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Stylization with the Same Style Stylization on the Same Object 

Figure 1: Our StyleMe3D approach enables versatile, high-quality 3D stylization across diverse styles.

Abstract
3D Gaussian Splatting (3D GS) excels in photorealistic scene recon-
struction but struggleswith stylized scenarios (e.g., cartoons, games)
due to fragmented textures, semantic misalignment, and limited
adaptability to abstract aesthetics. We propose StyleMe3D, a holistic
framework for 3D GS style transfer that integrates multi-modal
style conditioning, multi-level semantic alignment, and percep-
tual quality enhancement. Our key insights include: (1) optimizing
only RGB attributes preserves geometric integrity during styliza-
tion; (2) disentangling low-, medium-, and high-level semantics is
critical for coherent style transfer; (3) scalability across isolated
objects and complex scenes is essential for practical deployment.
StyleMe3D introduces four novel components: Dynamic Style Score
Distillation (DSSD), leveraging Stable Diffusion’s latent space for se-
mantic alignment; Contrastive Style Descriptor (CSD) for localized,
content-aware texture transfer; Simultaneously Optimized Scale
(SOS) to decouple style details and structural coherence; and 3D
Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic
prior trained on human-rated data to suppress artifacts and enhance
visual harmony. Evaluated on NeRF synthetic dataset (objects) and
tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art

methods in preserving geometric details (e.g., carvings on sculp-
tures) and ensuring stylistic consistency across scenes (e.g., coher-
ent lighting in landscapes), while maintaining real-time rendering.
This work bridges photorealistic 3D GS and artistic stylization,
unlocking applications in gaming, virtual worlds, and digital art.

CCS Concepts
• Computing methodologies→ Computer vision tasks.

Keywords
3D gaussian splatting, style transfer, visual priors

1 Introduction
The advent of 3D Gaussian Splatting (3D GS) [29] has transformed
3D scene representation, offering high reconstruction fidelity and
real-time rendering through explicit, anisotropic Gaussian model-
ing. However, its application remains largely confined to photore-
alistic domains, as existing methods rely heavily on real-world 3D
data or multi-view 2D captures, leaving stylized scenarios—such as
cartoons, anime, games, and virtual worlds—underserved. These
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domains demand not only geometric precision but also artistic
expressiveness, where naive extensions of 3D GS often fail due
to inadequate style-texture alignment, semantic incoherence, and
limited adaptability to abstract aesthetics. While recent works ex-
plore 3D GS stylization via 2D priors (e.g., VGG [60] for texture
transfer [12, 40, 84], CLIP [54] for semantic guidance [34]), their
reliance on simplistic feature extraction and trial-and-error opti-
mization leads to fragmented stylization, over-smoothed details,
and inconsistent results across objects and scenes.

To address these challenges, we present StyleMe3D, a holistic
framework for 3D GS style transfer that systematically integrates
multi-modal style conditioning, multi-level semantic alignment,
and perceptual quality enhancement. Our work is grounded in
three critical insights:

• Geometric preservation: optimizing only the RGB attributes
of 3DGaussians preserves structural integrity while enabling
stylization, avoiding the instability of geometry-altering
methods.

• Semantic-aware stylization: effective style transfer requires
disentangling and aligning features at low-, medium-, and
high-semantic levels, which existing single-prior approaches
(e.g., VGG or CLIP alone) cannot achieve.

• Scalability: a robust solution must generalize across isolated
3D objects (e.g., virtual assets) and complex scenes (e.g., open-
world environments), a capability absent in prior art.

Furtehr, StyleMe3D introduces four key components to address
these stylization challenges following the above insights, namely
Dynamic Style Score Distillation (DSSD), Simultaneously Optimized
Scale (SOS),Contrastive Style Descriptor (CSD) and 3D Gaussian
Quality Assessment (3DG-QA). Leveraging Stable Diffusion (SD) [55]
as a semantic prior, DSSD dynamically aligns style patterns from
text prompts or reference images with 3D content through gradient-
based score matching. To our knowledge, this is the first work
to exploit SD’s latent space for 3D GS style transfer, overcoming
the limitations of VGG/CLIP in capturing nuanced artistic seman-
tics. Existing methods often homogenize style application due to
overdependence on low-level features (VGG) or global semantics
(CLIP). CSD introduces a contrastively trained encoder that ex-
tracts medium-level style descriptors from a curated style dataset,
enabling localized, content-aware stylization (e.g., applying distinct
textures to buildings vs. vegetation in a scene). We propose multi-
scale optimization to decouple style-texture details (via VGG’s shal-
low layers) and structural coherence (via deeper layers), preserving
high-frequency artistic patterns without distorting geometry. In-
spired by conventional image quality assessment (IQA) metrics
(e.g., CLIP-IQA [69]), 3DG-QA serves as an aesthetic prior explicitly
designed for 3D GS optimization. Trained on human-rated stylized
3D scenes, 3DG-QA encodes holistic aesthetic criteria—composition
harmony, texture sharpness, depth-aware color consistency—into a
differentiable loss. During optimization, 3DG-QA guides the model
to suppress artifacts (e.g., over-saturation in occluded regions) while
enhancing artistic appeal, acting as a "virtual art director" for 3D
style transfer.

We validate StyleMe3D on 3D object dataset NeRF synthetic
dataset [47] and 3D scene dataset tandt db [29], demonstrating
its universality across geometric complexities and artistic styles.

StyleMe3D achieves superior stylization fieldlity compared with
several state-of-the-art methods StyleGaussian [40], ARF [85] and
SGSST [15]. For objects, our framework preserves fine details (e.g.,
intricate carvings on sculptures) while transferring styles with
high fieldlity precision. For scenes, it ensures holistic stylistic con-
sistency—maintaining coherent lighting and color palettes across
various settings—without sacrificing real-time rendering capabili-
ties.

We summary our contributions as follows:
• A systematic framework for 3D GS style transfer, resolving
geometric preservation, multi-modal style conditioning, and
multi-level feature alignment.

• First integration of Stable Diffusion into 3D GS optimization,
enabling semantically coherent stylization beyondVGG/CLIP
priors.

