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Figure 1. DRAWER automatically converts a video of a static scene into an interactable and actionable virtual environment. The
reconstructed digital twin features precise geometry, high-fidelity rendering, and supports physical interactions like opening/closing
drawers/cabinets and moving/placing objects. It can also be seamlessly integrated with modern game engines and robotic simulation
platforms, enabling the creation of interactive games and facilitating real-to-sim-to-real policy transfer.

Abstract

Creating virtual digital replicas from real-world data un-
locks significant potential across domains like gaming and
robotics. In this paper, we present DRAWER, a novel frame-
work that converts a video of a static indoor scene into
a photorealistic and interactive digital environment. Our
approach centers on two main contributions: (i) a recon-
struction module based on a dual scene representation that
reconstructs the scene with fine-grained geometric details,
and (ii) an articulation module that identifies articulation
types and hinge positions, reconstructs simulatable shapes
and appearances and integrates them into the scene. The re-
sulting virtual environment is photorealistic, interactive, and
runs in real time, with compatibility for game engines and
robotic simulation platforms. We demonstrate the potential
of DRAWER by using it to automatically create an interac-
tive game in Unreal Engine and to enable real-to-sim-to-real
transfer for robotics applications. Project page: here.

1. Introduction

The ability to automatically create a realistic, interactable,
and highly detailed virtual replica of a physical environment

offers immense potential across multiple domains. For game
developers, this presents an opportunity to replace painstak-
ing human labor with streamlined, automated processes
[14, 16]. In robotics, training and evaluating autonomous
systems within richly detailed virtual spaces enable safer and
more scalable learning. Take Fig. 1 as an example. Given a
video of a scene (in this case, static), if we were to construct
a digital replica that is not only visually and geometrically
authentic but also physically grounded, then an agent de-
ployed in this mirror world would be able to freely navigate
the environment, interact with the scene (e.g., opening draw-
ers/cabinets, grabbing objects), and leverage observations
and feedback to learn a policy that can seamlessly transfer
to its real-world counterpart. Digital twins can thus serve as
dynamic, virtual testbeds for studying and interacting with
reality. However, to this day, automatically generating digital
twins that mirror their real-world counterparts in terms of vi-
sual appearance, geometric details, and physical properties
still remains a complex and unresolved task.

To mitigate the domain gap in visual or geometric quality,
3D reconstruction techniques, such as neural fields [58, 84],
have emerged as promising solutions for constructing digital
twins. However, despite their impressive realism, the recon-
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DRAWER: Digital Reconstruction and Articulation With Environment Realism
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Figure 2. Overview of DRAWER: Given multiple posed images from a single video, we first employ a dual scene representation to capture
high-fidelity visual appearance as well as fine-grained geometry. Then we animate the scene by reasoning about articulated and movable
rigid-body objects. Finally, our amodal shape estimation with hidden region texturing enables us to create a complete digital twin. Our
reconstructions support real-time physical interactions such as opening drawers/cabinets, moving objects, and rendering novel views.

structions are still static and non-actionable. While users can
freely view the scene from different angles, they cannot in-
teract with it. Furthermore, there is often a trade-off between
visual fidelity and geometric precision: pushing for photore-
alism often requires sacrificing some underlying geometric
accuracy [32, 58], and vice versa [86, 102]. Alternatively,
to enable interaction capabilities in digital representations,
researchers have utilized shape primitives and CAD models
to approximate the physical world [10, 11]. While they can
construct virtual scenes and objects that resemble their real-
world counterparts semantically and functionally, it comes
at the expense of visual and geometric fidelity. The status
quo calls for a method that takes the best of both worlds.

Towards this goal, we present, DRAWER, a novel frame-
work that automatically converts a video of a static indoor
scene into a photorealistic and interactable digital environ-
ment with fine-grained geometric details. At the core of our
approach lies two key components: (i) a 3D reconstruction
module based on a dual scene representation and (ii) an
articulation module. Given an input video, we first construct
a neural signed distance field (SDF) that effectively captures
the scene’s geometric details. We then initialize and anchor
Gaussian splats with the estimated surface. This allows us
to avoid floaters and preserve well-behaved geometry while
enjoying rendering quality and speed. To make the recon-
structed scene interactable, we leverage foundation models to
infer articulation types and hinges of objects in the scene and
approximate them with shape primitives. To ensure seamless
integration of articulated objects into the original reconstruc-
tion, we further exploit differentiable rendering to align both
their geometry and appearance. To enhance realism, we also
infer the complete geometry and appearance of hidden in-
terior regions. The resulting environment is photorealistic,
interactable, and runs in real time.

