definite negative value, then the two phases,
black hole and hot flat space, coexist but the black hole
dominates. For the definite negative value of Wiy, the
radius %% is the Buchdahl bound value “22<t. For even
lower Whyy, i.e., for higher temperature parameter RT,
one has % larger than ”BT‘“}‘ and the system collapses,
or is collapsed, there is thus no coexistence, only the black
hole phase remains. Although numerically all three radii
%, namely, the canonical zero free energy, the Buch-
dahl, and the grand canonical zero grand potential, are
very close, see Appendix [B] it seems that a connection
between the ensemble stability and the mechanical stabil-
ity of matter is elusive here. A comment is in order. The
Buchdahl bound applies to a self-gravitating mechanical
system consisting of a ball of matter of radius R. Our
system is a thermodynamic system, with boundary data,
namely R, T, and @, and contains no matter. One can
argue that in higher orders of approximation, the system
contains packets of energy and one can plausibly deduce
that the system must collapse once the Buchdahl bound
is surpassed. Be as it may, the inference we have made
comes from dynamics, not thermodynamics, and there-
fore is strictly outside our approach.

To better understand the issues and make progress one
has to pick up definite dimensions. We now specify our
generic d-dimensional results to the dimensions d = 4
and d = 5. We comment on the dimension d = 4, and
will do a thorough analysis for the dimension d = 5.

D. d=4: Analysis

For d = 4, as for any d, this ensemble can have either
one or three black hole solutions for a given temperature.
When there are three, two of them are stable and are of
interest in the consideration of the most favorable phase,
while the remaining solution is unstable and is of no in-



terest in the consideration of the most favorable phase.
The two that are stable have to be compared against one
another to see which is the most favorable phase.

We start by comparing the free energy of the several
black hole solutions that exist in this ensemble between
themselves. From Eq. 7 in d = 4, the black hole free
energy is

A

B =R(1-VIRQr)) -T5.  (61)

T +Q
where here %—wr+, f(R,Q,ry)=1— +RT+ +R2’
we have used p =1, and ry = r (T, R, Q) In d =4, the

saddle electric charge parameter value <2 5= =(V5-2)?%=
0.056, the last equality being approximate, separates the
region with only one solution from the region with three
solutions.

A first set of general and specific comments can be
made, namely about the positivity of the free energy for

each solutlon For 0 < gz < R2’ the stable black hole
solution = —&+ has positive Fy,, for all the temperatures in
which the solution exists. The same happens for the so-
lution 2, but this solution is of not interest here since it
is unstable. The other stable black hole solution % has
a temperature T —o depending on the electric charge,
at which the free energy becomes zero, and so the black

hole solution % can have Fy, positive or negative. For

2
the critical charge QR—; = %7 with g; = 0.056 approx-

imately, the stable black hole solution & has positive
free energy, the point “5t = =2 = =22 has positive free

energy, and the stable black hole solution ”73 has a tem-
perature T, —o at which the free energy becomes zero.

For gz < %j < 1, the only black hole solution is “£,
which is stable, and it has a temperature T, , =0 depend-
ing on the electric charge, at which the free energy be-
comes zero. So, the free energy of r+4 can be positive
or negative. Qu1te generally one can calculate Tr,,=0 by
solving Fpn = 0, with Fpy given in Eq. , for either
the solution ”73 or “Et. The free energy can be writ-
ten in terms of m and @ through Eq. in d =4 and
through 2m = ry + %2

, allowing us to reduce Fpy = 0

into a quartic equation for the mass, see Appendix
The solutions have positive free energy for temperatures
lower than T, —o, and the solutions have negative free
energy for temperatures higher than Tr , —o

A second set of general and specific comments can be
made, namely about the favorability between black hole
solutions. For 0 < %z < gg, there is a favorability tem-
perature Ty which depends on the electric charge, and at

which the solutions 5+ and “£* have the same free en-

R
ergy. For temperatures lower than T, the solution r,

is more favorable than %, or it is the only existing solu-

tion. For temperatures higher than T, the solution %

+1

is more favorable than %, or it is the only existing so-

lution. For the critical Charge R2 = % , the temperature

Ty is the temperature at which T“ = T;f; = % and all
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have the same free energy, i.e., the stable solutions %

2 2
and £ coexist. For g; < % < 1, there is only one
black hole solution, it is “£%, and, since it is stable, it is

R
favored. We can now consider phase transitions between

the two stable black hole solutions. There is a first order
phase transition from r;; to 713, for the electric charge

parameter in the range 0 < “}?2 < £ 5 and additionally,
in the limit of the electric charge parameter with value
“13222 =& 1?;, this first order phase transition turns into a
second order phase transition.

We now comment on the comparison in d = 4 be-
tween the black hole phases just discussed above with hot
flat space phase, which we have emulated by a nonself-
gravitating shell. In d = 4, the free energy of the shell
is

2

Fihent = [shell ) ; (62)

27“she11< R

where rgnen is the radius of the shell, see Eq. . So
Fihen depends on the electric charge @, on rgpen, and on
R, but is a constant as a function of the temperature 7T'.
The case of a very small shell will lead to a very high free
energy due to the dependence on Ti, and therefore,
for this case the region of favorablhty for the shell heb
in very small values of the charge. There are also the
cases of intermediate shell radius which would have to be
analyzed specifically. The other limiting case is when the
charge is near the boundary of the cavity, with the free
energy of this case tending to zero. Ultimately, the black
hole is favored when Fyy, < Fypen, both coexist equally
when Fy, = Fihen, and the black hole is not favored
when Fyn > Fyhen. When the radius of the shell is at
the cavity radius, =j = 1, then the shell has zero free
energy and emulates hot flat space with electric charge
at the boundary. Then, the free energy of hot flat space
S Fshen = Fhts = 0. The black hole is not favored when
Fy, > 0, both the black hole and hot flat space coexist
equally when Fj,;, = 0, and the black hole is favored when
Fpn < 0. When the system finds itself in a phase that is
not favored, it will make a first order phase transition to
the favored phase.

The problem of the thermodynamic phases is even
more complicated as we have mentioned already. When
there is no electric charge, i.e., for the Schwarzschild
space in d = 4, it was found in [26] that, in the canonical
ensemble; the condition F, = 0 yields a value for %
that is equal to the generalized Buchdahl bound [42],
i.e., the limiting value (%)Buch for gravitational col-
lapse of a self-gravitating system of energy E and ra-
dius R. Since we are envisaging R as fixed, we write
(F) puen, = — < to simplify the notation, and in d = 4
one has T*BT““‘ = % = 0.89, the latter equality being
approximate. This result means that, in the uncharged
case, as soon as the black hole phase is favored, there is
no further coexistence with hot flat space, and the sys-
tem collapses. For nonzero electric charge there is no
more coincidence. Here, to discuss this issue of favorabil-



ity between black hole and hot flat space, we are going to
consider the case for which the free energy of the shell is
zero, Fyhenn = 0, i.e., the case of hot flat space with electric
charge at the boundary, = = 1. In this case, the shell
is situated at the cavity, and so Fypep is the free energy
of hot flat space, Fygs, which is zero. For nonzero elec-

tric charge @, i.e., nonzero charge parameter %z, we find
that in the canonical ensemble, the condition Fp, = 0
yields a 5 value, both for ¢ and “5*, that is higher
than the generalized Buchdahl bound. Notice that the
generalized Buchdahl bound here is the limiting value of
4 for gravitational collapse of a self-gravitating system
of energy F, electric charge ), and radius R. For an
electric charge parameter lower or equal than the sad-

dle value gg, only the solution —* can take the value of
the Buchdahl bound, corresponding to a positive free en-
ergy and some temperature value RT. For a system with
this RT or higher, then the system collapses gravitation-
ally into a black hole with the corresponding I*;. For

an electric charge higher or equal than the saddle value

%E, the solution % can take the value of the Buchdahl
bound, having a definite positive value of Fyy, at some
temperature parameter RT. For a system with this RT
or higher, the system again collapses gravitationally into
a black hole with the corresponding *4. Interesting to
note that in the grand canonical ensemble7 where there
is only one stable black hole solution, it was found [30]
that the equation Win = 0, Wy denoting the grand po-
tential, yields a R £ value that is lower than the Buchdahl
bound. Thus, in this case, when Wy, = 0 for the system,
the two phases coexist, black hole and hot flat space. For
Wy < 0, the black hole phase dominates in relation to
hot flat space. And for a certain definite negative value
of Wy, the value of % of the system is the same as the
value of the Buchdahl bound. From then on the system
collapses, the only phase being the black hole phase, and
there is no coexistence of phases, see also Appendix [B]
Here we have given plausible arguments for the gravi-
tational collapse of the system when there is too much
energy inside the cavity, although we have not performed
a thermodynamic treatment of the collapsed phase.

T4+3

E. d=>5: Analysis

For d = 5, as for any d, this ensemble has between one
and three black hole solutions for a given temperature.
When there are three solutions, two of them are stable
and are going to be considered here, while the remaining
is unstable and is of no interest in this analysis. The two
that are stable have to be compared against one another
to see which is the most favorable phase.

We start by comparing the free energy of the several
black hole solutions that exist in this ensemble between
themselves. In d = 5, the black hole free energy is

R Ay
th_j(l— f(RvQ,TJr))*TT’ (63)
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where here - = —*, f(R,Q,ry) = 1— —m— + 5,
W= %, and ro = r (T, R, Q). To help in the analysis,
we plot in Fig. [5| F1,,, as a function of the temperature
2

parameter RT, for fixed electric charge parameter “1;94
in d = 5. Recall that in d = 5, one has the saddle electric

2 2
68—27/6

charge parameter value ”F% = % = 0.014, the
last equality being approximate.
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FIG. 5: Free energy Fyy of the charged black hole
solutions of the canonical ensemble in d = 5, given as a
quantity with no units % as a function of the

temperature parameter RT for several electric charge

parameters #ng , where yu = ==. For “]% =0.001, the

solution r; is in red, the solutlon T42 is in blue, and

the solution r43 is in green, all of them in solid lines.
For ”}%2 (68-27v6)" 27f) = 0.014, the latter equality being
approximate, the solutlon r4+1 is in red and the solution

r43 is in green, all of them in dashed lines. For
nQ?
R4

= 0.1, the solution r,4 is in orange, in solid line.
See text for all the details.