• Novel technical components (DSSD, CSD, SOS and 3DG-QA)
that collectively address style localization, detail preserva-
tion, and aesthetic quality.

• By bridging photorealistic 3D reconstruction and artistic styl-
ization, StyleMe3D unlocks new possibilities for immersive,
stylized environments while preserving the core advantages
of 3D GS: precision, scalability, and real-time performance.

2 Related Works
2.1 2D Generation and Stylization

2D generation has rapidly advanced across generative modeling,
customization, conditional control, editing, and stylization. Initial
breakthroughs in 2D synthesis with VAEs and GANs [2, 20, 28]
were furthered by diffusion models [35, 55, 78, 83], enhancing im-
age quality and diversity for complex manipulation. For efficiency,
frequency-based fine-tuning and wavelet VAEs have enabled light-
weight models [18, 57]. Personalized generation has also progressed,
focusing on customized images [27, 83], video [3, 26], and motion
[33]. Text-driven editing now offers extensive control frameworks
[1, 11, 23, 32, 45, 56, 62], with character consistency essential for
coherent multi-image outputs [21, 38, 71, 82, 89].

Stylization advances emphasize style-content separation, with
cross-attention-based transfer [10, 67, 82] and shared attention
mechanisms for coherence [77]. Frequency-domain techniques aid
diffusion control [17], while Aligning style with textual cues [37],
cross-domain fusion [52] and FFT-based transfer [22] expand style
applications. In this paper, we aim to style 3D GS and these 2D
methods give us a lot of insights and priors that can be reused in
the 3D field.

2.2 3D Generation
Native 3D generation has progressed significantly with core

representations such as meshes [5, 75, 79] and point clouds [50,
59, 81]. Meshes enable continuous surface modeling, while point
clouds allow flexible spatial detail. This field now includes single-
view 3D generation [42, 43] for full reconstructions from minimal
input and multi-view methods [4, 41, 58, 63, 70] that ensure cross-
view consistency. Texture synthesis, particularly with advanced
UV mapping [7, 30, 44], enhances realism and surface detail in 3D
models.
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Figure 2: Overview of our 3D stylization framework (StyleMe3D): (a) Style Purification: Extracts and refines style representations
via Style Cleaning in CLIP space, removing content interference from reference images. (b) Multi-Expert Stylization: The
Dynamic Style Score Distillation (DSSD) module employs dynamic noise scheduling and adaptive style guidance, integrating
latent losses to achieve consistent stylization step by step. Integrates three specialized components within the Dynamic
Style Score Distillation (DSSD) framework: Simultaneously Optimized Scale (SOS): Adaptive noise scheduling for texture
preservation. Contrastive Style Descriptor (CSD): Separates style and content via contrastive learning for style similarity
score. CLIP-IQA: Quality-guided refinement using antonymic semantic prompts. (c) Progressive Consistency Optimization
(Style Outpainting): Progressive outpainting achieves multi-view style propagation. Ensures coherent through iterative latent
alignment, eliminating multi-view dependencies.

Text-guided 3D generation has also advanced with Score Dis-
tillation Sampling (SDS) [53] and its variants [66, 73], enabling
controllable, diverse 3D synthesis. These techniques support artis-
tic scene generation [36] and multimodal inputs (text and image)
[63, 64, 74, 80]. Recent improvements in latent diffusion models fur-
ther enhance the expressiveness and creative potential of text-to-3D
generation [80, 88], and more and more multi-view [6, 8, 51] and 3D
dataset [13, 76] still stimulate the development of this field. While
3D generation is not our core task in this work and we define the
3D GS stylization as a post-training task which further boradcasts
3D GS to more various applications.

2.3 3D Style Transfer
For 3D stylization, methods like [25, 48] embed styles directly

into 3D structures, while radiance field-based methods [49, 65, 85]
achieve style transfer through optimization for enhanced scene
realism. Though HyperNet [9] enables arbitrary style embedding in
MLPs, it suffers from slow rendering and detail loss, while StyleRF
[39] offers zero-shot stylization by transforming radiance field fea-
tures but lacks adaptability and control.

Recent advances in 3D stylization have explored various tech-
niques to embed artistic styles into 3D content, with reference-based
methods like [46, 87] for controlled stylization and arbitrary refer-
ence techniques [40, 84] for flexible style transfer. Scalable 3D style
transfer brings the 3d stylized resolution up to 4K by SOS Loss [15].
Stylized Score Distillation [31] and 3D-aware diffusion models [74]
further expand these capabilities. Different from previous works,
we systematically analyzed the 3D GS stylization task, proposed
a more comprehensive approach to allivate the core challenges
within this task and achieved superior performance.

3 Method
In this section, we elaborate on our comprehensive algorithmic

framework for 3D style transfer using 2D priors. We first formally
define our core task: performing style transfer on reconstructed
3D Gaussian Splatting (3D GS) representations while preserving
structural fidelity in 3.1. To address the inherent challenges in cross-
dimensional style adaptation, we propose StyleMe3D - a systematic
framework comprising mixture of four encoders that collectively
resolve critical challenges in 3D style migration from Sec.3.2 to
Sec.3.5 and is unified in Sec.3.6.

3.1 The definination of Stylizing 3D GS
We define initial 3D GS as a pre-trained task, while redefining 3D
gaussian stylization as a post-training task. Unlike conventional
3D generation tasks that begin from scratch, our approach applies
stylization to pre-reconstructed 3D gausion for both 3D objects and
scenes, allowing for enhanced control over style application while
preserving the underlying geometry.
Firstly, we define the 3D gaussian reconstruction process as:

min
Θ

1
𝑁

𝑁∑︁
𝑣=1

𝑀𝑆𝐸 (R(C𝑣 ;Θ), 𝐼𝑔𝑡𝑣 ) (1)

whereΘ = {(𝑢𝑖 , Σ𝑖 , 𝛼𝑖 , 𝑐𝑖,0, (𝑐𝑖, 𝑗,𝑘 ) 𝑗,𝑘 ))}𝑁
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑠

𝑖=1 represents the
3D gaussian, 𝑐𝑖,0 is the main color and 𝑐𝑖, 𝑗,𝑘 is the coefficient.
R(C𝑣 ;Θ) means render 3D gaussian and 𝐼𝑔𝑡

𝑖
means the ground

truth image from the viewpoint C𝑣 respectively.
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After obtaining the optimized 3D gaussian, we further formulate
the 3D gaussian style transfer process with 2D prior as follows:

min
Θ

1
𝑁

𝑁∑︁
𝑣=1

L(R(C𝑣 ;Θ);𝜙, 𝑅) (2)

where 𝜙 means the 2D prior and 𝑅 means the reference prompt,
like text prompts or image prompts. L means the loss function to
further optimize the 3D gaussian which is initialized with Θ from
Eq.1.