We evaluate the fidelity of our reconstructed digital twins
based on visual realism, articulation accuracy, and the pre-
cision of simulated motions across six distinct kitchen en-
vironments. DRAWER significantly outperforms prior art
across all metrics. To further validate the effectiveness of the

generated simulation environments, we employ them to cre-
ate an interactive game and to train robotic controllers using
a real-to-sim-to-real loop. Experimental results indicate that
DRAWER eliminates the need for tedious manual effort and
hand-specification in both applications.

2. Related Works

Novel view synthesis (NVS): The ability to render a scene
from new viewpoints using a set of pre-captured images [7,
19, 24, 38, 76] is essential for building digital twins. The
core of NVS is the co-design of scene representations and
rendering methods. Among common representations such
as neural radiance fields [4, 5, 58, 60, 83], neural textured
mesh [78, 89], geometry primitives [1, 9, 42, 63, 96, 112],
and neural surface fields [12, 40, 65, 84, 86, 88, 98, 99, 101],
Gaussian splatting [32] emerges as a promising choice, of-
fering flexibility and real-time rendering. On the other hand,
neural surface models [99] provide accurate and detailed
geometry, making them well-suited for reconstruction, artic-
ulation, and physical simulation. In this paper, we introduce
a novel dual representation that combines the best of both
works. Our approach extends beyond standard NVS, en-
abling active simulation and counterfactual visualization as
the scene is interacted with and modified.

Data-driven simulation: Learning-based simulation [2, 8,
51, 56, 74, 97] has become popular for its effectiveness in
simulating dynamics [39, 50, 90], modeling lighting [43, 67],
and generating outputs in response to counterfactual actions
[48, 89, 97]. These methods have been applied in various
domains, including content creation [26, 50], game develop-
ment [89], robot learning [8, 56, 68, 93, 95, 97], and multi-
modal generation like LiDAR [45, 56, 91, 97, 114, 115]. Our
work falls within this category. We enable realistic model-
ing, simulation, and rendering of articulated objects in static
scenes, from and to photorealistic videos. To our knowledge,
this is the first approach of its kind. The closest work to ours
is Video2Game [89], which also aims to reconstruct an in-
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Gaussian splatting Neural SDF Our Dual Representation

Figure 3. Qualitative Comparisons of Different Representations: (Left) Gaussian splatting [27, 32] can effectively capture the visual
appearance of a scene yet struggles with accurate geometric modeling. (Middle) Neural SDF recovers fine-grained geometry but at the cost of
slow rendering speeding and degraded appearance modeling. (Right) Our dual representation combines the strengths of both representations,
offering both high-quality appearance and geometry in real time.

teractable 3D scene from a video of a static scene. However,
there are three key differences: 1) we significantly enhance
interactivity by simulating articulated objects; 2) we improve
visual quality with a novel dual representation; and 3) be-
yond real-time gaming, we show utility for robot learning,
where robots practice opening drawers and cabinets in our
simulated environment and transfer these skills to the real
world in a zero-shot setting.

Articulation modeling and simulation: Creating inter-
actable and articulated virtual scenes that resemble reality
typically requires specialized skills, professional software,
and extensive human efforts [14, 61, 79]. To address this
challenge, researchers have proposed using automated tools,
such as procedural generation [13, 72], or learning-based
methods to directly model or approximate real-world envi-
ronments [25, 30, 46, 89, 97]. However, current research
in robotics and vision primarily focuses on individual ob-
jects [10, 23, 28, 29, 36, 37, 44, 54, 64, 100] and is not
directly applicable to larger scenes. While some methods
focus on scene-level modeling, they often assume access to
dynamic scenes before and after interactions [25, 30, 49],
or rely on human interventions [33, 80]. To scale this to the
real world, creating interactable scenes from passive obser-
vations has gained increasing attention [10, 11]. However,
these methods focus on replicating real-world semantics and
functionality, often neglecting visual and geometric fidelity.
In contrast, our digital twins faithfully reproduce real-world
environments with high visual, geometric, and physical ac-
curacy – even without any observed physical interactions
during capture. This fidelity is particularly crucial in do-
mains where appearance matters, such as content creation
and sim2real applications. Furthermore, as we will show
later, our approach, grounded in precise geometry, achieves
superior accuracy in articulation reasoning compared to prior
methods.

Controllable video generation: An alternative to mod-
eling how our world works is to leverage video generative
models to (implicitly) simulate various effects [20, 22, 35,

3DOI [69] Ours

Figure 4. Articulation Estimation: We visualize the estimated rev-
olute axes and articulated object masks produced by 3DOI [69] and
DRAWER, demonstrating that DRAWER achieves more precise
articulation estimation due to its underlying 3D geometry.

41, 85, 94, 109, 110, 113]. While existing methods produce
promising image space dynamics, they lack access to internal
states, which are essential for tasks like mobile manipulation.
For instance, knowing if a robot has grasped an object or
opened a drawer is critical. Additionally, generated frames of-
ten degrade in quality over longer time spans, and integrating
video dynamics with physical models or simulation engines
remains challenging. In contrast, our approach adheres to
physical laws, is compatible with simulation engines, and
provides access to underlying states beyond visual rendering.