A first set of general and specific comments can be
made directly from Fig. [f] regarding the positivity of the
free energy for each solution. For relatively low electric

2
charge parameter 0 < 49 < ‘ﬁ; , where 1 = 5= in

d = 5, the solution % has positive Fyy, for all the tem-
peratures in which the solution exists. The same happens
for the solution ”2 , but this solution is of no interest here
since it is unstable The solution T# has a temperature
T'F,,=o0 depending on the electric charge at which the free
energy becomes zero, and so “£2 can have Fy, positive or

negative. In the ﬁgure7 this range of the electric charge

parameter is represented by the case ”}% = 0.001. We

see that for 49 7 = 0.001, one has for the }tf solution that
Tr,=0 = 0.367 approximately. For the saddle charge

2 2 2
“]?4 =£ RQ;, with £ QS = 0.014 approximately, the solu-
tion “E£L is positive, the point 55+ = T2 = T2 is positive,

and the solution “£* has a temperature Tth 0o=0.37at

which the free energy becomes zero. For relatively high
electric charge parameter & QS < ‘
+

lution is —* and it has a temperature Tth o depend-




ing on the electric charge. So Fyp of the black hole %%
can be positive or negative. In the ﬁgure, this range

of “ng is represented by the case “}% 0.1. We see

that for “R% = 0.1, one has that the solution ”74 has
Tr,,=0 = 0.387 approximately. Quite generally, one can
calculate Tr,, =0 by solving Fy, = 0, with Fy, given in

Eq. (63)) for either the solution =5* or “5*. One obtains

a quartic equation for the mass 2um = 7'3_ + ’ng, with
+

here p = as a function of the electric charge, see
Appendix ﬁ For temperatures lower than T  —o, the
solutions have positive free energy and for temperatures

higher than T —o, the solutions have negative free en-
ergy.

A second set of general and specific comments can be
made directly from Fig. |5 regarding the favorability be-
tween black hole solutions. For a range of low electric
charge parameter 0 < “RQf < E 1524 , the solutions %
and }“; have the same free energy at a specific temper-
ature 17, i.e., the phase favorability temperature which
depends on ”Igf. For temperatures lower than T, the
solution % either has lower free energy than T# or it is
the only existing solution, and so 5+ is more favorable.
For a temperature equal to T, the solutions EI and T}?
have the same free energy and they are equally favorable,
meaning they coexist equally. For temperatures higher

than T}, the solution “5* either has lower free energy

than 5+ or it is the oni%y existing solution, and so “£*
is more favorable. This is represented for “}% = 0.001
in the figure. We see that in this case, the favorability
temperature is RT; = 0.347 approximately. Also, for
RT < 0.32, there is only the “:t solution, whereas for
RT > 0.50 there is only the —* solution. The solu-
tion %2 is unstable and does not enter in this analysis,
however it is plotted in the figure to show a continu-
ity of the free energy on the three solutions. For saddle
charge £ R4 = “Q = 0.014, the latter equality being ap-
proximate, Wthh is shown in the figure, the temperature
Ty = 0.30, approximately, is the temperature at which
T — T}Qf = 22, and all have the same free energy, i.e.,
and # coexist. For temperatures lower than T,
the solution % is the only existing solution. For tem-
peratures higher than T}, the solution ”73 is the only

existing solution. For the higher values of the electric

charge parameter, i.e., for ”QS < “Q < 1, there is only
one black hole solution T}f that 1s stable and so it is
favorable.

This is represented in the ﬁgure by the case

R
r+1

Mzgf = 0.1. We can now consider phase transitions be-
tween the two stable black hole solutions. One has a first
order phase transition from r;; to r+3, for the electric

2
charge parameter in the range 0 < Q <k RQf. More-
over, in the hrmt of the electric charge parameter given

2
by the value £ R4 = “}gf , this first order phase transition

becomes a second order phase transition. This can be
seen from Fig. 5l since the intersection point represents
a first order phase transition, and at the limit of the crit-

23

ical charge, this point represents a second order phase
transition.

We now compare, in d = 5, the black hole phases dis-
cussed just above with hot flat space phase which we have
emulated by a nonself-gravitating shell, see Fig. [6] The
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FIG. 6: Favorable states of the canonical ensemble of
an electrically charged black hole inside a cavity in
d=1>5in an electric charge Q@ times temperature T,

more precisely, 5
region where the black hole 74 is a favorable phase, the
region where the black hole r 3 is a favorable phase,
and the region where the black hole r4 is a favorable
phase. The delimiters of the favorable regions of the
black hole solutions are the black lines, including the
dashed line. It is also incorporated the solution for a
nongravitating electrically charged shell as a simulator
for hot flat space. The electrically charged shell with

~hell = () is never favored. The electrically charged shell
with “ell = (.2 is favored in the region in gray, this

case is given as an example. The upper delimiter of the
region of favorability of electrically charged shells with
wehell = (.236 approximately, ~het = 0.26, =kl = 0.284
approxnnately Tebell = 0.4 and Ts}‘;“ =1, Wthh better
simulates hot ﬂat space, are given by the dot-dashed
lines. The Buchdahl condition line, i.e., r4Bych, above
which there is presumably collapse is given by a thick
black dash line. See text for details.

favorable states for each electric charge and temperature,
and for various values of the shell radius can be seen in
the figure. The free energy of the shell for the case d = 5
is

_ Q° T2hell

Fshell - 2T§hell (]— R2 ) ) (64)
where rgnen is the radius of the shell, see Eq. . So
the shell free energy Fyhen has a dependence on elec-
tric charge ), on rghen, and on R, but as a function
of the temperature T, the free energy is a constant.
Due to the term %,

gent for a very small shell and fixed electric charge.
Therefore, the region of favorability for the very small

the free energy becomes diver-



shell lies in very small values of the electric charge Q.
There are the cases of intermediate shell radius that
are represented in the figure, namely the cases “ll =
0.2,0.236,0.26,0.284, 0.4, with 0.236 and 0.284 being ap-
proximate values. The more interesting limiting case is
when the electric charge is near or at the boundary of
the cavity, =g = 1. The free energy of the shell in
this limit is zero. The black hole solution is favored com-
pared to the shell when Fi, < Fypen, while both the black
hole and the shell coexist equally when Fy, = Fypen, and
the black hole is not favored compared to the shell when
Fun > Finen- The gray dashed curves in the figure rep-
resent the condition Fy, = Fypen for each shell radius,
delimiting the regions where the black hole is favorable,
for higher temperature, and where the shell is favorable,
for lower temperature. When the radius of the shell is
at the cavity radius, “klt = 1, the free energy of the
shell becomes zero, emulating hot flat space with free
energy Fgnen = Fhis = 0. This is the case of hot flat
space with electric charge at the boundary. Again, the
black hole is not favored compared to hot flat space when
Fy, > 0, while both the black hole and hot flat space co-
exist equally when Fy, = 0, and the black hole is favored
compared to hot flat space when Fy, < 0. The gray
dashed curve rgpe; = R in the figure corresponds to the
boundary of the regions of favorability Fi, = 0, and for
higher temperature, the black hole is favorable, while for
lower temperature, hot flat space is favorable. If for some
reason the system is in an unfavored phase, then a first
order phase transition occurs to a favored phase.

The problem of the thermodynamic phases is more in-
volved as we mentioned already. When there is no elec-
tric charge, one has Schwarzschild space in d = 5. It
was found in [25] [26] that, in the canonical ensemble of
Schwarzschild space in d = 5, the condition Fj,, = 0 cor-
responds to a value for %r that is equal to the generalized

Buchdahl bound radius [42], which is the value (%)Bueh
for gravitational collapse of a self-gravitating system of
energy E and radius R. Since we are maintaining R
fixed, we write () = 8 and in d = 5, one has

Buch —
Tiluch — @ = 0.86, the latter equality being approxi-
mate. Since for @ = 0, the free energy of hot flat space
is zero, Fpg = 0, meaning that there is no further coexis-
tence with hot flat space as soon as the black hole phase

is favored, because the system tends to collapse. For
2

nonzero electric charge parameter “R% there is no coinci-

dence. To compare the free energies, we consider the case

in which the shell has radius equal to the cavity radius,

% = 1, and so Fyhen = 0, meaning that the shell is
a surrogate for hot flat space, i.e., Fshen = Fhes = 0,

indeed it is hot flat space with electric charge at the

boundary. For nonzero H1§42> we find that in the canoni-
cal ensemble Fyy, = 0 results in a %% value, both for —2
and 5, that is higher than the generalized Buchdahl
bound, which is the value of % for gravitational collapse
of a self-gravitating system of energy F, electric charge

Q, and radius R, see Fig. [} For an electric charge pa-
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rameter lower or equal than the saddle value £ g;, there
is a temperature RT at which the solution % can as-
sume the value of the Buchdahl bound, corresponding to
a positive free energy lower than the free energy of 5.
For a system with this RT or higher, the system must
suffer gravitational collapse into a black hole with the
corresponding %. For an electric charge higher than
the saddle value ys, there is again a temperature RT at
which % assumes the Buchdahl bound, with positive
value of Fyy. For a system with this RT or higher, then
the system must collapse gravitationally into a black hole

with the corresponding %. Interesting to note that the

1.00

« W=0 GCE
« Buchdahl
« F=0CE

0.0 02 04 0.6 08 10

2
FIG. 7: Ratio ;—J; in terms of the electric charge
parameter “15242, w= %, for d = 5 for three different
cases: given by the condition Fi;, = 0 in the canonical
ensemble in green, representing the stable solution %;
given by the condition Wy, = 0 in the grand canonical
ensemble in blue, representing the only stable solution;

and given by generalized Buchdahl condition in black.

picture in the grand canonical ensemble is different. It
was found [30] that the equation Wy, = 0, with Wy, de-
noting the grand potential, results in a %’ value for the
single stable black hole, that is lower than the general-
ized Buchdahl bound. One has thermodynamically that
when the system has Wy, = 0 the black hole phase and
hot flat space phase coexist, for Wy, < 0 the black hole
phase dominates, and for a certain definite negative value
of Wyn the value of % of the system is the same as the
value of the Buchdahl bound. For larger temperatures,
therefore the system must collapse gravitationally. The
only phase of the system is the black hole phase and so
there is no more coexistence, see Fig. [7]and Appendix
We admit we have not done a thermodynamic treatment
of gravitational collapse, but the arguments given in this
paragraph are plausible enough to assure us that once
there is sufficient thermodynamic energy inside the cav-
ity, collapse to a black hole sets in inevitably.