In the style transfer task, we aim to only change the 3D gaussian
stylization rather than the geometry content. We achieve geometry-
style decoupling in 3D gaussian by leveraging the inherent sep-
aration of geometric and color parameters in its parametric rep-
resentation. Specifically, our style transfer framework exclusively
optimizes the color parameters Θ𝑐𝑜𝑙𝑜𝑟 while maintaining frozen
geometric attributes during the stylization process as:

min
Θ𝑐𝑜𝑙𝑜𝑟

1
𝑁

𝑁∑︁
𝑣=1

L(R(C𝑣 ;Θ);𝜙, 𝑅) (3)

We further discuss how to instantiate the L, 𝜙 and 𝑅 with differ-
ent formulations and jointly improve the stylization effectiveness
in the following sections.

3.2 Dynamic Style Score Distillation

In this section, we distill the prior from the 2D stable diffusion
model [55] and use both text and image prompt for style transfer.
Style Cleaning. Inspired by InstantStyle [67], we use a pre-trained
CLIP model for Style Cleaning to isolate pure style information. In
CLIP space, we filter out style-irrelevant details by subtracting con-
tent descriptors from style embeddings. Specifically, descriptions of
the style reference image are generated using a captioning model
(e.g., GPT-4V) to distinguish content-related descriptors. The CLIP
Text Encoder extracts a Content Text Embedding (or both content
and style) from these descriptors, while the CLIP Image Encoder
produces a Style Image Embedding. Subtracting Content Text Embed-
ding from Style Image Embedding (and adding Style Text Embedding)
yields a Final Style Embedding containing only style-related infor-
mation. The style clean process is shown in Fig. 2.
Progressive Style Outpainting (PSO). PSO is a novel style guid-
ance method for consistent and detailed style propagation in multi-
view 3D stylization (see Fig. 2). Using 2D style priors provided by
an image stylization diffusion model [16], we redefine multi-view
guidance as a progressive outpainting task. By integrating sparse-
view RGB loss with dense-view SDS loss, PSO ensures consistent
3D stylization across views. Instead of random view selection, our
method incrementally propagates style information to adjacent
views, enhancing style coherence with each step. Specifically, PSO
consists of two primary guidance modes, namely gobal guidance
and local guidance.
Global Guidance. In the global gudance stage, a uniform noise
level is applied to all views before stepwise reduction, defined as:

𝛼step =

( ⌊
𝑖step
𝑛view

⌋
mod 𝑛opt

)
𝑛opt

(4)

where𝑛view represents the total number of rendering views and𝑛opt
denotes the required optimizations per view, managed iteratively
by 𝑖step.
Local Guidance. Local guidance focuses on single-view optimiza-
tion, maximizing stylization quality for individual views, albeit at
the potential expense of global consistency. The local guidance
schedule is defined as:

𝛼step =
𝑖step mod 𝑛opt

𝑛opt
(5)

The effectiveness of thesemodes in balancing stylization strength
and consistency is discussed in Sec. 4.3. To maximize the stylization
outcome, we combine both guidance modes for complementary
strengths.

Fine Timestep Sampling. Fine timestep sampling enhances tem-
poral resolution by focusing on low-noise intervals for more gran-
ular optimization, with noise progressively decreasing from high
to low levels. This sampling strategy is formulated as:

𝑡 = 𝑅𝑜𝑢𝑛𝑑 ((1 − 𝛼0.5step) · T) .clip(𝑇min,𝑇max) (6)

where T denotes the total timesteps, with𝑇min and𝑇max setting the
bounds. Higher noise initialization effectively eliminates outlier
Gaussian, refining the stylization outcome.

Dynamic Style Score Distillation (DSSD). As shown in Fig. 2(b).
DSSD further extends score distillation by applying a dynamic
CFG (Classifier-Free Guidance) [24] scale coefficient to optimize
the intensity of style guidance. Fixed CFG values can lead to over-
smoothing (low CFG) or oversaturation (high CFG). To counter
this, we introduce a dynamic guidance coefficient that adaptively
balances fixed CFG values throughout optimization. The adaptive
coefficient is defined as:

Δ𝜆 = max
(
7.5, 𝜆max ·

(
𝛼2step

))
(7)

With this method, we extend the SSD proposed by [31], and define
the style loss in latent space as:
DSSD𝑧2D = (1−Δ𝜆𝑠 )𝜖𝜙2D (𝑧𝑡𝑠 |𝑦, 𝑡𝑠 ) +Δ𝜆𝑠𝜖𝜙2D (𝑧𝑡𝑠 |𝑦, 𝑠, 𝑡𝑠 ) −𝜖𝑠 , (8)

where 𝜖𝜙2𝐷 () is the predicted noise by the style-based 2D diffusion
prior 𝜙 .