3. DRAWER: Digital Reconstruction and Artic-
ulation With Environment Realism

Given a video of a static scene, our goal is to develop an
interactable and actionable digital twin that replicates the
3D world geometrically, photometrically, physically, and
efficiently. Based on the observation that existing approaches
tend to either focus on appearance modeling while neglect-
ing physical interaction [58], or prioritize interaction at the
expense of realism [10], we carefully design our method to
fulfill all essential properties needed for realistic, real-time
interactive applications. At the core of our approach is a
compositional dual scene representation that effectively and
efficiently supports both sensor and physics simulations. By
decomposing the world into individual entities and modeling
them with diverse yet tightly coupled representations, we
can capture various modalities (e.g., RGB, depth) and enable
physical interactions without compromising fidelity. Fig. 2
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Method Representation PSNR↑ SSIM↑ LPIPS↓ Interactive Compatibility
Real time Rigid-body physics Scene decomposition Articulation

Nerfacto [77] Volume 25.49 0.911 0.163 ✗ ✗ ✗ ✗
Video2Game (NeRF) [89] Volume 27.95 0.884 0.239 ✗ ✗ ✗ ✗

BakedSDF* [99] Mesh 21.11 0.787 0.409 ✓ ✓ ✗ ✗
Video2Game (Mesh) [89] Mesh 22.63 0.822 0.323 ✓ ✓ ✓ ✗

3DGS [32] Points 30.42 0.954 0.126 ✓ ✗ ✗ ✗
2DGS* [27] Points 25.68 0.884 0.269 ✓ ✓ ✗ ✗

Ours Points+Mesh 27.80 0.912 0.159 ✓ ✓ ✓ ✓

Table 1. Quantitative Results on Novel View Synthesis and Interactive Compatibility Analysis: The dual scene representation in
DRAWER provides competitive high-fidelity rendering with most-capable interactive compatibility. ∗BakedSDF [99] and 2D-GS [27]
represent the entire scene as a whole, limiting object-level interactions.

shows an overview of our approach.

3.1. Preliminaries
Neural signed distance fields (SDFs): A neural SDF fSDF

θ

maps a 3D point x ∈ R3 and a view direction d ∈ R2

to an RGB radiance c ∈ R3 and a signed distance to the
nearest surface s ∈ R: s, c = fSDF

θ (x,d). One popular
paradigm to learn neural SDF from a set of posed images
is through volume rendering [57, 59, 98]. By converting
signed distances to volume densities [84, 99], one can alpha-
composite the radiance of 3D points ci along each camera
ray r to obtain the estimated pixel color c(r) =

∑N
i=1 wici ,

and then compare with the GT: Lrgb =
∑

r∥ĉ(r)− c(r)∥22.
Here, wi = αi

∏i−1
j=1(1 − αj) indicates blending weight,

and αi represents opacity. We refer the readers to [98, 99]
on how to derive opacity from signed distances. In practice,
although Neural SDFs are better at capturing geometry, their
rendering quality often lags behind NeRF-based approaches
[4, 59]. Also, volume rendering requires sampling many
points per ray, making it time-consuming and unsuitable for
high-FPS applications. To improve efficiency, one strategy is
to convert Neural SDFs into meshes. While this significantly
accelerates rendering, it compromises rendering quality [89]

Gaussian splatting: An alternative approach for maintain-
ing high visual quality with efficiency is to represent the
scene as a set of 3D Gaussians [32]. Each Gaussian is char-
acterized by a set of parameters: mean µ, scale S, rotation
R, opacity α, and color radiance c (encoded using spherical
harmonics). The covariance is derived as Σ = RSSTRT .
By rasterizing the 3D Gaussians and alpha-compositing
them, we obtain the pixel color c(p) =

∑N
i=1 wici. We

optimize all parameters by minimizing the photometric er-
ror Lrgb =

∑
p∥ĉ(p) − c(p)∥22. A key property of Gaus-

sian splatting is its support for adaptive density control. By
dynamically spawning new Gaussians and culling redun-
dant ones, the method effectively synthesizes both low- and
high-frequency details. Gaussian splats are also inherently
composible and controllable [52, 90]. While Gaussian splat-
ting enables real-time, photorealistic rendering of complex

Figure 5. Our dual scene representation combines Neural SDF and
Gaussian splatting. We anchor Gaussians around the reconstructed
mesh (zero-level set) extracted from the SDF. For details on our
Gaussian splat parameterization, please refer to the supp. material.

scenes, the underlying geometry can be unsatisfactory. In
practice, there are often ‘floating’ Gaussians in free space
misaligned with the underlying geometry [21, 32, 103].