VI. INFINITE CAVITY RADIUS: THE DAVIES
LIMIT AND THE RINDLER LIMIT

A. Ensemble solutions in the R — +o00 limit: Davies
and Rindler

We now analyze the infinite cavity radius limit, and
discuss each solution that arises from this limit. As it
turns, by performing R — 400 limit while keeping T
fixed and @ fixed, three different solutions are found.
One observes from Sec. m that there are three solu-

2
tions for r (R, T,Q) if de s < ;2%6.

the R — 400 limit, the term R*;?_QG approaches zero,
and so the solutions of the ensemble in this limit should
correspond to these three solutions under the R — +oo
limit. For the smallest and intermediate solutions, the
limit R — +oo must be performed by fixing T' and @,
while doing & — 0. For the largest solution, the limit
R — +o00 must be performed by fixing T and @, while
doing ™ 5 1. The smallest and intermediate solutions
correspond to Davies thermodynamic solutions, while the
largest solution limit corresponds to the Rindler solution.
These solution limits occur for any d, in particular for
d = 4 and d = 5 that we have been analyzing in more
detail. In Fig. [ the behavior of the three solutions in
d =5 can be seen for a charge uQ? = 0.005, u = ?m, for
two different R, R = 5 and R = 100, where the latter
R gives an idea of the R — oo limit. In this limit the
scale R is lost, the scales set by the electric charge @) and
temperature T' at infinity are now the only two scales
of the canonical ensemble. We now comment briefly on
each solution.

By performing

0.8

0.6/] |

xls

0.4}

0.2+

o5

0.4

FIG. 8: Plot of the solutions r41 in red, 42 in blue and
743 in green of the canonical ensemble in d =5 as 7 as
a function of T in Planck units, for 4@Q? = 0.005,
w= %, and for two values of R, R = 5 in dashed lines,
and R = 100 in filled lines. One can see the emergence
of the r4; and 745 solution limits corresponding to the
Davies limit as they get closer to the rg = 0 axis, and
the r43 solution limit corresponding to the Rindler limit

as it gets closer to the %r =1 axis.
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The Davies solution corresponds to the smallest and
intermediate solution limits of the canonical ensemble
when taking R — +oo, with fixed T" and Q. Thus,
these are the solutions of the electrically charged black
hole in the canonical ensemble with reservoir at infin-
ity. This can be seen directly from the expression of the
temperature in Eq. . Since for these solutions the
behavior is % — 0, one can maintain 7 finite during
the limit R — +oo, th;us obtaining the temperature for-

IR
47r ﬁ
and intermediate solutions. This is precisely the Hawk-
ing temperature for the electrically charged black hole.
From Fig. [§] we see that the two solutions tend to the
axis % = 0 and seem to get overlapped, which is due
to the vertical axis being g,’ If one regularizes the so-
lutions through multiplying by R, one obtains the two
solutions in d dimensions, which for d = 4 are the Davies
thermodynamic solutions. Moreover, one can see that
the solutions do not exist for all temperatures. This
is because the two solutions only exist up to a critical
temperature, the generalized Davies temperature, after
which there are no solutions. In the case represented in
Fig.[lwhich is d = 5, the generalized Davies temperature,
i.e., the temperature when R — oo, has the expression
T, = ——2 — and so for uQ? = 0.005 as in the

107r(\/w> 2
figure it yields Ty = 0.320, with the last equality being
approximate.

mula T = which is obeyed by the smallest

The Rindler solution is the largest solution limit that
can be obtained from the ensemble by keeping 7" and Q
fixed, while doing R — 400 and r4+ — R in Eq. .
In Fig. 8 this solution is the one that tends to % = 1.
The temperature dependence on the charge goes with

Rd%:i,g, therefore such dependence in the limit ry — R
and R — +oo disappears. This happens because the
horizon radius of the black hole tends to infinity and any
contributions given by the charge become negligible. The
expression for the temperature is now the temperature of
an electrically uncharged black hole T" = d=3 —.
4mry lfm

Imposing that T is fixed and finite leads to the condi-

d 3
tion that r; \/ 1 — 7= must tend to some constant when
R — +o0 and r1 — R. One can show that in this limit

the event horizon of the black hole reduces to the Rindler
horizon and the cavity boundary is accelerated to yield
the Unruh temperature T set by the reservoir.

We now analyze in full detail the smallest and inter-
mediate solution limits arising from R — +o0, i.e., the
Davies solution. These are relevant since the formalism
in this limit yields the Davies’ thermodynamic theory of
black holes for d = 4. We also analyze in full detail the
largest solution limit arising from R — +oo, i.e., the
Rindler solution.



B. Infinite cavity radius and Davies’
thermodynamic theory of black holes: Canonical
ensemble, thermodynamics, and stability of
electrically charged black hole solutions in the
R — +oo limit

1. The action for the canonical ensemble in the R — +oo
limit

The limit of infinite cavity radius for the small and in-
termediate solutions yields that the canonical ensemble
is essentially defined by the temperature 7" and the elec-
tric charge @ at infinity. It is this R — +oo limit that in
four dimensions gives Davies results [6]. This means that
Davies’ thermodynamic theory of black holes, in this case
of electrically charged black holes, can be seen within the
canonical ensemble formalism. Here we have results for
d dimensions in the R — 400 limit, d = 4 being a par-
ticular case.

In the limit of infinite radius, the analysis above needs
to be taken with care, since the quantities above depend
on the scale given by the cavity radius R. To proceed
with this limit, one must start from the reduced action
in Eq. and perform the R — 400 limit to obtain

LoD @) Qe
* 1 D) QTi_3 1 .

The extrema of the action occurs when

Boiry), =T (66)
=u(ry), u(ry) = 5
+ + (d - 3) Ti_3 - degS
+

This is the inverse Hawking temperature of the Reissner-
Nordstrém black hole measured at infinity, i.e., perform-
ing the limit of infinite radius into Eq. (28]).

2. Solutions and stability of the canonical ensemble in the
R — +o0 limit

To find the solutions of this canonical ensemble, we

must invert Eq. to get 7 (8, Q), i.e., r(T,Q). This
can be done by solving the following equation

((i;ﬁ)) (r20=0

which generally is not solvable analytically for generic
d, although one can perform some qualitative analysis.
The function ¢(ry) in Eq. has a minimum at ri;f =

v/ (2d — 5)u @, which is a saddle point of the action for
the black hole and which we write as

reo = (V4= 5) Q)d%s . (68)

This saddle point of the action of the black hole has the

e (2d = 5)(\/2d = 5)pQ) T,

temperature 7' = 4

—pQ?) =i =0, (67)
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_ (d—3)?
'\ 2n(2d - 5) (/24— BuQ) TS

In d = 4, this Ty is the Davies temperature, and so
Eq. is the generalization of Davies temperature for
higher dimensions.

By inspection, one finds that for temperatures T < Ty
there are two black holes, and for T' > Ty, there are
no black hole solutions. Indeed, for temperatures in the
interval 0 < T < Ty, there are two solutions, the so-
lution r41 (7T, Q) and the solution r15(T, Q). The solu-
tion 741 (7, Q) is bounded in the interval (uQQ)ﬁ <
r41(T, Q) < 71, where 741 (T — 0,Q) = (uQ%) 7= =
T4,, T+, being the radius of the extremal black hole, and
r41(Ts1,Q) = r4s1. Moreover, 741 (T, Q) is an increas-
ing monotonic function in 7. The solution ri2(T, Q)
is bounded from below, i.e., r42(T,Q) > 7ys1, where
ry2(Ts1, @) = 7451, and is unbounded from above, since
at T — 0, the solution r;s tends to infinity. More-
over, r4o(7T,@Q) is a decreasing monotonic function in
T. We note that the action given in Eq. with r4
holding for r41(T, Q) or r1o(T, Q) is the action in zero
loop approximation that has been found in [32] directly
from the Gibbons-Hawking approach, rather than from
York’s approach for a given R with subsequently taking
the R — oo limit, as we have been doing here.

T

(69)

Regarding stability, a solution is stable if aLT”) <0,
+
as we have seen in the case of finite cavity. This gives

7‘+ S T+81 5 (70)

with r4 41 given in Eq. . This means that the solution
is stable if the radius r, increases as the temperature
increases. Therefore, the solution r; is stable since it
has this monotonic behavior, while the solution r;o is
unstable since it has an opposite monotonic behavior.

3. Thermodynamics in the R — +oo limit

(i) Entropy, electric potential, and energy

With the solutions of the canonical ensemble found in the
limit of infinite radius of the cavity, R — +00, one can
find Iy, i.e., the action in the zero loop approximation
given in Eq. evaluated at the extrema of Eq. .
The thermodynamics for the system follows through the
correspondence F' = T'Ij, where F' again is the Helmholtz
free energy of the system and thus it can be written for
this case as

polri w@ ) Taari” (71)
= " 2 27»-1_3 4 )

where 74 can be 711 (T, Q) or r42(T, Q). Using the same
calculation method from Sec.[[V'A] we obtain the entropy



as § = —5+—, ie.