The latent space loss aligns abstract style features, whereas pixel-
space loss emphasizes visible characteristics. For stylizing a given
3D model, latent loss ensures style feature transfer, while pixel
loss provides further reliability in visual output. Defining 𝑥𝑡𝑠 =

Decoder(𝑧𝑡𝑠 ), the pixel-space loss is given by:
DSSD𝑥2D = (1−Δ𝜆𝑠 )𝜖𝜙2D (𝑥𝑡𝑠 |𝑦, 𝑡𝑠 ) +Δ𝜆𝑠𝜖𝜙2D (𝑥𝑡𝑠 |𝑦, 𝑠, 𝑡𝑠 ) −𝜖𝑠 (9)
Our Dynamic Style Score Distillation (DSSD) objective function

integrates latent DSSD and pixel DSSD:

∇Θ𝑐𝑜𝑙𝑜𝑟
LDSSD (𝑥 = R(C𝑣 ;Θ𝑐𝑜𝑙𝑜𝑟 );𝜙, 𝑅) =

E𝑡𝑧𝑠 ,𝑡𝑥𝑠 ,𝜖𝑧𝑠 ,𝜖𝑥𝑠

[
𝜔 (𝑡)

(
𝜆𝑧2DDSSD

𝑧
2D + 𝜆𝑥2DDSSD

𝑥
2D

) 𝜕𝑥
𝜕𝜃

]
(10)

where 𝜔 (𝑡) is a weighting function regulating timestep contribu-
tions.
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Further, we optimize the stylized multi-view image 𝐼rgb and
the associated mask 𝐼mask for alignment with the input data. If
required, additional loss terms such as SSIM loss [72] or LPIPS
loss [86] may be integrated to enhance alignment. Thus, our final
objective function is:

Lstyle = 𝜆DSSDLDSSD + 𝜆RGBLRGB + 𝜆maskLmask (11)

This setup ensures multi-view consistency in 3D stylization,
achieving refined style expression and geometric fidelity through
the dynamic coefficient adjustment and adaptive optimization strat-
egy.

3.3 Simultaneously Optimized Scale (SOS)
To further enhance the texture details of 3D gaussian, multiscale
stylization strategy is introduced into the optimization process.
Following the silimar approach from [15, 19], we employ VGG-19
[60] to extract high-resolution texture features through its shallow
convolutional layers. We use N rendered images (each image is
represented as 𝐼v) from the source 3D gaussian and style reference
image 𝐼ref to compute multi-scale Gram matrix correlations and
formulate the style objectiveness as follows:

LSOS =
1
𝑁

𝑁∑︁
𝑣=1

∑︁
𝑙∈𝐿𝑠

∥𝐺 (𝜙𝑙VGG (𝐼𝑣)) −𝐺 (𝜙𝑙VGG (𝐼ref))∥
2
2 (12)

where 𝐺 (·) denotes Gram matrix computation,𝜙𝑙VGG represents
features from the 𝑙-th VGG layer and 𝐿𝑠 = {𝑅𝑒𝐿𝑈 _𝑘_1, 𝑘 ∈ 1, 3, 5}.

3.4 Contrastive Style Descriptor (CSD)
CSD[61] aims to build a high-performancemodel (variants of ViT [14],
like ViT-B and ViT-L) for the representation of the image style. The
ViT is trained with both self-supervised learning and supervised
objectives. As a result, the ViT can extract image descriptors with
concise and effective style information. To further align to the
style between the 3D gaussian and the given reference image, we
leverage the ViT to extract style feature from rendered images and
reference image respectilvely and then calculate the pairwise cosine
silimarity score. Finally, the CSD loss term reduces to:

LCSD =
1
𝑁

𝑁∑︁
𝑣=1

(1 − cos(𝜙ViT (𝐼𝑣), 𝜙ViT (𝐼ref))) (13)

3.5 3D gaussian Quality Assessment (3DG-QA)
In addition to preserving the original content and migration style
of 3D gaussian, we also need to ensure the overall quality between
the migrated style and content. CLIP-IQA [68] has been developed
to evaluate the look or quality of an image. CLIP-IQA leverages
CLIP for perception assessment and calculate the cosine similarity
between the feature embeddings of the given text promt and image
as follows:

𝑠 =
𝑥 ⊙ 𝑡

| |𝑥 | | ∗ | |𝑡 | | (14)

where 𝑥 ∈ R𝐶 and 𝑡 ∈ R𝐶 represents the image embedding and
text embedding, C is the embedding channel dimension. CLIP-IQA
further introduces antonym prompts (e.g., “Good photo.” and “Bad
photo.”) to address the linguistic ambiguity. 𝑡1 and 𝑡2 are obtained

from text prompts with good quality and bad quality respectively
and the 𝑠𝑖 can be obtained with the corresponding 𝑡𝑖 , then the final
CLIP-IQA score can be formulate as:

𝑠 =
𝑒𝑠1

𝑒𝑠1 + 𝑒𝑠2 (15)

We adopt the CLIP-IQA property and extend CLIP-IQA to the
3D style transfer field to ensure the perception quality of 3D gauss-
ian. More specifically, we define the 3D gaussian Quality Assess-
ment (3DG-QA) as a objective term as:

L3DG-QA =
1
𝑁

𝑁∑︁
𝑣=1

(1 − 𝑠𝑣) (16)

where 𝑣 means the viewpoint index rendered from the 3D gauss-
ian representation.

3.6 Stylizing 3D GS with mixture of encoders
The StyleMe3D approach systematically addresses five fundamen-
tal aspects in 3D gaussian stylization: (1) Style-content decoupling,
(2) Adaptive style conditioning, (3) Multi-scale feature alignment,
(4) Texture detail enhancement, and (5) Global aesthetic optimiza-
tion with four principal components. The DSSD stablishes effective
style conditioning through high-level semantic alignment, lever-
aging score-based stable diffusion to extract and transfer domain-
invariant style features. SOS addresses low-level feature alignment
via multi-scale optimization, preserving stylistic textures through
scale-aware importance sampling and geometric consistency con-
straints. CSD facilitates mid-level style-content harmonization us-
ing contrastive learning to disentangle and recompose style at-
tributes while maintaining content integrity. At last, 3DG-QA en-
hances global aesthetic quality through metric-guided refinement,
employing perceptual quality evaluation to optimize both local
textural coherence and global visual appeal.

We integrate the whole optimization goal as:

L𝑓 𝑖𝑛𝑎𝑙 = 𝜆1Lstyle + 𝜆2LSOS + 𝜆3LCSD + 𝜆4L3DG-QA (17)

where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 stand for the multi-task coefficients. For
shortly, this multi-faceted approach ensures semantic-aware style,
fine-grained style, style fidelity and global aesthetics quality.