3.2. Dual Scene Representation
Each 3D representation has its own advantages and limi-
tations, often involving a trade-off among visual fidelity,
geometric precision, and speed. To address these inherent
constraints, we propose leveraging different representations
to capture each individual aspect while enforcing tight cou-
pling between them.

Geometry: Accurate surface modeling is essential for
physical simulation, such as collision modeling and object
manipulation. To capture fine-grained geometric details, we
first follow Yariv et al. [99] and parameterize the scene with
a neural SDF. Since learning purely from RGB often leads
to ambiguities [89, 102], we further leverage off-the-shelf
2D foundation models [3, 18] to predict surface normal and
depth as regularization. We volume render the scene’s color,
depth, and normal and learn the SDF by jointly optimizing
all the losses. Please refer to the supp. material for details.

Appearance: High visual quality can significantly en-
hance immersive experiences in gaming and is essential
for sim-to-real visual policy learning. We adopt 3D Gaussian
splatting [32] due to its exceptional efficiency and ability
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Input URDFormer* [10] Digital Cousin* [11] DRAWER (Ours)

Figure 6. Qualitative Comparisons on Interactable 3D Reconstruction: For URDFormer [10] and Digital Cousin [11], we select the best
results from multiple image runs. Despite these advantages, prior methods still suffer from limited realism and spatial misalignment. In
contrast, DRAWER produces reconstructions that are significantly more realistic and faithful. To view this figure as a video, we recommend
using Adobe Acrobat. For additional comparisons, please refer to the supp. material.

Figure 7. Qualitative Results on Additional Kitchen Scenes: Inset figures display the input/ground truth static observations.

to capture nuanced elements. Besides photometric error, we
render Gaussian depth maps and use SDF depth rendering to
regularize the Gaussians.

Coupling: One straightforward approach is to align the
coordinates of Gaussian splatting with neural SDF, using
the former for RGB rendering and the latter for collision
modeling. However, this can lead to significant mismatch
between visual observations and the actual geometry. For
example, floating Gaussians may produce visual artifacts
when viewed from different angles, creating the illusion of
an object in free space [21, 26, 90]. This inconsistency is
suboptimal for downstream applications.

To address this issue, we propose anchoring the Gaussians
around the zero level-set of the neural SDF. This approach
offers two main advantages: First, it allows the Gaussians to
retain some flexibility in movement while avoiding the afore-
mentioned issue. Second, if the scene is interacted with and
the underlying scene SDF changes, anchoring the Gaussians
to the SDF ensures that appearance changes are automati-
cally handled. Since repeatedly querying the learned SDF
is computationally expensive, we in practice extract a high-
resolution mesh from the SDF and anchor Gaussians to it.
Specifically, we spawn Gaussians at the centroid of each face.
The scales S are initialized to the respective face inradii, and
the rotations R are aligned with the face normals. These
Gaussians can move freely within the face and a limited dis-
tance along the normal direction. They can also tilt around
the normal direction. To better align Gaussians with the un-
derlying geometry, we regularize the scale along normal
directions. For adaptive density control, during splitting, we

ensure that new Gaussians remain on the same face and close
to the existing one. We divide the scale by 1.6 and copy the
rest of the remaining parameters. We show an illustration in
Fig. 5 and refer the readers to the supp. material for details.

Learning with straight-through estimator: Restricting
each Gaussian to lie within a certain range of its cor-
responding face is a non-differentiable operation, which
makes naive training of Gaussian splatting ineffective (see
Sec. 4). To address this, we reparameterize all forward
operations that involve clip from xo = clip(xin) to
xo = sg(clip(xin))+xin −sg(xin), where sg(·) denotes
stop gradient. We then apply straight-through estimator [6]
to transfer gradients from after clipping to before clipping.

Relationship to existing work: Our approach is closely
related to recent work that combines 3D Gaussian splats with
meshes [17, 26, 71, 87]. However, there exist several key
differences. First, previous work either fixes the positions
of Gaussians to the centroids of faces [66, 87] or employs
a position loss to encourage Gaussians to remain close to
the mesh. The former sacrifices flexibility, while the latter
cannot guarantee effective coupling. In contrast, we allow
Gaussians to move freely within the face and a limited dis-
tance along the normal direction, ensuring a balance between
flexibility and geometric binding. Second, prior work subdi-
vides meshes a priori to obtain denser Gaussian placements
[17], whereas we use adaptive density control to automati-
cally spawn new Gaussians as needed. As we will show in
Sec. 4, these design differences have a significant impact on
the final rendering quality.
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Input: Closed Cabinet/Drawer KlingAI: Half Open KlingAI: Fully Open Our Simulation: Half Open Our Simulation: Fully Open

Figure 8. Qualitative Comparison on Articulation Simulation: Our method produces realistic and accurate articulations, whereas KlingAI
fails to do so – even with manual segmentation masks and motion as inputs. Ground truth interactions are shown in the inset figures.