The thermodynamic pressure p is zero,
p=0. (73)

The thermodynamic electric potential is

Q
o= a—3 (74)
T+
which is equal to the pure electric potential. The energy,
d 3
given by E = F+T'S, can be written as E = TR %2 3-
Td 3 2
.

But the spacetime mass m is given by m =

Q
o g
see also Appendix [B] so that the thermodynamic energy

and the spacetime mass are the same in the R — +o0
limit, i.e.,

E=m. (75)
Thus, we can write the free energy given in Eq. as
F=m-TS. (76)

We must note that the expressions for the entropy, the
pressure, the thermodynamic electric potential, and the
energy are consistent with the limit of infinite radius to
the respective expressions in Sec.[[V'A] Moreover, in this
limit, the pressure p vanishes, which is consistent with
the absence of the variable R in the action.

(4) Smarr formula and the first law of black holes
The energy in Eq. can be rewritten in terms of

d=3
the entropy and the charge as E = i (Q‘ﬁ?)d_z +

g(4s

3-d
5 Qd—z) "% The energy function possesses the scaling

property Vit p = E(I/S,I/% Q), which allows the use
of the Euler relation theorem to have E = d%gTS + 9Q,
which is the formula obtained in Sec. without the
term pA. Indeed, the term pA in the limit of infinite
reservoir radius has leading order R~(4=3) and so it van-
ishes. Since from Eq. E = m, we obtain

d—3
7TS 77
which is the Smarr formula.
In this case the law

dm = TdS + ¢dQ, (78)

holds. This is exactly the first law of black hole mechan-
ics. This can be obtained from Eq. in the R — oo
limit. For R finite, there is a first law of thermodynam-
ics of the cavity and does not correspond to the law of
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black hole mechanics. For R — oo, the first law of black
hole thermodynamics and the first law of black hole me-
chanics coincide into one same law, which is quite re-
markable. Moreover, in the electrically charged case, as
opposed to the Schwarzschild case, the thermodynamics
of the canonical ensemble is valid, since there is a region
of the electric charge where the system is thermodynam-
ically stable. It is from Eq. that Davies has started
his thermodynamic theory of black holes for d = 4. We
have deduced it from the action Eq. (65)).

(#i) Heat capacity and stability

The thermodynamic stability can be seen directly from
applying the limit of infinite radius of the cavity in
Eq. and obtain the condition for the positivity of
the heat capacity, which ensures that a solution is stable.
The heat capacity in this limit is

Gy — 1720002 — @)
4((2d - 5)uQ* — r3°)
3 ST
N (d-3)0 ( v de—s ’
— 3d—8 45 - )
457r2d : ( s dle +(d )(Qd 2 T25°
Qg2
(79)

where we have dropped the subscript A in C4 ¢ since
the evaluation is at infinity, and in the second equality
we wrote the heat capacity in terms of the thermody-
namic variables S, E, and T. S({ there is stability if
Cgo >0, ie., ry g&zd —5)uQ?] **=°, which is Eq.
together with Eq. (68]). This means that the solution 74
is thermodynamically stable whereas the solution 9 is
unstable. It must be noted also that r1; is an increasing
monotonic function in 7', which means the energy of the
black hole increases of the temperature increases, as it is
expected from a stable system. The opposite happens to
the solution 72, since it is a decreasing monotonic func-
tion in T and so the energy of the black hole decreases
as temperature increases.

4. Favorable phases

There are two stable phases. The small black hole
r41 and hot flat space with electric charge at infinity.
Since the black hole 71, has positive free energy and hot
flat space with electric charge at infinity has zero free
energy, and systems with lower free energy are preferred,
whenever the system finds itself in the black hole 74
solution it tends to transition to the hot flat space with
electric charge at infinity phase.



5. d=4: Analysis leading to Davies’ thermodynamic
theory of black holes and Davies point

The dimension d = 4 is specially interesting since in
the R — oo gives the results of Davies’ thermodynamic
theory of black holes [6]. In this setting, the reservoir of
temperature 7" and electric charge @ is at infinity.

The reduced action in Eq. in d = 4 gives

2
I, = g <r+ + fi) — 7y, (80)

where ¢ = 1 and Q = 4n. The stationary points in
d = 4 occur when

dgr?
B=ury).  ulr)=—"t (8D
ry — E

corresponding to the inverse Hawking temperature of a
charged black hole in d = 4.

We invert Eq. to get the solutions 4 (T, Q). This
results in solving

(pp)0i-@r-rt=0.

although we do not present the solutions here. The mini-
mum of function ¢(r; ) in Eq. occurs at 7451 = V3 Q,
being a saddle point of the action of the black hole. We
write the horizon radius of the saddle point as

rip =V3Q, (83)

as in d = 4 it gives the Davies horizon radius. Since
ry =m-++/m? — @2, this means m = %Q at the saddle
point, a result that can be found in [6]. The temperature
corresponding to the saddle point is Eq. ind=4, or
explicitly

1
o= —+—,
P 6v37Q

which is the Davies temperature, and it is a result that
can be extracted from [6].

We present a summary of the behavior of the solu-
tions for d = 4. For 0 < T' < Tp, there are two solu-
tions, the solution r41 (T, Q) and the solution ro(T, Q).
The solution r11(7, Q) increases monotonically with T
and lies in the interval ry, < r41(T,Q) < r4p, where
ryi(T — 0,Q) =74, = Q and r1(1p,Q) = r4p =
V3Q. The solution r,5(T,Q) decreases monotonically
with T and lies in the interval ryp < ryo(7,Q) < oo,
where 742(Tp, Q) = r4p = V3 Q. For Tp < T, there are
no black hole solutions. Regarding stability, a solution is
stable if %r:) <0, ie.

(84)

Ty S "+p - (85)

With ri, given in Eq. , Eq. can be turned in
to the region in the electric charge 7T+ <Q <rg, the
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latter term being simply the restriction to nonextremal
case. From Eq. , we have that the solution r;; is
stable while the solution 715 is unstable.

We summarize now the results for thermodynamics in
d = 4. The free energy of the system is F' = T'Ij, coming
from the zero loop approximation of the path integral.
From Eq. , the free energy is

2
F:l(r++Q)—TW3. (86)
2 T+

From the derivatives of the free energy, we obtain the en-
tropy S = mr?, ie., S= 1A, the thermodynamic pres-
sure p = 0 since there is no area dependence, the electric
Ty
E = F +T5. Considering that this is the expression for
the spacetime mass m, we have £ = m. The free energy
of Eq. is then F =m —TS.
The Smarr formula for d = 4 is

potential ¢ = 9 and the energy F = % (7’+ + %f), from

m:%TS+¢Q. (87)

Indeed, the first law of black hole mechanics dm =
TdS + ¢dQ coincides with the first law of thermodynam-
ics, see above. The first law of black hole mechanics is the
expression from which Davies [6] started his analysis. We
have started our analysis from the action Eq. and
actually derived the first law from first principles. More-
over, the system is stable thermodynamically in a range
of values of the electric charge. On the other hand, the
electrically charged case in the grand canonical ensem-
ble with the reservoir at infinity is unstable. Gibbons
and Hawking through the action and the path integral
approach [7] noticed this instability problem but did not
venture into the electric canonical ensemble to cure it.
The heat capacity of Eq. is for d = 4 given by

271’7"_%_ (1 - %2) S3ET
Co=—gr—" == ., (88)
35 —1 e -T783

+

where in the second equality we wrote the heat capacity
in terms of the thermodynamic variables S, E, and T.

The system is thermodynamically stable if @ > %m,

ie., %m_ < Q < ry, the latter term being the condition
for nonextremal case. The system is thermodynamically
unstable if 0 < @ < %T.ﬁ_. This is the same result
as given in Eq. together with Eq. . The heat
capacity Cg is infinitely positive at the point Q) = %7’4_ if
one approaches it from higher (), the heat capacity Cg is
infinitely negative if one approaches the point @ = %m_
from lower Q. The heat capacity goes to zero at the
extremal case () = r;. Precisely at the point Q = %1@,
this behavior of the heat capacity was found in [6], and
it was classified as being similar to a second order phase
transition. However, this point is a turning point rather
than a second order phase transition. This turning point



indicates the ratio of scales at which one has stability.
Indeed, when analyzing the heat capacity in terms of the
temperature and electric charge, one has two distinctive
curves, one for each solution, diverging at this point. But
the unstable solution cannot be considered as a phase,
due to its instability. The system will always remain in
the stable configuration. Note that the formula for Cg in
the second line of Eq. (88)) is the same formula found in
[6] by performing in Eq. (88) the redefinitions S — 875,

T%S%Tand%?%CQ.

6. d=>5: Analysis

The dimension d = 5 is a typical higher dimension that
we have been analyzing. We present here the summary
for this specific case in the R — +oo limit.

The reduced action in Eq. in d = 5 can be written
simply as

I — é (37r7“_2Ir

2,.3
5 +QZ>—7”+ (89)

2
4 Ty

where we have used 1 = 5= and €3 = 272 The station-
ary points are described by

2713
B=ury), ury) = 271292~ (90)
- Z)"frr?F

again corresponding to the inverse Hawking temperature
of a charged black hole in d = 5.

The solutions are found by inverting Eq. to get
r1(68,Q), i.e., r+(T,Q). This is the same as solving

1 4
(327) 01 - e =rt=0, (o)

which cannot be done analytically. However, it can be
analyzed qualitatively or solved numerically, see Fig. [J]
for this case of five dimensions. The function ¢(r;) in
Eq. possesses a minimum at

T4s1 = < % Q) ) (92)

which corresponds to a saddle point of the action of
the black hole. This generalizes the Davies radius to
d = 5. The temperature at this saddle point is 7;' =

95/ QR e,
4
Ty =——""—7. (93)
20 2
107 (/2Q)
This generalizes the Davies temperature for d = 5.

