
Stop Summation: Min-Form Credit Assignment Is All
Process Reward Model Needs for Reasoning

Jie Cheng1,2, Ruixi Qiao1,2, Lijun Li3, Chao Guo1, Junle Wang4,
Gang Xiong1,2, Yisheng Lv1,2∗, Fei-Yue Wang1,2

1State Key Laboratory of Multimodal Artificial Intelligence Systems, CASIA
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Shanghai Artificial Intelligence Laboratory 4Tencent

Abstract

Process reward models (PRMs) have proven effective for test-time scaling of
Large Language Models (LLMs) on challenging reasoning tasks. However, reward
hacking issues with PRMs limit their successful application in reinforcement fine-
tuning. In this paper, we identify the main cause of PRM-induced reward hacking:
the canonical summation-form credit assignment in reinforcement learning (RL),
which defines the value as cumulative gamma-decayed future rewards, easily
induces LLMs to hack steps with high rewards. To address this, we propose PURE:
Process sUpervised Reinforcement lEarning. The key innovation of PURE is a
min-form credit assignment that formulates the value function as the minimum of
future rewards. This method significantly alleviates reward hacking by limiting
the value function range and distributing advantages more reasonably. Through
extensive experiments on 3 base models, we show that PRM-based approaches
enabling min-form credit assignment achieve comparable reasoning performance to
verifiable reward-based methods within only 30% steps. In contrast, the canonical
sum-form credit assignment collapses training even at the beginning! Additionally,
when we supplement PRM-based fine-tuning with just 10% verifiable rewards,
we further alleviate reward hacking and produce the best fine-tuned model based
on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23
and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the
observed reward hacking cases and analyze the causes of training collapse. Code
and models are available at: https://github.com/CJReinforce/PURE.

1 Introduction

Reinforcement fine-tuning (RFT) of large language models (LLMs) for reasoning tasks has shown
promise in developing advanced problem-solving abilities. Recent advancements, such as DeepSeek
R1-Zero (Guo et al., 2025) and Kimi K1.5 (Team et al., 2025), have demonstrated strong reasoning
skills through RFT with verifiable rewards, which provide sparse feedback for the entire response.
However, as response length increases, sparse rewards potentially lead to inefficient learning (Sutton
& Barto, 2018; Andrychowicz et al., 2017).

In contrast, process reward models (PRMs) offer dense feedback at each step of a response. PRMs
have proven effective in improving LLMs’ performance on challenging reasoning tasks through
test-time scaling (Lightman et al., 2023; Wang et al., 2023; Guan et al., 2025). However, successful
applications of PRM in RFT for LLMs remains limited (Setlur et al., 2024). A key challenge of PRMs
is that the neutral network-generated rewards can lead to reward hacking during training (Weng, 2024;

∗Corresponding author

Preprint. Under review.

ar
X

iv
:2

50
4.

15
27

5v
1

 [
cs

.A
I]

 2
1

A
pr

 2
02

5

https://github.com/CJReinforce/PURE

Guo et al., 2025), causing unintended optimization toward higher rewards. Recent studies (Yuan
et al., 2024; Cui et al., 2025) have explored implicit PRMs for fine-tuning LLMs, which resembles
DPO-style reward formulation (Rafailov et al., 2023), but these still heavily relies on ground-truth
verifiable rewards to provide training signals for the system. The question of what causes reward
hacking in PRM-based RFT and how to address it effectively has not been explored widely.

To answer this question, we examine the usage of PRM in test-time scaling and identify a mismatch
between test-time and training-time objectives. Thus in this paper, we propose PURE: Process
sUpervised Reinforcement lEarning, which introduces a min-form credit assignment method to
align these objectives. Through analysis and experiments, we find that the canonical formulation of
credit assignment in RL, named summation-form credit assignment that defines value as cumulative
gamma-decayed future rewards, easily induces LLMs to hack high-reward steps and collapse training.
Instead, we use the minimum future reward to quantify credit assignment, which constrains the value
function’s range and assigns advantages more reasonably to stabilize RL training (see the analysis in
§ 3.1). PURE offers several benefits: (1) it is simple to implement, requiring only a transformation of
process rewards without additional code changes; (2) it achieves comparable or better performance in
PRM-based RFT compared to recent R1-replication studies with around 3× efficiency gains; and
(3) it supports the integration of both dense process rewards and sparse verifiable rewards. When
combining both reward types in the PURE framework, we find that the auxiliary of few ground-truth
signals further mitigates reward hacking caused by PRM.