Figure 9. Qualitative Results on Simulated Motion Trajectories: We visualize our predicted articulation motion trajectories in blue, and
the ground truth trajectories in red. The close alignment between the two indicates the accuracy of our articulation estimation.

Figure 10. Beyond Kitchens: DRAWER can generalize to different
scenes such as offices and bedrooms. To view this figure as an
animation, we recommend using Adobe Acrobat.

3.3. Articulating the Scene

Now that we have a dual scene representation of a static
scene, with high-quality visual appearance and detailed geo-
metric structure, the next step is to estimate the underlying
physical properties, such as articulation, and make the scene
actionable and interactable.

Scene decomposition: The first step is to identify potential
interactable objects and segment them in 3D space. In this
work, we focus on both articulated objects (e.g., drawers and
cabinets) and rigid objects (e.g., cups and bottles). Here, we
primarily discuss the processing of articulated objects, while
details on rigid objects, which follow a similar pipeline, are
provided in the supp. material.

Given a set of posed images, we first adopt Grounded
SAM [34, 47, 73] to segment all objects of interest across all
frames. Due to viewpoint variations and specular reflections,
objects are not always fully visible, resulting in significant
variation in mask quality. To filter out unreliable estimations

and associate masks across frames, we project all masks
onto the 3D mesh (obtained in Sec. 3.2) and fuse them using
the Louvain algorithm [81, 107]. We discard masks whose
IoU with their fusion results fall below a threshold. Given
the superior visual grounding capabilities of VLMs [92], we
further employ GPT4o to assess mask quality and filter out
unreliable ones. We then exploit SAM [34] to re-segment
objects using point prompts derived from the fusion results.
This process yields, for each object i, its high-quality 2D
masks Mi,j in each image j, and its partial 3D geometry in
either mesh form Mobj

i = (Vi,Fi) or SDF.

Physical reasoning: Once we identify all interactable ob-
jects, the next step is to estimate their physics-related at-
tributes to effectively model and simulate their physical dy-
namics. We adopt a two-pronged approach to estimate artic-
ulation types and axes of articulated objects. The first prong
leverages a specialized vision foundation model 3DOI [69]
to predict object hinges and affordances. We integrate its pre-
dictions with the underlying 3D to improve accuracy. Since
3DOI’s performance varies by viewpoint, we use GPT4o
for a more robust second estimation. When results differ,
another VLM arbitrates the final decision. This enhances
overall accuracy. For other physical parameters (e.g., mass,
friction), following [89, 106], one can either obtain estimates
through VLM queries or set them manually.

Amodal shape estimation: Having established object ar-
ticulations, we now face the challenge of hidden regions.
When interacting with a reconstructed scene, previously in-
visible regions in the input video may become exposed. For
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Figure 11. DRAWER in Unreal Engine. We demonstrate our interactive game in Unreal Engine with game features including shooting
rigid objects like the blue bottle and white kettle segmented from the scene as well as opening cabinet and drawer doors.

instance, when cabinet doors open, their interior surfaces be-
come visible. Without proper modeling, the geometry and ap-
pearance of these originally hidden regions would be under-
constrained. This limitation prevents more sophisticated in-
teractions, such as picking up a mug from the countertop and
placing it into a drawer.

To address this issue, we first define a compositional 3D
template for each object category Mtmp = (Vtmp,Ftmp) =
{(Vpart

i ,Fpart
i )}Ki=1. Then, we exploit VLMs to refine the

structure (e.g., adjusting the number of layers a cabinet has).
Since the templates comprise well-defined shape primitives,
we can easily edit the compositional structure or modify their
shape to better match different observations.

For each object i, we consider three objectives: (i) the
mask consistency term measures the discrepancy between
the rendered masks and the observed masks: Lmask =∑

j∥Mi,j −Rend(Mtmp
i )∥22; (ii) the shape consistency term

encourages the visible part of the template to match its
corresponding partial 3D geometry in the scene. Since
densely querying the learned SDF is computationally ex-
pensive, we instead adopt Chamfer Distance (CD): Lshape =

CD(Mtmp, vis
i ,Mobj

i ); and (iii) the structure consistency term
encourages originally adjacent parts α, β to remain adjacent
after optimization: Lstruc =

∑
(α,β)

∑
(j,k)∥Vα

i,j −Vβ
i,k∥22,

where (j, k) are the vertex pairs from α, β that are within a
certain distance threshold. We use PyTorch3D as the differen-
tiable renderer. We optimize the poses and shape parameters
(e.g., scale, width, length, etc) of all parts. We start with
Lshape and Lstruc, and then turn on all objectives. To ensure
objects do not collide with each other, we further adopt a
global regularization term to penalize inter-penetration [62].