We summarize the behavior of the solutions in d = 5.
For temperatures 0 < T' < Ty there are two solutions,
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the solution (T, Q) and the solution r1o(T, Q). The

solution r41(T, Q) increases monotonically with the tem-

perature and is bounded by ry, < 741(T,Q) < rys,
1

(\/g Q)E is the ex-

1
tremal black hole, and r1(Ts1,Q) =115 = <\/% Q) :

The solution r12(T, Q) decreases monotonically with the
temperature and assumes values in the interval rj 4 <
r12(T, Q) < oo, where r12(Ts,Q) = r+s. See Fig. |§| for
the plots of ;1 and r;o. Regarding stability, a stable

solution obeys %ﬁ) < 0. This condition becomes

where r (T — 0,Q) = ry, =

T4+ S Tys1- (94)

With r 4 given in Eq. , Eq. can be transformed
1

to (35)2r2 < Q < (27)2 r2, the latter term being the

restriction to the nonextremal case. From Eq. , we
obtain that r,; is stable and that r5 is unstable. The
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FIG. 9: Plot of the two solutions (7T, Q), in red, and
r42(T, @), in blue, of the charged black hole in the
canonical ensemble for infinite cavity radius, for two
values of the charge, u@? = 1 in filled lines, and

1Q? =5 in dashed lines, p = %, ind=>5.

plots in Fig. [0]show the discussion above, namely the sta-
ble branch r;; and the unstable branch r; 5. It is also
seen clearly that the plot of Fig.[J]is the limiting R — oo
case of Fig. 2l From Fig. 2] one finds that when R — oo,
the solution 7,3 disappears, leaving r,; and rys, with
r41 and 7o meeting at a maximum temperature. Also,
from Fig. 2] we see that the r5 and 73 branches meet
at a minimum temperature, and these branches are the
ones that appears in the zero charge case of York, here
slightly modified due to the existence of an electric charge
Q. More specifically, comparing Fig. 0] with Fig. 2] one
notes that the red and blue lines of Fig. [J] are the sta-
ble and unstable black holes of Davies, here in d = 5,
and the red and blue lines of Fig. [2] are precisely these
branches of black holes for finite reservoir radius R. The
blue and green branches in Fig. [2| correspond to York
black holes. Thus, Fig. [2| is a unified plot of York and



Davies black holes. Note further from Fig.[9] that for the
electric charge going to zero, the branch that survives in
Fig. [9] is the blue branch, which corresponds to the un-
stable black hole r;5, and the solution goes up to the
point characterized by T' = oo and r4 = 0. This branch
corresponds to the original unstable Hawking black hole,
the black hole also found in the Gibbons-Hawking path
integral approach.

We present the summary of the results for the ther-
modynamics in d = 5. The free energy can be obtained
from the zero loop approximation of the path integral as
F =TI,. From Eq. (89)), the free energy takes the form

1 /3mr? Q2 m2r3
F=z ) -Tr—=. 95
2( 4 +r3) 2 (95)

From its derivatives, we obtain the entropy as S = iA.h
Ay = 27r2r§’r, the thermodynamic pressure as p = 0, the

thermodynamic electric potential as ¢ = %, and the
L=

. Note

that this is exactly the expression for the spacetlme mass
m, so the mean energy is £ = m. The free energy of
Eq. becomes FF =m —T'S.

The Smarr formula in d = 5 takes the form

energy, given by E =F — TS, as E =

_ %TS+¢Q. (96)

Also, one has that the law dm = T'dS + ¢d(@ holds. And
so the first law of black hole mechanics coincides with the
first law of thermodynamics. Also, the system is stable
thermodynamically in a small region of the charge, so
this correspondence is valid.

The heat capacity of Eq. is now in d = 5 given by

37r2ri (1—%%)
20 Q2
2(@?— )
S3ET
AT NG
97 (%) 120

where in the second equality is in terms of the thermo-
dynamic variables S, E, and T. One has instability if

1
0<Q< (g—g) 2 ri, with @ meaning its absolute mod-

1
ulus. One has thermodynamic stability if (3—”)2 r_%_ <

Q< (¥ ) r2, the latter term being the condition for
the nonextremal case, and this can also be derived from

Eq. . together with Eq. . The heat capacity Cq is

infinitely positive at the point ) = (20) 7‘+, if this point
is approached from higher @), the heat capacity Cg is in-
finitely negative, if the point is approached from lower
. This is a turning point of the solutions, indicating
the condition for stability. This is properly seen when
analyzing the heat capacity with fixed temperature and
electric charge, see Fig. Indeed, the heat capacity is

Co =

7#2624 (
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FIG 10: The heat capacity Co in (uQ?)7 units,

=, is given as a function of the temperature

(HQQ)
(uQ2)4 in d = 5. In red, the heat capacity of ry; is
represented, while in blue, the heat capacity of r4o is

shown. There is a turning point at T(,qu)% == 451 .
754

described by two curves, one for each solution ry; and
r19, being positive for r;; and negative for r,5. The
system cannot be sustained in the solution 15 since it is
unstable and so it can only be at the stable solution 7.

C. Infinite cavity radius and the Rindler limit:
Cavity boundary at the Unruh temperature

The largest solution limit can be obtained by keeping
T and @ fixed, while doing R — 400 and r; — R in
Eq. . The temperature dependence on the charge

goes with R2d s, therefore such dependence in the limit

r+ — R and R — 400 disappears. Intuitively, the black

hole becomes very large such that any contributions from

the charge become negligible. Then, the expression for

the temperature redu(jeb; to the noncharged case, T =
T

(d—3)(4mry) (1 — zi=5)" 2, but we still need to apply
the limit. The requirement that T is fixed and so finite
d—3

leads to the condition that ry4y/1 — % must tend to
some constant under the limit of R — 400 and ry — R.
Still, it seems unclear a priori what the system in this
limit describes.

In order to understand the limit, one can first

con51der the Euclidean Schwarzschlld metric ds? =
4r

RQWO — ) dr? + (L - ) TR A(R)? +

R*(4= )de o, where we introduced the normalization
by R in the line element, with 0 < 7 < 27 and
ry < r < R. First, we need to consider r, — R
in the limit of infinite cavity and only then perform
R — oo. Therefore, we must consider the near hori-
zon expansion of the metric. The normalized proper ra-

d—3 1
=) 2dp =

dial length is given by €(r) = & T:(l -



o5 H)dgs \/(%)d—3 — ()43, valid at the near hori-
zon, spanning the interval 0 < € < €(R). One can
therefore rewrite the Schwarzschild metric in this limit
as ds? = (R?e? + O(e*))dr? + R%de® + (R? + O(€?))d02.
Notice however that as ry — R, the total normalized ra-
dial proper length €(R) tends to zero. It is now that we
perform the limit R — 400 but such that Re(R) tends

Q(R

to a constant, which we write as R, R = Re(R). Thus,
we have a new proper length 7, defined as

7= Re(r), 0<7<R. (98)
The metric becomes in this limit

ds® = Pdr? + di? + R*d0?, (99)

i.e., it becomes the two-dimensional Fuclideanized
Rindler metric times a (d — 2)-sphere with infinite ra-
dius. The metric on the (d — 2)-sphere can be nor-
malized by choosing a specific point on the sphere and
performing the expansion around such point, obtaining
R%dO? = Z?;f(dxi)z, where z° are the new coordi-
nates. The metric then reduces to the d dimensional
Euclideanized Rindler space. The system can now be in-
terpreted as follows. The event horizon of the black hole
reduces to the Rindler horizon at # = 0, while the cavity
boundary is located at R and it is being accelerated. The
proper acceleration of the cavity is precisely % L1 and the
temperature measured at the boundary of the cavity is
T= 5

We now analyze what happens to the thermodynamic
quantities in this Rindler solution limit. First, the tem—
perature in Eq. is finite and equals to T ﬁ
Since T is fixed by the ensemble this gives the solution
for the cavity boundary, namely

_ 1
R=

= —. 100
2nT (100)

To be in equilibrium with the temperature T of the reser-
voir, the boundary itself R has to have a Rindler accel-
eration that matches its Unruh temperature. The free
energy in Eq. diverges negatively, F' — —oo. It di-
RI73 Qg Li—2 pd—2
“w 8TR
the power R?~2 is always larger than R4~3 for R — +o00.
This divergence is due to the fact that the area is diver-
gent. Thus, it is better to work with a specific free energy,
F, a free energy per unit area, defined as F' = 3 L

J_2RI-Z°
Then,

verges as F' = , and is negative since

1

R
8TR

(101)

so it is negative. From Eq. , the entropy also diverges,

Qu_oRO2
4

S — o0, it diverges as S = . Defining a specific

entropy S = #

S=- (102)

31

so it is a constant. The thermodynamic pressure in
Eq. (48)) is finite, which we write as

1
p=——=, 103
P=g5 (103)
SO p= %. The electric potential in Eq. is zero,
$=0. (104)
The thermodynamic energy from Eq. obeys E — o0,
it diverges as F = ﬁ positively. Defining a specific
energy, E, as E = W, one obtains
E=0. (105)

The heat capacity in Eq. goes positively as Cy =
@=2N8)0a2 pi—4R2 §o Cy = 47R? ford = 4 and
Cyp — oo ford > 4, ie., for d = 4 is finite and depends
on the temperature as C'y = #, and for d > 4 diverges.
Since Uy is positive, this solution can then be considered
stable. Defining a specific heat capacity, Ca, as Cy =
Ca :
Q. R glves

Cu=0. (106)

Although this solution has divergent quantities, when one
resorts to specific quantities, as one should since the sys-
tem is infinite, one finds finite quantities.

For the ensemble with infinite radius one can try to de-
fine what is the most preferred phase thermodynamically.
However, it seems that the two limiting solutions have
different character. In the Davies solution there is still a
net electrically charge @ at infinity. In the Rindler solu-
tion the electric charge has disappeared from the context,
so it is in fact a zero electric charge solution. Although
the starting ensembles are the same, the final ensembles
in the infinite radius limit are different. From the free
energies, given that the stable black hole in Davies so-
lution has positive free energy and the Rindler one has
infinite negative free energy, one would conclude that the
Rindler solution is the most preferred phase. But in fact
the two solutions belong to different ensembles and can-
not be compared. As we have mentioned, the Davies
stable solution tends to disperse to hot flat space with
electric charge at infinity.