As demonstrated in Sec. 4.3, the combined losses enable simulta-
neous preservation of geometric integrity and artistic expression
while suppressing common artifacts like over-stylization and tex-
ture flickering.

4 Experiment
4.1 Visual Result

As shown in Fig. 3, we applied six styles to showcase our exper-
imental results on both object and scene datasets (NeRF synthetic
dataset [47] and tandt db [29]). The style references fall into two
main categories: non-photorealistic art styles (e.g., vangogh, car-
toon, sketch, hand-drawing, watercolor, painting) and state-based
styles (e.g., fire, water, clouds, hair). These categories highlight our
method’s ability to handle traditional art styles and capture realistic
physical characteristics in 3D. To highlight our method’s advantage
in preserving detail textures and shadows, we zoom in on details
like the legs and detail texture of the chair, texture of the fire on the
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Object Style Image Stylized Object Scene &
Style Image Stylized Scene

Figure 3: Visual Result. Demonstration of our method’s performance across five styles (vangogh wheat field, star night, fire
nezha, colorful oil, and lighting tiger) applied to five objects(chair, ship, hotdog, lego and mic) and two scenes (man face and
train). The results illustrate our model’s capability to handle two main categories of styles: (1) Non-photorealistic Art Styles
(e.g., cartoon, drawing), showcasing traditional artistic expressions, and (2) State-based Styles (e.g., fire, oil), which capture
physical properties. This figure demonstrates our method’s versatility and semantic-aware ability in stylizing 3D models while
preserving style fidelity and geometric consistency across diverse artistic and physical characteristics. For Example, semantic
separation of the legs of the chair from the seat cushion, detail texture of chair, texture of the fire on the hot dog, and metallic
sheen on the mic are all effectively preserved.

hot dog, and metallic sheen on the mic. Experimental results indi-
cate that Gaussian Splatting effectively enhances non-photorealistic
and state-based style representations, showing strong adaptability
in diverse stylized scenarios. Additional results are provided in the
Supplementary.

4.2 Comparison Studies
Qualitative Result. we show objects and scene stylization com-
parisons in Fig.4 and Fig.5 respectively. For objects, we applied
vangogh, fire nezha, and sketch styles to chair, hotdog and mic. For
scene stylization, we select truck and train from tandt db dataset
using landscope and lighting tiger styles. We evaluate our method
against others, including SGSST [15], StyleGaussian [40] and ARF
[85]. The horizontal axis lists competing methods and the vertical
axis denotes datasets.

Different from traditional methods based only on VGG networks
like SGSST [15], StyleGaussian [40] and ARF [85], which focus on
simple style transfer, our approach prioritizes vivid, expressive and
semantic-aware stylization. They relies on VGG networks [60] with
empirical-based style decoupling, which limiting style extraction
with customized references, our diffusion-based and multi-Expert
method, pre-trained on large-scale style image-text data, captures
style features with greater fidelity. Moreover, training on image-text
data enhances semantic understanding, allowing content filtering
in CLIP space for precise style extraction.

Unlike ARF [85], which depends on carefully pre-stylized views
for effective color matching and risks texture drift if the initial view
is misaligned, our method only requires a single arbitrary style
reference image. While we incorporate pre-stylized multi-views,
they serve solely for pixel-level style guidance in our outpainting
process rather than relying on single-view matching, establishing
a distinct way from that of ARF.

Table 1: Quantitative comparison with competing methods

Method PSNR↑ SSIM↑ LPIPS↓
ARF 17.537 0.802 0.188
SGSST 11.963 0.678 0.306
StyleGaussian 7.279 0.129 0.558
Ours 18.015 0.830 0.174

Quantitative Evaluation We evaluate our method with three
standard image quality metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM) [72], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [86]. PSNR quantifies pixel-
level accuracy, indicating how closely the stylized image matches
the original. SSIM measures structural similarity, capturing per-
ceptual features like textures and edges. LPIPS assesses perceptual
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StyleGaussianARFStyleInput OursSGSST

Figure 4: Qualitative Comparisons on Object Level Stylization. We compare our method against other SOTA (SGSST [15],
StyleGaussian [40] and ARF [85]) on nerf synthetic dataset (selected chair, hotdog, and mic) using vangogh wheat field, fire
nezha, and sketch styles. The horizontal axis represents the compared methods, and the vertical axis displays different data.
Our method effectively retains semantic and details of original model and style feature of reference image, such as semantic
separation of the legs of the chair from the seat cushion, texture of the fire on the hot dog, and metallic sheen on the mic.
Compared to others, our method exhibits stronger semantic understanding, clearly distinguishing elements like the cushions,
backrest and legs on the chair.

OursSGSSTStyleGaussianARFStyle Input

Figure 5: Qualitative Comparisons on Scene Level Stylization. We compare our method against other SOTA (SGSST [15],
StyleGaussian [40] and ARF [85]) on tandt db dataset (selected truck and train) using landscope and lighting tiger styles. The
horizontal axis represents the compared methods, and the vertical axis displays different data. Our method effectively retains
semantic and details of original model and style feature of reference image, such as the truck wheel and train fence (as shown
in Zoom-in). Compared to others, our method exhibits stronger semantic understanding, clearly distinguishing elements like
the fence, tire and rail.
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Figure 6: Ablation study on style outpainting guidance mode.
(a) Baselinewithout style outpainting exhibits limited styliza-
tion scope and view-dependent artifacts (red boxes). (b) Local
Guidance enables single-view enhancement but causes multi-
view inconsistencies. Global-Local Fusion achieves cross-
view style propagation through adaptive attention weighting,
improving style consistency while preserving view-specific
details.

low scale high scaledynamic scaleInputStyle

Figure 7: Ablation study on dynamic noise scheduling. Low
Scale (7.5) produces incomplete stylization with missing tex-
ture details. High Scale (50) introduces oversaturation arti-
facts and structural distortions. Dynamic Scale (7.5-30) adap-
tively balances detail preservation and style intensity.

quality based on deep network features, emphasizing visual simi-
larity as perceived by humans.