Texturing: We exploit MatFuse [82], a conditional diffu-
sion model, to estimate the PBR materials of unobserved
regions. We can either parameterize them as texture maps or
distill them back to Gaussians in our dual representation.

Composing back to scene: Directly editing and merging
meshes is extremely difficult due to changes in topology.
Fortunately, our dual representation, which builds on neural
SDF and Gaussian splatting, is inherently compositional in

3D. Furthermore, meshes and SDFs are largely interchange-
able. Therefore, we can convert the completed articulated
object back to the dual representation and use it to replace
the original partial one.

3.4. Downstream Applications with DRAWER
Gaming: Content creation that reflects real world diversity
with visual and physical fidelity, is a challenging problem for
gaming applications. We demonstrate the utility of environ-
ments created with DRAWER for gaming applications using
Unreal Engine (UE) [15]. Specifically, we show how an
agent dropped into the reconstructed environment imported
into Unreal Engine can interact with the world to perform
movement, shooting or opening of the various elements of
the scene. Unreal engine offers support for rigid-body dy-
namics and articulation. Leveraging our dual representa-
tion—where Gaussians anchored to the SDF enable high-
quality rendering, and SDF-derived mesh provides accurate
collision geometry—we achieve alignment of rendering and
physical models. The Luma Unreal Engine Plugin [53] al-
lows real-time Gaussian rendering, while collision models
use the SDF-extracted mesh. Articulation joints in UE are
configured based on estimated types and axes, completing
the interactive setup. As outlined in previous work [89], we
can then develop an interactive agent that can navigate and
interact with various elements of the scene.

Real-to-sim-to-real transfer for robot learning: Besides
gaming applications, DRAWER holds value in data gen-
eration and model training for robotics. The environments
created in DRAWER can be imported into a physics simula-
tor such as Isaac Sim [61] with appropriate kinematics and
dynamics. This enables the generation of physically realistic
interaction data for tasks such as drawer opening/closing or
object pick and place using motion planning or RL, without
requiring tedious human effort. The generated data can be
used to learn a policy that can be transferred to act in the
real world directly from perception [30, 55, 80]. DRAWER
generated environments offer greater visual and geometric
fidelity than other environment creation methods, helping to
bridge the simulation to reality gap. This circumvents much
of the burden of real-world data collection on-robot.
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Opening the drawer Picking Placing Closing the drawer
Figure 12. Scaling up robot learning data with our digital twin. We demonstrate our interactive environment is capable of conducting
robot learning tasks including opening/closing drawers and picking/placing segmented rigid objects in the scene. To view this figure as a
video, we recommend using Adobe Acrobat.

Method Representation PSNR↑ SSIM↑ LPIPS↓
Textured mesh Mesh 19.71 0.785 0.323

+ Static GS Points+Mesh 25.87 0.889 0.276
+ Movable GS Points+Mesh 26.49 0.896 0.193
+ Straight-through est. Points+Mesh 27.80 0.912 0.159

Table 2. Ablation Study on DRAWER Model Design: We observe
improved rendering quality with the sequential addition of each
designed component in DRAWER.

4. Experiments
4.1. Setup
Dataset: We manually capture videos in six different
kitchens. The scenes are static, with no assumed interactions,
which significantly reduces the capture cost. For evaluation,
we annotate the type of articulation and any hinges present
on all articulated objects within each scene. Additionally,
we use fishing wire to open cabinet doors and drawers, ob-
taining GT video snippets of object articulations. We further
annotate key points on moving surfaces (e.g., cabinet doors,
drawer fronts), fit homographies to these points, and extract
dense 2D pixel trajectories. We use these trajectories to eval-
uate simulated articulated motions.

Metrics: We adopt PSNR, SSIM, and LPIPS [108] to as-
sess the visual quality of digital twins. For articulation type
estimation, we compute both precision and recall to explicitly
account for potential perception errors (e.g., missed segmen-
tation), which frequently occur in real-world scenarios. To
quantify the accuracy of articulated motion simulation in
digital twins, we track pixels along moving surfaces (e.g.,
cabinet doors) [31] and compute the Earth Mover’s Distance
(EMD) between simulated and ground truth trajectories. For
revolute objects, we additionally report EA-Score [70, 111],
which measures both the angular and Euclidean distance
between predicted and ground truth rotation axes.

4.2. Experimental Results
Novel view synthesis: Tab. 1 compares the visual realism
and interactive capabilities of our reconstructed twins with
those of prior works. We evaluate state-of-the-art approaches

that utilize different representations, including Nerfacto [77],
BakedSDF [99], Video2Game [89], 3DGS [32], and 2D GS
[27]. Although 3DGS achieves the best rendering results,
it compromises geometric fidelity, leading to reconstructed
scenes that are neither realistic nor interactive. In contrast,
our approach strikes the balance between the two. We sig-
nificantly outperform neural rendering methods that support
high-quality geometry, while also providing the most inter-
active functionalities, beyond simple pick-and-place.