VII. CONCLUSIONS

We have analyzed the canonical ensemble of a Reissner-
Nordstrém black hole in a cavity for arbitrary dimen-
sions. The construction of the canonical ensemble was
done through the computation of the partition func-
tion in the Euclidean path integral approach. The ac-
tion is the usual Einstein-Hilbert-Maxwell action with
the Gibbons-Hawking-York boundary term and an ad-
ditional Maxwell boundary term so that the canoni-
cal ensemble is well defined, all terms having been Eu-
clideanized. We assumed that the heat reservoir has a



spherical boundary at finite radius R, where the temper-
ature is fixed as the inverse of the Euclidean proper time
length at the boundary, and also the electric charge is
fixed by fixing the electric flux at the boundary. We then
restricted to spherically symmetric spaces and assume
regularity boundary conditions that avoid the presence
of conical and curvature singularities.

The zero loop approximation was then performed
by first imposing the Hamiltonian and the Gauss con-
straints, obtaining a reduced action that depends on the
fixed inverse temperature (3, electric charge @, and the
radius of the boundary R, and also depends on the radius
of the event horizon ri as a variable that is integrated
through the path integral. We then found the equation
for the stationary points of the reduced action which are
the solutions r4[53, @, R], and the condition of stability
of the solutions. The equation cannot be solved analyti-
cally.

The existence of the solutions of the ensemble were
analyzed for arbitrary dimensions. For charges smaller
than a saddle, or critical, electric charge, there are always
three possible solutions where the one with the smallest
radius and the one with the largest radius are stable, and
the other with intermediate radius is unstable. The value
of the saddle charge and the value of the radii that bound
these solutions, which are saddle points of the reduced
action, were found analytically. For the saddle charge,
the unstable solution reduces to a point, having formally
only two solutions which are stable. For charges larger
than the saddle charge, there is only one solution, and
this solution is stable. This analysis was then applied to
the four and five dimensional cases. Regarding stability,
the solutions are stable if the radius of the event horizon
increases as the temperature increases. For this case, the
condition is given in terms of the saddle points of the
reduced action.

The thermodynamics of the electrically charged black
hole was obtained using that the partition function is re-
lated to the Helmholtz free energy of the system in the
canonical ensemble. Through the zero loop approxima-
tion, the free energy was obtained. The entropy, the
thermodynamic electric potential, the thermodynamic
pressure, and the thermodynamic energy were retrieved
through the derivatives of the free energy. More pre-
cisely, the entropy is the Bekenstein-Hawking entropy,
the pressure has the same expression of the pressure of
a self-gravitating charged shell with radius R, and the
thermodynamic electric potential is given by the usual
expression. The mean thermodynamic energy, which can
be identified with a quasilocal energy, was calculated
through the definition of free energy. Regarding ther-
modynamic stability, the configurations are stable if the
heat capacity with constant charge and area is positive.
The integrated first law, i.e., the Euler formula, and the
Gibbs-Duhem relation were also found.

We analyzed the favorable states in the canonical en-
semble. A favorable state is a stable state of the ensem-
ble that has the lowest value of the free energy. In some
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sense, transitions can occur between phases. Here, for
an electric charge lower than the critical charge, there
are two stable black hole solutions that are in competi-
tion, with an existing first order phase transition between
them. For the critical charge, this first order phase tran-
sition becomes a second order phase transition. For a
charge larger than the critical charge, there is only one
stable black hole solution. In the uncharged case, there is
a stable solution and hot flat space. Pure hot flat space
does not seem to be a solution of the canonical ensemble
since the charge is fixed. Instead, we compare the stable
solutions with a nonself-gravitating charged sphere. This
covers two limits, the case where we have flat space with
a charge at the center, which is not a solution and is never
favorable, and another case where the charge resides near
the cavity or at the cavity. In this last case, it would act
as a hot flat space with electric charge at the boundary
and the corresponding free energy vanishes. Consider-
ing this latter case There is a first order phase transition
between the largest black hole and hot flat space with
electric charge at the boundary. The black hole solutions
and the charged shell model have been compared in a
phase diagram.

In this work of the canonical ensemble of a Reissner-
Nordstrém black hole in a cavity for four and higher di-
mensions there are several main achievements which can
be stated:

First, the construction of the canonical ensemble and
the thermodynamic analysis of all generic d dimensions
in a unified way was done. Moreover, significant cases
were presented in all the detail, namely, the dimension
d = 4 as the most important case, and the dimension
d =5 as a typical higher dimensional case.

Second, in the analysis of the specific heat C4 g in
terms of the temperature and the electric charge, we
found the existence of a second order phase transition be-
tween the two stable solutions for a critical electric charge

parameter % in arbitrary dimensions. For lower elec-

tric charge R‘;TQG? we found two turning points indicating
the stability of the solutions, where the heat capacity di-
verges and is double valued. For higher charge R‘;TQ,G, we
found that the heat capacity is always positive.

Third, since in the canonical ensemble one can have
two stable black hole solutions, an analysis of the free
energy has enabled us to pick the black hole solution that
is most favored according to the temperature and electric
charge of the ensemble and find the possible first order
phase transitions. Moreover, a comparison with the free
energy of hot flat space, emulated by an electric shell
at the boundary, has revealed the thermodynamic phase
that is favored. We have also argued that the Buchdahl
bound is important in this context, and the free energies
for which the bound is superseded were found, for higher
free energies gravitational collapse sets in.

Fourth, the Davies thermodynamic theory of black
holes has been shown to follow from the electric charged
canonical ensemble in the infinite large reservoir limit
when d = 4. The two ensemble solutions of lower radii



maintain, in this limit, their black hole character. One,
with smallest radius, is the stable one, and the other with
intermediate radius is unstable. These two solutions meet
at a saddle point. The thermodynamic quantities were
found and in particular, the heat capacity at constant
area and charge was found. In d = 4, the expression
of the heat capacity reduces to the expression found by
Davies. We have started from the action and the path in-
tegral approach for a reservoir at infinity and showed that
the formalism gives the first law of black hole mechanics
which, of course, is also the first law of thermodynam-
ics for black holes. Davies, in the d = 4 formulation of
the theory, started directly from the first law of black
hole mechanics. These results, reached through different
means, point toward the equivalence between black hole
mechanics and black hole thermodynamics through the
canonical ensemble.

Fifth, the limit of infinite radius of the boundary of
the cavity, has revealed a surprise solution. Indeed, the
largest black hole solution of the ensemble, changes char-
acter in this limit. The black hole solution turns into a
Rindler solution with the ensemble fixed temperature be-
ing the Unruh temperature of the now accelerated bound-
ary.

Sixth and last, the York path integral procedure,
which was originally applied to Schwarzschild black holes,
has been followed throughout this work for Reissner-
Nordstrom black holes. We have shown that the black
hole solutions found represent the unification of York
electrically uncharged black holes and Davies electric
charged black holes, in a remarkable way. Indeed, the two
York type solutions, one larger and stable, one smaller
and unstable, do appear, and the two Davies type so-
lutions, the smaller and unstable, and the even smaller
and stable also do appear, in a remarkable way. York
and Davies results follow from two different limits of our
work. York results follow from taking the zero electric
charge limit. Davies results follow from taking the infi-
nite cavity radius limit, i.e., by putting the heat reservoir
at infinity. This latter case can also be seen to stem from
York’s generic reduced action approach with the bound-
ary at infinity, which in turn yields the Gibbons-Hawking
path integral formulation to black hole thermodynamics.
The Gibbons-Hawking approach was originally applied to
electrically uncharged black holes and it was found that
there was an unstable black hole solution, the Hawking
black hole, and thus no consistent thermodynamics. It
was also applied to an electrically charged black hole in
the grand canonical ensemble, and it was found a solu-
tion that was unstable. Had it been applied directly to
electrically charged black holes in the canonical ensem-
ble, one would have found that thermodynamic stable
solutions exist to vindicate the approach. We have filled
this gap here.

What does remain to be understood? Here the inter-
est has been in the thermodynamic interaction of a black
hole in a cavity with a boundary of finite size and fixed
temperature, as well as in the interaction of the gravita-
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tional field with the electromagnetic field in such a sys-
tem. The formalism by its very distinctive features, i.e.,
its Euclidean character, applies only to the outside of a
black hole event horizon. The black hole interior and its
singularity are not considered in the analysis. Thus, the
question about the nature of the singularity remains. It
is expected that the singularity is described by a Planck
scale object, however intricate the description might be.
A canonical formalism for micro black holes, say of the
order of ten Planck radii, seems valid, after all Hawk-
ing radiation, a tamed radiation at most of the scales, if
left by itself, slowly peels the singularity away. If that
radiation interacts harmoniously with the boundary of a
cavity, a thermodynamic procedure might be valid and
show how the black hole horizon and the singularity fuse
into one single describable object.
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Appendix A: The Euclidean action for the canonical
ensemble, boundary conditions, Ricci scalar, Euler
characteristic, and the action with boundary
conditions

In this appendix, we derive the conditions that were
set in Sec. [[]| to find the reduced action from the general
Euclidean action. Some of the equations appearing in
that section are repeated here for the sake of complete-
ness and self-containment.