In experiments, we first train a PRM using the PRM800K dataset (Lightman et al., 2023), a human-
annotated dataset that evaluates the correctness of each reasoning step. Then we apply PURE
framework to 3 models: Qwen2.5-7B, Qwen2.5-Math-7B, and Qwen2.5-Math-1.5B, using 3 reward
configurations: only verifiable rewards, only PRM-generated process rewards, and a combination of
both. This comprehensive setup allows us to compare PRM-based and verifiable reward-based RFT
approaches. We also compare sum-form and min-form credit assignment methods when enabling
PRMs and find that the former even collapses training at the beginning. In the discussion, we
summarize observed reward hacking cases and analyze the causes of training collapse. Our key
findings are outlined below.

1. Summation-form credit assignment easily induces LLMs to hack high-reward steps, leading
to LLMs that prioritize thinking over problem-solving. Our min-form credit assignment
avoids such reward hacking. (§ 3.1)

2. PRM-based RFT achieves performance comparable to the verifiable reward-based approach
with around 3× efficiency gains if using our min-form credit assignment; otherwise, the
training collapses even at the beginning! (§ 4.3)

3. The auxiliary of few ground-truth signals further mitigates PRM-induced reward hacking,
achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across MATH-500,
Minerva Math, Olympiad Bench, AIME24, and AMC23 when using Qwen2.5-Math-7B as
the base model. (§ 4.3)

4. We identify 3 types of PRM-induced reward hacking: (1) only thinking, not solving, (2)
extremely few steps (1 step), (3) extremely few steps (0 step). We analyze causes, show
examples, and provide solutions for each. (§ 5.1)

5. Long, highly repetitive samples that the verifier ruled correct cause training to collapse.
These pseudo-positive samples, undetected by verifiers, provide numerous incorrect signals
and collapse training all of a sudden (within 5 gradient steps). (§ 5.2)

2 Preliminaries

2.1 Credit Assignment Problem in Reinforcement Learning

Minsky (2007) described the credit assignment problem as "how to distribute the credit of success
among the multitude of decisions involved". In other words, credit assignment is the problem of
estimating the influence of an action over an outcome from experience. Various assignment functions
have been proposed to quantify the influence of actions (Pignatelli et al., 2023). Here, we adopt the
state-action value as the assignment function to detail the problem.

2

We model LLM reasoning as a step-level Markov Decision Process. Given a prompt, LLM generates
steps sequentially. At step t, LLM π takes the prompt p and previous steps {a1, · · · , at−1} as the
input state st, where st = (p, a1, · · · , at−1). Then LLM generates a step at, sampled as at ∼ π(·|st).
PRM Rp emits a process reward rpt = Rp(st, at). The canonical formulation of state-action value is:

Qπ(st, at) = E

∑
i≥t

γi−trpi

 (1)

where γ is the discount factor. Eq. (1) shows that the influence of an action decreases over time,
weighted by a discount factor γ. Actions closer to future outcomes have greater influence. Thus,
the state-action value quantifies credit assignment. With Eq. (1), we can derive the advantage
function (Schulman et al., 2017; Shao et al., 2024; Ahmadian et al., 2024; Hu, 2025) and update LLM
using the policy gradient loss.

2.2 Process Reward vs. Verifiable Reward

Verifiable rewards are sparse, rule-based rewards assigned to an entire response. For a prompt,
LLM generates a sequence of steps {a1, . . . , an}. After the final step an, a verifiable reward rv is
assigned based on whether the response matches the ground-truth answer. Verifiable rewards provide
a straightforward, ground-truth signal for RL training, which has been commonly used in the training
pipeline for advanced models (Yue et al., 2024; Guo et al., 2025; Team et al., 2025). In contrast,
process rewards {rp1 , · · · , rpn} are dense rewards to evaluate the quality of each step. Compared with
verifiable rewards, process rewards are more expensive to acquire. For example, Lightman et al.
(2023) defines process rewards as the correctness of each step and annotates manually to construct
the PRM800K dataset. Wang et al. (2023) estimates process rewards using the Monte Carlo method,
which demands significant computational resources for rollouts. Despite their cost, process rewards
offer unique benefits in test-time scaling (Lightman et al., 2023; Xiong et al., 2024; Guan et al.,
2025). During inference, LLM generates multiple responses for a single prompt, and PRM scores
each step for each response. Prior work (Lightman et al., 2023; Wang et al., 2023; Zhang et al.,
2025) typically aggregates process rewards into a outcome-level score using the minimum value,
min(rp1 , · · · , rpn), and selects the best response based on this outcome-level score. This PRM-based
approach outperforms majority voting and other reward model-based approaches.