Articulation estimation: The performance of articulation
estimation relies on both perception (i.e., identifying articu-
lated) and reasoning (e.g., estimating articulation type). To
validate the effectiveness of each module, we first assess
the accuracy of our estimation given the masks of objects of
interest. We compare with 3DOI [69], a foundation model
for articulation prediction, in Tab. 4 and Fig. 4. Since our
approach leverages an ensemble of multi-modal models, it
is more robust and achieves higher accuracy. By grounding
predictions in the underlying 3D, we further improve the
precision of estimated rotation axes.

We then evaluate the full pipeline, comparing it with
recent methods for interactable 3D reconstruction: URD-
Former [10] and Digital Cousin [11]. As shown in Fig. 6
and Tab. 3, our approach not only accurately recalls most
articulated objects with high precision but also maintains ex-
ceptionally high visual and geometric fidelity. More results
can be found in Fig. 7.

Articulated motion simulation: Besides articulation type,
the quality of simulated articulation motions is also cru-
cial for creating high-quality digital twins. Since the recon-
structions in [10, 11] diverge significantly from the original
scenes, they are not directly comparable. Instead, we com-
pare our method with KlingAI [35], a SOTA conditional
video diffusion model that supports motion control. We man-
ually provide KlingAI point prompts to segment objects of
interest and specify the desired articulated motions. Despite
the privileged information, the synthesized motions from
KlingAI are often infeasible (see Fig. 8). To further verify
the fidelity of our simulated motions, we collect a set of
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Opening the drawer Picking Placing Closing the drawer

Initial pose Grasp handle Half open Fully open
Figure 13. Real-to-Sim-to-Real. DRAWER allows us to learn train robotic controllers using a real-to-sim-to-real loop. The inset images
indicate the simulated data generation process. To view this figure as a video, we recommend using Adobe Acrobat.

ground truth articulated motion trajectories of opening draw-
ers, cabinets, and refrigerators (see supp. materials for more
details). We compute our motion trajectories by simulating
the articulation in physics engines and we use CoTracker
[31] to track the movement of KlingAI results. We use EMD
to measure the distance among estimated and ground truth
trajectories. As shown in Fig 9, our automatic approach is
physically-grounded and outperforms KlingAI by an order
of magnitude (EMD: 1.41× 10−5 v.s. 17.7× 10−5).

Ablation study: We start with a high-quality mesh ex-
tracted from a neural SDF and sequentially add back other
components. As shown in Tab. 2, incorporating Gaussian
splatting significantly improves overall performance. Addi-
tionally, allowing the Gaussians to move and using straight-
through estimation further enhances the results.

Beyond Kitchens: While our primary focus is on kitchens
– due to their diversity of articulated and interactable objects
– DRAWER generalizes well to other scene types. Fig. 10
shows the performance of DRAWER on offices and bath-
rooms.

4.3. Build Your Own Game
We have demonstrated our system’s effectiveness in ren-
dering quality and articulation inference accuracy across
various setups. Next, we construct an interactive game with
first-person player control and real-time interaction.

Data preparation: Our game assets are derived from self-
captured kitchen videos (Sec. 4.1) and feature SDF-extracted
mesh geometry for collision models, segmented objects for
rigid-body dynamics, and articulated drawers with fully de-
tailed interiors. Our dual-representation reconstruction en-
ables high-quality Gaussian rendering in real time.

Method Total # Pred # Correct # Precision (%) Recall (%)

URDFormer* [10]
125

62 58 93.5 46.4
Digital Cousin* [11] 160 75 46.9 60.0
Ours 108 105 97.2 84.0

Table 3. Articulation Understanding Comparison: Total#, Pred#,
and Correct# represent the total, predicted, and correctly predicted
numbers of articulated objects. ∗We conduct multiple predictions
for each scene (based on different views) and select the best result.

Method Total # Correct #↑ Rev. # Correct Rev. #↑ EA-Score ↑
3DOI 80 78 59 57 0.861
Ours 78 58 0.994

Table 4. Articulation Inference Comparison: Total # and Correct
# represent the total number of articulated objects evaluated and
the number correctly predicted, while Rev. # denotes the count of
correctly predicted revolute objects.

Interactive game features: As shown in Fig. 11, our game,
built upon Unreal Engine (UE) (Sec. 3.4), supports high-
quality rendering and diverse physical interactions at an in-
teractive rate. Key features include: Movement: Players can
navigate the room freely with realistic physics and collision
models. Shooting: In a first-person view, players can shoot
balls at segmented objects, with realistic motion simulated
upon impact. Opening: Players can interact with articulated
objects, such as drawers and cabinets, utilizing estimated
articulations. Segmented items, like a kettle, can be removed
from cabinets and dropped, with realistic dynamics and ren-
dering enabled by our dual representation.