The system consisting of an electrically charged black
hole inside a cavity in d dimensions has an Euclidean
action

I= R\fddx - 7/ (K — Ko)y/7d* 'z
167’(’ OM

F Fab d
4Qd 2 / Vod'e

d—
( 3)/ FabAanb\/j)/ddil.T
Qa—2 Jou

_|_

(A1)

R is the Ricci scalar of the space, g is the determinant
of the metric gqp, the extrinsic curvature of the bound-
ary of the cavity is Ky, K is its trace, Ky denominates
the trace of the extrinsic curvature of the boundary of
the cavity embedded in flat Euclidean space, -y is the de-
terminant of the induced metric v,4 on the boundary of
the cavity, 4_o is the surface area of a d — 2 unit sphere
and appears for practical purposes, F, = 0q Ap — OpAg is



the Maxwell tensor, A, is the electromagnetic vector po-
tential, and n; is the outward unit normal vector to the
boundary of the cavity. The indices a, b label the space-
time indices running from 0 to d — 1, and «, 8 are indices
on the boundary running from 0 to d — 2. To prescribe
the canonical ensemble, one has to set a boundary term
related to the Maxwell tensor [I4]. This term fixes the
electric flux given by the integral of the Maxwell tensor
on a (d — 2)-surface, i.e., it fixes the electric charge. If
instead, the potential vector is fixed, one is in the pres-
ence of the grand canonical ensemble, see [30] for this
case. Note that Eq. corresponds to Eq. in the
main text. It is useful to rewrite the Maxwell boundary
term in the action Eq. (A]). Usmg the divergence theo-
rem and that V,(F%A,) = FabF“b + VyF®A,, one
transforms the boundary Maxwell term into a bulk term,
obtaining the action

N 1677/Rfdd””_*/ (K = Ko)yrd™ s
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(A2)

Now, we develop the line element. We want to treat
spherically symmetric Euclidean spaces, so that the Eu-
clidean path integral is to be performed along metrics
which have spherical symmetry. The space is then given
by the warped product R? x S?=2 with R? being the Eu-
clidean two-space, S¥~2 being a (d—2)-sphere with radius
r, and 72 being the warping function. The line element
ds? of such a space is given by

ds® = 0 (y)dr® + o®(y)dy® + 12 (y)d o, (A3)
where 7 is the periodic Euclidean time with range 0 <
T < 2w, and is in fact an angular coordinate, y is a spatial
radial coordinate with range 0 < y < 1, b(y) and a(y)
are functions of y, the radius of the (d —2)-sphere is r(y),
and dQ%_, is the line element of the unit (d — 2)-sphere

d—1
with total area Q4_o = %,
function. Since 0 <y <1, it 2is clear that the boundaries
to this space given by the line element of Eq. are at
y =0 and y = 1. The functions b(y), a(y), and r(y) are
to be integrated in the path integral.

Given the hne element Eq. ., we can develop the
action of Eq. ( with the considered terms involved.
The Ricci tensor Rab and its contraction Ricci scalar R
which depend on second derivatives of the metric ggp,
form the Einstein tensor Ggp, with Gap = Rap — anbR
Then, the Ricci scalar for the metric in Eq. . is given

by
1 1 AN N
_1677TR_ Smabrd—2 ( «a > + 87G o

where I' is the gamma

(A4)
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where G7, is the time-time component of the Einstein
tensor and is given by

T (d—=2) [ 43 ' /
GT:Q’[‘/T‘d72 T E—l .

The Gibbons-Hawking-York boundary term is given by

_ 8% (K — Ko),—, = ((ds;f) (1 - ;/))y—l
- (87rb11"d2 (debl))y—l |

where it was used that the extrinsic curvature of a con-
stant y hypersurface is K = %bldr + %dQZ_Q and that
Ko = rd?_, is the extrinsic curvature of the hypersur-
face embedded in flat space. With respect to the bulk
terms depending on the Maxwell field, one has

(A5)

(A6)
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where Fy, = A/ was used, and

(d — 3) . (d—3) [ri2a’\’
Vo F*A, = — ) A,
Qd 2 @ Qd,gabrd_Q ba
(A8)
_ ’ /
where V F7% = —ﬁ (Td :bA*) was used.

We now study the boundary conditions. We study first
the boundary conditions for the geometry at y = 0 and
at y = 1, and afterward the boundary conditions for the
Maxwell field at y = 0 and at y = 1.

The boundary conditions for the geometry at y = 0
have several important features. We also comment on
the connection of these to the Euler characteristic. We
assume that the hypersurface y = 0 corresponds to the bi-
furcate two-surface of the event horizon of the electrically
charged black hole, so we must impose the conditions

b(0) =0,
T(O) =T+,

(A9)
(A10)

where 7"+ is the horizon radius. The conditions given in
Egs. ( and impose that the y = 0 hypersur-
face COI‘I"eprIldb to {y = 0} x S92 ie., a point times
a (d — 2)-sphere. The y = 0 point in the (1,y) sector
coincides with the central point of the R? plane in polar
coordinates, since 7 is an angular coordinate and y is a
radial coordinate. The y = 0 hypersurface can be seen as
the limit y — 0 of y = constant hypersurfaces, with these
latter having an S! x S?~2 topology. For the metric to
be smooth as y goes to zero, these y = constant hyper-
surfaces S! x S9~2 must go smoothly to {y = 0} x S?~2,
Analytically, one can expand the line element given in
Eq. around y = 0 with the boundary conditions set



in Egs. (A9)-(A10). This yields

7\ 2 / N\
ds* = <b> g2 + b—z (b) 3+ 0Eh| dr?
& Jy—g a*\a) )

+de? + [r+ + (r'a),_g €+ 0(62)} dQz_,, (A11)
where b is defined as b’ = 3—2, r’ is defined as v’ = g—;,

/ / / 4 /

(bf) is defined as (g) = dd (1 gb) (g) means
«a «a Yy \@ay @ y=0

(%) evaluated at y = 0, € is defined as ¢ = fO(S ady for

small 0 and small e, assuming that the integral is well-
defined, as it should be if the metric is smooth. The term

(%/) may be absorbed into a redefinition of 7 with
=0
. This

means there is a deficit angle and so a conical singularity.
Therefore, for smoothness of the metric, we impose a

third condition
b/
—1(0)=1
()o-1,

where (%) 0) = (%) With Eq. (A12) consid-
y=0
ered, one can compute the Ricci scalar of the metric in

Eq. (All) and obtain the problematic terms at y = 0.
One finds

R--2ED (1) J2(A(Y) ) +ow,

(A13)

the caveat that the period of 7 becomes 27 (%)

(A12)

where we have used Eq. (A12). For the curvature in-
variant R to be well-defined and so for the space to be
smooth, one must impose a fourth and a fifth condition,

namely,
(;) (0) =0, (A14)
(; <Z>,>(0) ~0, (A15)

/ ’ / !
v (£)©) = (%), wa (£(%))o
y=0
, !
(1 b ) ) . In even dimensions, the condition given

in Eq. j is equivalent to requiring that the Euclidean
space COIlSldel"ed has an Euler characteristic xy = 2 by the
Chern-Gauss-Bonnet formula. For odd dimensions, the
Euler characteristic vanishes and so this requirement is
not satisfactory. Nevertheless, the requirement that the
Ricci scalar is well-defined suffices. One can also see that
this condition is equivalent to requiring that the event
horizon of the black hole is a null hypersurface, if one per-
forms a Wick transformation. The condition Eq.
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means that b does not have a dependence in &3, but,
’ /
for some coordinate y, it may indicate that if (%)
y=0
is nonzero and finite, then «|y,—¢ must diverge. Indeed,
this is satisfied by the Reissner-Nordstrom line element
with coordinate choice y = r found by solving Einstein’s
equations, as it is the case in this setting. We note that
condition Eq. (A15)) is not referred in [I1} 14} [30]. The
boundary conditions for the geometry at y = 1 are now
given. Here, we impose the condition

b(1) = %, (A16)
r(1) = R, (A17)

where, [ is the inverse temperature of the cavity. The
condltlon Eq. is usually written as 8 = 27b(1).
This condmon Eq -7 comes from the definition of
the path integral as stated in Sec. [[TA] and it imposes
that the total Euclidean proper time of the boundary of
the cavity is fixed and it is equal to the inverse temper-
ature of the cavity. The condition given in Eq.
states that the hypersurface y = 1 corresponds to the
boundary of the cavity with radius r(1) = R.

The boundary conditions for the Maxwell field are
now given. Due to spherical symmetry and admitting
the nonexistence of magnetic monopoles, the only non-
vanishing components of the Maxwell tensor Fy;, are
F,; = —F;,. Moreover, we choose a gauge where the
only nonvanishing component of the vector potential is
A;(y). Therefore, the Maxwell tensor Fy; is only de-
scribed by Fy; = A”. Therefore, the boundary condition
for the Maxwell field at y = 0 is given by the requirement
that

A-(0)=0. (A18)
At y = 1, we fix the electric charge by fixing the electric
flux given by fy 1 F%dS,, = 2iQ4_2Q, where ¢ is a con-

stant, Q is the charge of the black hole and dS,; is the
surface element of the y = 1 and 7 = 0 surface, i.e.,

/ _ Fvds,,

T=c

=0y 0. (A19)

Putting together all these conditions with the action
Eq. , or Eq. , the partition function is given
only in terms of the radius of the cavity R, the inverse
temperature 8 and the charge (), which are fixed quan-
tities of the system. Given the boundary conditions just
found one can use them in Egs. . (A8) to find the
final form of the action Eq. ( ., or Eq. (A2). We ob-
serve that the first term integrated over y of Eq. ( .

yields = ( - 2b/) - L < rt 2b/> , i.e., a boundary
y=1 y=0

8w « _ 8w a
term at y = 0 and a boundary term at y = 1. The
boundary term at y = 1 cancels with the last term in
Eq. . therefore the only surviving boundary term of
1 ,rd72bl

the Ricci scalar is — 3 (

) . Moreover, by using
y=0

(e



the boundary condition Eq. (A12]), this term becomes

_L Td—2b/ - _er72
8w a y=0 - 8r'+

integrations at the cavity, since the integrands do not de-
pend on time or on the angles, and one obtains the full
action

18,0, Rib,onr, A = DB <1 - <’") (1))

. One can proceed with the

) [0
O, . d=2 g/ !
Bt U] () s
abri—2 4m(d — 3) Al 2
T T S ) G dydSys
+/M 8m (G Q, azp? ) TN

(A20)

where it was used that the time length at the cavity is
given by B = 27b(1) and that r(1) = R, see Egs.
and . We have then the action as a functional of b,
«, r and A, to be integrated in all paths, in the path inte-
gral. This is the action displayed in Eq. . When one
integrates the action in b, a, r and A, in the path inte-
gral one indeed obtains a partition function that depends
on the radius of the cavity R, the inverse temperature /3
and the charge @, the fixed quantities in the ensemble.