As shown in Tab. 1, our method achieves significantly higher
SSIM and PSNR scores, demonstrating enhanced structural and per-
ceptual fidelity compared to SGSST, StyleGaussian and ARF. Our
higher PSNR and SSIM score indicates better fidelity in color and
texture reproduction while preserving structural details. Further-
more, the LPIPS score, measuring perceptual similarity, supports
our method’s superior style consistency and stylization quality
across multiple viewpoints.

Table 2: Quantitative comparison with DSSD version and
Multi-Expert version

Method PSNR↑ SSIM↑ LPIPS↓
Ours (DSSD) 17.270 0.776 0.181
Ours (Multi-Expert) 18.015 0.830 0.174

DSSD DSSD + SOS DSSD + SOS + CSD + CLIP-IQAStyle

Figure 8: Ablation study loss design. (a) DSSD-only initial-
ization yields semantically coherent but texture-deficient
results with color shifts (see missing curvilinear patterns
in Van Gogh stylization). (b) DSSD+SOS achieves texture-
geometry equilibrium through gradient mutual regular-
ization, recovering fine details while suppressing over-
smoothing. (c) Full Model (DSSD+SOS+CSD+CLIP-IQA) en-
hances perceptual quality via knowledge-driven style assess-
ment, achieving remarkable improvement over baseline (Ta-
ble 2).

4.3 Ablation Study
We conducted ablation studies to assess the impact of various

components and parameters in our method, focusing on style out-
painting mode, DDSD and multi-expert module.
Ablation on Style Outpainting. As shown in Fig. 6. We present
an ablation study on the impact of Style Outpainting. Without it,
the degree of stylization is visibly limited, whereas applying Style
Outpainting allows effective style propagation across views. We
compares different guidance schemes: local mode & global-local
mode. Local mode shows inconsistencies, resulting in artifacts and
missing details in certain views. In contrast, global-local mode en-
hances stylization intensity and detail refinement, achieving more
coherent stylization across views.
Ablation on DSSD. As shown in Fig. 7. We conducted an ablation
study on the effectiveness of dynamic guidance scale in DSSD.
Comparing results at a low scale of 7.5, a high scale of 50, and a
dynamic scale ranging from 7.5 to 30, we observed that the dynamic
scale approach consistently outperforms static setting.
Ablation on Multi-Expert. As shown in Fig. 8, we analyze the
impact of SOS, CSD and 3DG-QA on stylization quality. our analysis
reveals that initial stylization using DSSD alone produces semanti-
cally coherent results but suffers from two critical limitations: 1) In-
sufficient low-level texture details (e.g., missing curvilinear patterns
in Van Gogh-inspired wheat field renderings), and 2) Systematic
color deviation artifacts. The introduction of SOS loss establishes a
dual-optimization framework where DSSD and SOS operate concur-
rently within single-view projections. This configuration enables
mutual regularization of their gradient optimization directions -
DSSD’s tendency toward over-smoothing is counterbalanced by
SOS’s capacity for detail enhancement, while SOS’s potential over-
emphasis on low-level features is constrained by DSSD’s semantic
guidance.

Subsequent integration of CSD and 3DG-QA implements knowledge-
driven perceptual assessment through CLIP-space cosine similarity
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metrics. The CSD module specializes in style authenticity evalu-
ation through learned artistic aesthetics criteria, while 3DG-QA
provides quality-focused guidance via antonymic text prompts.
Quantitative analysis shows this combined approach achieves re-
markable improvement in human perceptual quality scores com-
pared to baseline configurations (see Table 2).

5 Conclusion
We redefine the 3D Gaussian Splatting (3D GS) stylization task
through comprehensive analysis and propose the StyleMe3D frame-
work, establishing a novel paradigm for artistic 3D scene stylization.
StyleMe3D enables artistic 3D Gaussian Splatting stylization via
Stable Diffusion-guided score distillation (DSSD), contrastive style
descriptors (CSD), and multi-scale optimization (SOS). The 3DG-QA
module ensures aesthetic coherence while preserving geometry. Ex-
periments show superior detail retention, style consistency across
various objects and scenes.
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Appendix

A Preliminary
A.1 Style-aware Image Customization

In recent advancements in style transfer, StyleShot [16] and
IP-Adapter [82] represent two prominent techniques, each employ-
ing distinct methods to transfer style from a reference image to
a target image. StyleShot emphasizes the extraction of detailed
style features using a style-aware encoder, which leverages multi-
scale patch partitioning to capture both low-level and high-level
style cues. Specifically, StyleShot divides the reference image into
non-overlapping patches of three sizes, corresponding to differ-
ent scales. For each patch scale, there is a dedicated ResBlock at
different depths.

The following are the key formulas for style injection in StyleShot:

Attention(𝑄,𝐾𝑠 ,𝑉𝑠 ) = softmax
(
𝑄𝐾𝑇𝑠√
𝑑

)
·𝑉𝑠 (S1)

where 𝑄 is the query projected from the latent embeddings 𝑓 , and
𝐾𝑠 and𝑉𝑠 are the keys and values, respectively, that the style embed-
dings 𝑓𝑠 are projected onto through independent mapping functions
𝑊𝐾𝑠

and𝑊𝑉𝑠 . The attention outputs of the text embeddings 𝑓𝑡 and
style embeddings 𝑓𝑠 are then combined into new latent embeddings
𝑓 ′, which are fed into subsequent blocks of Stable Diffusion:

𝑓 ′ = Attention(𝑄,𝐾𝑡 ,𝑉𝑡 ) + 𝜆Attention(𝑄,𝐾𝑠 ,𝑉𝑠 ) (S2)
where 𝜆 represents the weight balancing the two components.