4.4. Real-to-Sim-to-Real

We conduct a proof of concept experiment with our articu-
lated environment in a robotic real-to-sim-to-real setting. We
reconstruct the scene with DRAWER, automatically gener-
ate simulation data via motion planning for policy learning,
and transfer learned policies to the real world. A similar
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pipeline was shown in [80], with manual articulations.

Data generation: To generate the data for policy learning,
we first import the geometry and articulation reconstructed
from the real scene via the DRAWER into Isaac Sim [61]. As
shown in Fig. 12, we then initialize the robot’s pose around
each drawer and utilize standard motion planning [75] in
combination with a object-centric grasp sampler [104] to
generate motion data. This approach allows for generating
physically realistic data for tasks such as opening the drawer
by pulling the handle, picking and placing objects inside
the drawer, and closing the drawer autonomously, without
requiring considerable manual human effort.

Policy learning: Given this data, we then train a policy
to open and close the drawer using behavior cloning on the
collected data. Rendering the generated scenes in simulation
as a point cloud, we deploy a commonly used policy learning
architecture based on 3D Diffusion Policies [105]. Mirroring
the deployment setting, the policy takes in a cropped point
cloud and proprioceptive information and predicts the next
end-effector pose of the robot that is then executed on the
robot via inverse kinematics and position control.

Real-world deployment: Finally, after training policies in
simulation, we can directly transfer them to the real world on
a Franka Emika Panda robot mounted on a mobile base. In
this instantiation, we trained independent policies for each
substage of the problem – drawer/cabinet opening, picking
and placing, and closing. A qualitative visualization of the
learned behavior is shown in Fig 13. We refer readers to
supp. material for more detailed visualizations.

5. Conclusion
We present DRAWER, a novel framework that automati-
cally converts a single video into an interactive environment
with articulated and rigid-body dynamics, requiring no prior
articulation data. Our method integrates an SDF field and
Gaussian splats into a dual scene representation, which is
then decomposed and articulated to create a functional envi-
ronment. We demonstrate DRAWER’s superior performance
in articulation understanding and rendering, as well as its
utility in developing realistic interactive games and enabling
real-to-sim-to-real transfer for robot learning. Looking ahead,
DRAWER could benefit from integration with more sophis-
ticated relightable environment reconstruction.
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[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv, 2013. 5

[7] Shenchang Eric Chen and Lance Williams. View inter-
polation for image synthesis. In Proceedings of the 20th
annual conference on Computer graphics and interactive
techniques, 1993. 2

[8] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang,
Xinchen Yan, Sivabalan Manivasagam, Shangjie Xue, Ersin
Yumer, and Raquel Urtasun. Geosim: Realistic video simu-
lation via geometry-aware composition for self-driving. In
CVPR, 2021. 2

[9] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon raster-
ization pipeline for efficient neural field rendering on mobile
architectures. CVPR, 2023. 2

[10] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo,
Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox, and
Abhishek Gupta. Urdformer: A pipeline for constructing
articulated simulation environments from real-world images.
arXiv, 2024. 2, 3, 5, 8, 9

[11] Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem
Gokmen, Ruohan Zhang, Jiajun Wu, and Li Fei-Fei. Acdc:
Automated creation of digital cousins for robust policy learn-
ing. arXiv, 2024. 2, 3, 5, 8, 9

[12] François Darmon, Bénédicte Bascle, Jean-Clément Devaux,
Pascal Monasse, and Mathieu Aubry. Improving neural
implicit surfaces geometry with patch warping. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6260–6269, 2022. 2

[13] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve,
Aniruddha Kembhavi, and Roozbeh Mottaghi. Proc-
thor: Large-scale embodied ai using procedural generation.
NeurIPS, 2022. 3

10



[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator, 2017. 1, 3

[15] Epic Games. Unreal engine. 7
[16] Rockstar Games. Grand theft auto v, 2014. 1
[17] Lin Gao, Jie Yang, Bo-Tao Zhang, Jia-Mu Sun, Yu-Jie Yuan,

Hongbo Fu, and Yu-Kun Lai. Mesh-based gaussian splatting
for real-time large-scale deformation. arXiv, 2024. 5

[18] Gonzalo Martin Garcia, Karim Abou Zeid, Christian
Schmidt, Daan de Geus, Alexander Hermans, and Bastian
Leibe. Fine-tuning image-conditional diffusion models is
easier than you think. arXiv, 2024. 4

[19] Jonathan Shade Steven Gortler, Li-wei He, Richard Szeliski,
et al. Layered depth images. In SIGGRAPH, pages 231–242,
1998. 2

[20] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and
Bo Dai. Animatediff: Animate your personalized text-to-
image diffusion models without specific tuning, 2023. 3
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