Appendix B: Calculation of the radii where the free
energies of the electrically charged black hole are
zero: Results for different ensembles and the
generalized Buchdahl radius in d dimensions

1. The electric uncharged case: Canonical
ensemble radius and the generalized Buchdahl
radius in d dimensions

We want to analyze a thermodynamic energy or mass
to radius ratio for the d-dimensional canonical ensemble,
namely, the energy or mass for which the black hole free
energy is zero, F' = 0. We want to compare this mass to
the Buchdahl bound mass in d dimensions.

In the canonical ensemble of an uncharged spherically
symmetric black hole in d dimensions [26], which is de-
scribed by the Euclidean Schwarzschild-Tangherlini black
hole space, the canonical ensemble is realized with a fixed
temperature at the boundary of the cavity. There are
two black hole solutions, where the one with the largest
mass is stable and the one with the least mass is unsta-
ble. Here we are interested in the large stable black hole.
The free energy of the ensemble also has a critical point
at zero horizon radius, which is a minimum, the hot flat
space case. Therefore, one can analyze which are the fa-
vorable states in comparing the free energies of the zero
horizon radius, i.e., hot flat space, and the stable black
hole solution. The free energy of hot flat space is zero.
The black hole solution also has zero free energy for a
given horizon radius, which is thus an important ther-
modynamic radius. The larger the temperature of the
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ensemble, the larger this radius, and the lower the corre-
sponding free energy. Thus, one can argue that a stable
black hole is favored to hot flat space when the free en-
ergy of the black hole is lower than the zero, which is
the free energy of hot flat space. The radius of the black
hole horizon that yields zero free energy, i.e., F = 0, is

1
(%)F:O = (%) “? . In terms of the spacetime mass
m this is

(), -(252). w

The Buchdahl bound radius marks the maximum com-
pactness of a spherically symmetric star before spacetime
turns singular. The Buchdahl bound for a star or mat-
ter configuration of gravitational radius ry and radius R

_1_
is B2 (%) guen = (?é‘ii_l;)) ™, which in terms of the

spacetime mass m and radius R is

(- (452).

It is a structural bound coming from mechanics. Self-
gravitating matter for which the mass, or the energy,
content within a radius R is above the bound, in principle
collapses to a black hole.

We see that both masses, or radii, although con-
ceptually different, have the same expression, indeed,
(%)on = (%)Buch. Therefore, one can argue that
as soon as the black hole phase is thermodynamically fa-
vorable over the hot flat space, it is actually the only
phase that exists, the energy within the reservoir col-
lapses to form a black hole. This could indicate that
there is a link between black hole thermodynamics and
matter mechanics.

2. The electric charged case: Canonical and grand
canonical ensembles radii and the generalized
Buchdahl radius in d dimensions

We now want to analyze a thermodynamic energy or
mass to radius ratio for two ensembles, one is the d-
dimensional canonical ensemble with electric charge that
is being treated here, and the other is the grand canoni-
cal ensemble that we treated before, for which the black
hole free energies are zero, i.e., FF = 0, and W = 0,
respectively. We want to compare these two energy or
mass to radius ratio to the generalized Buchdahl bound,
i.e., the Buchdahl bound in the electric charged case in d
dimensions, also called the Buchdahl-Andréasson-Wright
bound, see [42].

In the canonical ensemble of a charged black hole
inside a cavity in d dimensions, the construction has
been described throughout the paper. The canonical
ensemble in this case is realized with a fixed temper-
ature and fixed electric charge at the boundary of the



cavity. One has in this case two stable black hole so-
lutions for a charge below a saddle, or critical, charge
Q@s, and one stable black hole solution for a charge
larger than Q5. In this case, it can be shown that the
stable solution with the largest mass for every charge
can have a negative free energy, if the black hole has
a larger mass than the one that solves this equation

a(é$$)+b(3dsﬁ+c(éﬂ3)+d(3ds%+e:0,whﬂe
« = (Cﬁ@Q—Q, bzz—4@ﬁ8y—¢f®26+%®,
c=—2(d—3) (d—3) 2y +2) +4+24(y +

k) + () B+ m) o=
(%) v +y*(1+y)*+2 (%) y(14y)(2+y), with y
being the electric charge parameter given by y = %,

as before. We see that the equation is a quartic equation
in 472, The solution can be written formally as

Ra
QZ
(), (2. o

for some calculable function g¢ (d, %) In the case

m — 4=
Q = 0 one gets (%)F:O = (%)

see Eq. . The largest stable black hole with this mass
has a zero Helmholtz free energy, F' = 0. Contrasting to
the canonical ensemble of the electrically uncharged black
hole discussed above, the free energy in the electrically
charged case does not include the zero horizon radius
case. The minimum possible horizon radius is the ex-

tremal black hole point ry, = (MQz)TIfG, yielding a free

- Q
= Ui To emulate hot flat space, we used

an electrically charged nonself-gravitating shell. We have
then compared the black hole configuration with the elec-
trically charged shell with no self-gravity at the boundary
of the cavity, having then hot flat space inside the cavity
with the electric charge near the boundary. This config-
uration would require one to look into the matter sector
which we have not done here. It is unclear if a transition
can occur between hot flat space with electric charges
near the cavity and the stable black holes. Nevertheless,
we still regard the thermodynamic radius of zero free en-
ergy in the canonical ensemble as an important quantity.

In the grand canonical ensemble of a charged Reissner-
Nordstrém black hole inside a cavity for d dimensions,
the construction and its thermodynamics were described
n [30]. The grand canonical ensemble is realized with
a fixed temperature and fixed electric potential at the
boundary of the cavity. In this ensemble, the parti-
tion function in the zero loop approximation is given
in terms of the grand potential, or Gibbs free energy,
W =FE—-TS — Q¢, where F is the mean energy, T is
the temperature, S is the entropy, @ is the mean charge
and ¢ is the electric potential. The grand potential

Wi Q) = B2 (1 - V) - Qo -T2 with

3 .
as required,

energy F;.

yields
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d—3
f = (1 — 1;33> (1 — %), and the equilibrium

equations that yield the black hole solutions are % =

d—2
An Ty 1 1
WW\/T and ¢ = —= (Rds—rig , where

the convention for the electromagnetic coupling and elec-

tric charge was chosen so that Q — /(d — 3)Q4—2Q and
¢ — (1/(d —3)Q4_2) "¢ in the expressions in [30]. One
has in this case up to two solutions, depending on the
fixed quantities T" and ¢, with only one being stable.
The grand canonical free energy of the ensemble also has
a critical point at zero horizon radius, which is a mini-
mum, it is the hot flat space case. The stable black hole
solution also has zero free energy for a given horizon ra-
dius, which is thus an important thermodynamic radius.
The larger the temperature of the ensemble, the larger
this radius, and the lower the corresponding free energy.
Thus, one can argue that a stable black hole is favored
to hot flat space when the free energy of the black hole
is lower than the zero, which is the free energy of hot flat
space. The radius of the black hole horizon that yields
zero grand potential energy, i.e., W = 0 is complicated to
find, but the corresponding mass has a simple expression
given by

pm _ —4(d-2)? 2(d —2)((d —2)% + 1)
@w%)Wﬂ_w—rvw—sv (d —1)2(d — 3)2

d—1)2(d—3)2 pQ>
x\/1+( 4(;_(2)2 ) R‘fﬁﬁ. (B4)

Since hot flat space is described here by the grand po-
tential Wry, @], a possible transition can occur from the
charged hot flat space to the stable black hole for tem-
peratures corresponding to stable black holes with higher
mass than Eq. (B4 . In the case Q = 0, one has that W =
F, so one gets (Rd 3)W:0 = (%)F:O

_ (2(d-2))d+3
- \(a-1)?
as required, see Eq. (BI] .

The Buchdahl bound was originally given for the elec-
trically uncharged case and in d = 4. For electrically
charged matter in d dimensions one has the generalized
Buchdahl bound that is given by [42]

©m o d-2 1 pQ?
<ﬁﬁ:§>sudl_'ai—1J2 d— 1 R2d6
d—2 pQ?
+Kd—U2¢1+w 1)(d = 3) i -
(B5)

0, one gets 4% =

In the no charge case, Q = T3

(2(d72)
(d—1)2

We see that the three mass to radius ratios, are con-
ceptually different, and now in the electrically charged
case, have generically different expressions, indeed,

(37%5) pegr (F755) yy_gr and (#7%5) g, ar€ Dot equal.

7, as required.



One has (%)F:O > (%)Buch z (%)W:O' This
is an interesting result. In the canonical ensemble, the
thermodynamic energy content within the cavity when
the black hole phase starts to be favorable, i.e., when
F =0, is higher than the Buchdahl bound, and so even
before the black hole is thermodynamically favored, col-
lapse should occur, i.e., as soon as a black hole forms
there is no possibility of a thermodynamic phase tran-
sition to hot flat space, indeed the black hole has been
formed dynamically. In the grand canonical ensemble,
the energy content within the cavity when the black hole
phase starts to be favorable, i.e., when W = 0, is less than
the Buchdahl bound, and so there should be no collapse
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at this stage, indeed, collapse should only occur when
the energy content is increased above the bound. In the
grand canonical ensemble this occurs only for some neg-
ative W. Both thermodynamic mass to radius ratios are
equal to the generalized Buchdahl bound bound when the
electric charge is put to zero, and all the three are also
equal at the extremal point. The plots given in Fig. [7]
for d = 5 help in the understanding of this behavior.
These results present a counter example to the possible
link between the black hole thermodynamics and stabil-
ity of spherically symmetric matter. The uncharged case
seems to be a coincidence.
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