A.2 Score Distillation Sampling for 3D
Generation

Text-guided 3D generation has gained significant attention due
to advancements in methods such as Score Distillation Sampling
(SDS) [53], which facilitates the optimization of 3D representations
using pre-trained diffusion models. SDS optimizes the parameters
𝜃 of a 3D model 𝑔(𝜃 ) by distilling gradients from a diffusion model
𝜙 , ensuring that 2D projections generated from 𝑔(𝜃 ) align with a
target text prompt. The gradient of the SDS loss is defined as:

∇𝜃𝐿SDS (𝜙, 𝑥 = 𝑔(𝜃 )) = E𝑡,𝜖
[
𝜔 (𝑡)

(
𝜖𝜙 (𝑧𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕𝑥
𝜕𝜃

]
, (S3)

where 𝜖𝜙 (𝑧𝑡 ;𝑦, 𝑡) represents the predicted noise residual from the
pre-trained diffusion model, 𝜖 is the actual noise used in the forward
process, 𝑧𝑡 is the latent variable at timestep 𝑡 , and𝜔 (𝑡) is a timestep
weighting function.

These have been extended to artistic scene generation [36] and
combined input conditions, including text and images [74, 80]. Re-
cent advances leveraging latent diffusion models have improved
the scope and expressiveness of text-to-3D synthesis [80, 88], sup-
porting more nuanced and creative 3D outputs.

A.3 3D Gaussian Splatting
3D Gaussian Splatting (3D GS) [29] represents a 3D scene using

a collection of spatial Gaussians. Each Gaussian 𝑔𝑖 is defined by a
mean position 𝜇𝑖 ∈ R3 and a covariance matrix Σ𝑖 ∈ R3×3, which
determines its shape and orientation. The Gaussian’s influence on
a point x is given by:

𝐺 (x) = 𝑒−
1
2 (x−𝜇𝑖 )

⊤Σ−1
𝑖 (x−𝜇𝑖 ) (S4)

where Σ𝑖 = RSS⊤R⊤ is decomposed into a rotation R and scaling S
matrices. Each Gaussian has an opacity 𝛼𝑖 and a view-dependent
color 𝑐𝑖 .

During rendering, Gaussians are projected to 2D and blended
using alpha compositing. The final pixel color 𝐶 is calculated as:

𝐶 =

𝑛∑︁
𝑖=1

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (S5)

Here, 𝛼𝑖 is the effective opacity of the 𝑖-th Gaussian in sorted
depth order. Gaussian Splatting enables real-time, differentiable
rendering and can reconstruct scenes with multi-view supervision.

Compared to NeRF [47], 3D Gaussian Splatting is significantly
more efficient in both time and memory usage. By representing
scenes with Gaussian primitives rather than dense neural networks,
it allows for faster rendering and lower computational costs, making
it more suitable for real-time applications.

B Implementation Details
Computational Environment: All experiments were conducted
on a single NVIDIA L40S GPU with 46GB of VRAM.
Dataset: NeRF synthetic dataset [47] and tandt db [29], was used
for all experiments.

B.1 Details of Dynamic Style Score Distillation
(DSSD)

(1) Backbone Models: For the style-aware diffusion model, we
adopt StyleShot, which builds on IP-Adapter and incorpo-
rates a style-aware encoder to enhance style representation,
enabling robust style transfer through score distillation guid-
ance.

(2) FineTimestep Sampling:We employ a fine-grained timestep
sampling strategy with a timestep constant T = 1000. Mini-
mum and maximum timesteps were set as𝑇min = 0.02 ·T and
𝑇max = 0.75 ·T, respectively. The noise intensity was dynam-
ically reduced to high, medium, and low levels to stabilize
the updates during training.

(3) Dynamic Guidance Coefficients: The dynamic guidance
coefficient Δ𝜆 was tuned to adapt to varying scales of the
dataset and style variations. For the NeRF Synthetic dataset,
we selected 𝜆max = 20 and confined Δ𝜆 within [7.5, 20].

(4) Guidance Modes and Outpainting Strategy: A total of
2800 steps were employed, segmented into specific guidance
modes:
• Main RGB Loss (Local Mode): Steps 100 to 600.
• Adaptive Iteration (Global Mode): Steps 1 to 1000, al-
ternating between global RGB and global SDS losses.

• Fixed or Free Global Modes: Steps 1000 to 1900, alter-
nating between global-fix and global-free modes.

• Local Mode: Steps 1900 to 2800.
This hybrid strategy begins with global optimization before
transitioning to local refinement, requiring 1800 iterations
for SDS loss.

(5) Iteration Time and Cost Analysis:
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• Average Time Per Iteration: Single-view RGB loss aver-
aged 0.1 seconds, while SDS loss averaged 2.5 seconds.

• Total Iteration Count and Convergence: Using RGB
loss for the initial 1000 steps and SDS loss for the subse-
quent 2000 steps, convergence was achieved in approxi-
mately 2600 seconds. For enhanced local convergence, an
additional 500 to 1000 SDS iterations were applied.

B.2 Details of Simultaneously Optimized Scale
(SOS)

(1) VGG Feature Extraction
• Style layers:
[’r11’,’r21’,’r31’,’r41’,’r51’]

• Content layer: [’r42’]
• Gram matrix weights: [1e3/64², 1e3/128², 1e3/256²,
1e3/512², 1e3/512²]

(2) Two-Phase Optimization
• Pretraining phase:
– Trigger: optimize_iteration=10000 and current_iter
< 10000

– Fixed scale: optimize_size=0.5 (uses minimum re-
size_images if unspecified)

– Downsampling: Bilinear interpolation mode="bilinear"
• Full multi-scale phase: Activates all resize_images scales

B.3 Details of Contrastive Style Descriptor
(CSD)

• Deployed CSD ViT-L style encoder pretrained on LAION-
Styles dataset.

B.4 Details of 3D Gaussian Quality Assessment
(3DG-QA)

• Integrated CLIP-ViT-Bwith antonymic prompts: "Good, Sharp,
Colorful" vs "Bad, Blurry, Dull", prompts=("quality", "sharp-
ness", "colorfullness")

• loss = 1 - (0.4*scores[’quality’] + 0.4*scores[’sharpness’]
+ 0.2*scores[’colorfullness’]).mean() , where 𝑤𝑞 =

0.4, 𝑤𝑠 = 0.4, 𝑤𝑐 = 0.2 denote quality, sharpness, and
colorfulness weights respectively.

C Additional Method Analysis
The challenges of directly transferring 3D generation techniques

to 3D stylization stem from the optimization gap between pre-
training and post-training stages. This section provides a theoretical
and visual analysis of this gap.

C.1 Misalignment in Optimization Pathways
• Pre-training Objective: The goal of 3D reconstruction dur-
ing pre-training is to capture geometric and photometric
properties accurately. This optimization process is typically
smooth and guided by explicit ground truth data.

• Post-training Objective: In the post-training phase, the
focus shifts to aesthetic alignment using style-aware guid-
ance, which lacks explicit supervision and introduces higher
uncertainty.

Figure S1: Optimization Pathways for Pre-training vs. Post-
training. The plot illustrates the optimization pathways
for pre-training (blue solid line) and post-training (orange
dashed line), highlighting the optimization gap (gray shaded
area) between 3D reconstruction and stylization. The pre-
training pathway shows smooth, steady convergence, while
the post-training pathway oscillates due to inherent uncer-
tainty in stylization. The optimization gap represents mis-
alignment between the stages, emphasizing the need for
alignment techniques, such as style-aware priors and dy-
namic guidance, to achieve stable and consistent 3D styl-
ization.

• Disjoint Loss Landscapes: The loss landscapes for pre-
training and post-training differ significantly. Pre-training
minimizes reconstruction errors, while stylization involves
abstract priors from style information, leading to potential
misalignment.

The optimization pathways during pre-training and post-training
can be represented as two distinct loss functions:

Lpre = Lrecon (𝐺pre (𝑥), 𝑥gt), (S6)

whereLrecon minimizes geometric and photometric errors between
the predicted 𝐺pre (𝑥) and ground truth 𝑥gt, and:

Lpost = Lstyle (𝐺post (𝑥), 𝑠ref), (S7)

where Lstyle aligns the generated results 𝐺post (𝑥) with a style
reference 𝑠ref using abstract priors.

The optimization gap can then be formulated as:

ΔL =
��Lpre − Lpost

�� , (S8)

where ΔL quantifies the divergence between the loss landscapes,
reflecting the mismatch in optimization objectives.

C.2 High Uncertainty in Style Information
• Multi-modal Style Representations: Styles are inherently
diverse and lack well-defined ground truth, making the opti-
mization process less predictable.

• Temporal Instability: Stylization optimization pathways
often exhibit oscillations due to conflicts between style priors
and geometric constraints.
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The uncertainty in style optimization can be modeled as the
variance in style priors:

𝜎2style = Var(𝑠ref), (S9)

where 𝑠ref represents multi-modal style representations. Temporal
oscillations in optimization can be expressed as:

𝛿𝑡 =
��∇Lpost,𝑡+1 − ∇Lpost,𝑡

�� , (S10)
where 𝛿𝑡 measures the instability between consecutive timesteps 𝑡
and 𝑡 + 1.

C.3 Visualization Analysis
The graph (Figure S1) visualizes the optimization gap between

pre-training and post-training:
• Pre-training pathway (blue solid line) shows smooth con-
vergence, reflecting steady optimization for geometric fi-
delity.

• Post-training pathway (orange dashed line) exhibits oscil-
lations, driven by the abstract and subjective nature of style
priors.

• Optimization gap (gray shaded area) represents the diver-
gence between the two pathways, indicating the challenges
of transitioning between the stages.

To bridge the optimization gap, alignment strategies must mini-
mize:

min
𝐺

ΔL + 𝜆consLconsistency, (S11)

where Lconsistency enforces multi-view consistency, and 𝜆cons is a
weighting factor to balance consistency with style fidelity.

C.4 Key Observations and Insights
(1) Mismatch in Optimization: The smooth convergence of

pre-training contrasts with the oscillatory adjustments in
post-training, reflecting the differences in objectives—geometric
accuracy vs. subjective style transfer.
The loss landscapes Lpre and Lpost differ fundamentally in
their curvature:

𝜅pre ≪ 𝜅post, (S12)
where 𝜅 represents the curvature, indicating smoother opti-
mization for pre-training compared to post-training.

(2) Impact of the Gap: The optimization gap introduces chal-
lenges such as:
• Optimization Instability: Misaligned pathways can lead
to instability during post-training.

• Inconsistent Stylization: Divergent trajectories may re-
sult in geometric distortions or incomplete stylization.

Misaligned pathways can exacerbate:
• Instability: ΔL leads to higher gradients:

∇Lpost ≫ ∇Lpre . (S13)

• Inconsistency: Variance in style priors 𝜎2style introduces
inconsistencies in multi-view stylization.

(3) Bridging the Gap: Effective strategies such as style-aware
diffusion priors, dynamic style score distillation, and progres-
sive style outpainting are critical to aligning pathways and
ensuring robust stylization.

Introducing regularization terms:
Lalign = 𝜆priorLstyle + 𝜆geoLrecon, (S14)

where 𝜆prior and 𝜆geo balance style fidelity and geometric
preservation, helps align the pathways.

C.5 Conclusion
This analysis highlights the inherent challenges in aligning pre-
training and post-training optimization pathways. The visualization
emphasizes the need for dedicated techniques to bridge the gap,
ensuring high-fidelity and consistent stylization while maintaining
geometric coherence.

D More Visual Result
As shown in Figure S2, S3, and S4, we demonstrate our method’s

performance across nine distinct styles (sky painting, cartoon, wa-
tercolor, fire, cloud, Wukong, drawing, color oil, and sketch) on
three datasets (chair, hotdog, and mic).
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Figure S2: More visual results. Demonstration of our method’s performance across nine distinct styles (sky painting, cartoon,
watercolour, fire, cloud, Wukong, drawing, color oil, and sketch) applied to chair.

Figure S3: More visual results. Demonstration of our method’s performance across nine distinct styles (sky painting, cartoon,
watercolour, fire, cloud, Wukong, drawing, color oil, and sketch) applied to hotdog.
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Figure S4: More visual results. Demonstration of our method’s performance across nine distinct styles (sky painting, cartoon,
watercolour, fire, cloud, Wukong, drawing, color oil, and sketch) applied to mic.
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