Although dense rewards support stable and effective training in traditional RL applications, such
as games (Cheng et al., 2024a) and robotics (Cheng et al., 2024b), they struggle to effectively fine-
tune LLM for advanced reasoning. Guo et al. (2025) categorizes PRM as an unsuccessful attempt.
Therefore, how to make PRMs as effective in training as they are in test-time scaling is an important
topic that has not been studied extensively.

3 PURE: Process Supervised Reinforcement Learning

To effectively fine-tune LLMs using PRMs, we propose PURE: Process sUpervised Reinforcement
lEarning. PURE leverages a novel min-form formulation to quantify the credit assignment, inspired
by the test-time application of PRM. In this section, we first detail the min-form credit assignment
and analyze its effectiveness in § 3.1. Subsequently, we introduce an advantage estimator tailored for
process rewards in § 3.2.

3.1 Min-form Credit Assignment

Consider a prompt p and a LLM π parameterized by θ, generating a n-step response denoted as
(a1, · · · , an). At step t, LLM πθ takes the prompt p and previous steps {a1, · · · , at−1} as the input
state st, where st = (p, a1, · · · , at−1). Then LLM generates step at, sampled as at ∼ πθ(·|st). A
PRM Rp emits a process reward rpt = Rp(st, at). Unlike traditional RL whose objective is the
summation of discounted rewards , the usage of PRM in test-time scaling suggests that RL for
reasoning tasks should optimize the following objective:

maximize
θ

E [min(rp1 , · · · , rpn)] (2)

where the expectation is over prompts and step-level actions. This objective implies: (i) Only the
“worst” step that gets the minimum process reward determines the value of the entire response. (ii)

3

Let 𝒛 = 𝟐 + 𝟐 − 𝟑 + 𝟑 𝟐 𝒊, and let 𝒄 = 𝟐 − 𝟑𝒊. Let 𝒘 be the

result when 𝒛 is rotated around 𝒄 by 𝝅 𝟒⁄ counter-clockwise. Find 𝒘.

To find 𝑤, we need to rotate 𝑧 around 𝑐 by 𝜋 4⁄ counter-clockwise.
This can be done using the formula for rotation of a complex number
around another complex number.

First, we find the vector from 𝑐 to 𝑧, which is 𝑧	 − 	𝑐. Then, we rotate
this vector by 𝜋 4⁄ 	 counter-clockwise using the formula 𝑒!" 4 (𝑧 − 𝑐),
where 𝜃 = 𝜋 4⁄ .

Finally, we add 𝑐 back to the result to find 𝑤.

Let's calculate this step by step:

1. 𝑧 − 𝑐 = 2 + 2 − 3 + 3 2 𝑖 − 2 − 3𝑖 = 3 2 − 2𝑖

2. 𝑒#! $⁄ = cos #
$
+ 𝑖 sin #

$
= &

&
+ &

&
𝑖

3. 𝑒#! $⁄ 4 𝑧 − 𝑐 = &
&
+ &

&
𝑖 4 3 2 − 2𝑖 = 4 + 2𝑖

4. 𝑤 = 𝑐 + 𝑒#! $⁄ 4 𝑧 − 𝑐 = 2 − 3𝑖 + 4 + 2𝑖 = 6 − 𝑖

Therefore, the final answer is $\boxe .6 − 𝑖

Process
Reward

0.97

0.75

0.99

0.90

-0.53

0.70

-0.70

-0.22

-0.32

Sampling
probabilityAdv.

2.54

1.57

0.82

-0.17

-1.07

-0.54

-1.24

-0.54
-0.32

Process
Reward*

0.04

0.04

0.04

0.04

-0.11

0.04

-0.17

-0.03
-0.05

Adv.
Sampling
probability

-0.14

-0.19

-0.23

-0.27

-0.32

-0.21

-0.25

-0.08

-0.05

Sum-form Min-formRollout

Let 𝒛 = 𝟐 + 𝟐 − 𝟑 + 𝟑 𝟐 𝒊, and let 𝒄 = 𝟐 − 𝟑𝒊. Let 𝒘 be the
result when 𝒛 is rotated around 𝒄 by 𝝅 𝟒⁄ counter-clockwise. Find 𝒘.

To	find	𝑤,	we	need	to	rotate	𝑧 around	𝑐 by	𝜋 4⁄ counter-
clockwise.	This	can	be	done	using	the	formula	for	rotation	of	
a	complex	number	around	another	complex	number.
First,	we	find	the	vector	from	𝑐 to	𝑧,	which	is	𝑧	 − 	𝑐.	Then,	we	
rotate	this	vector	by	𝜋 4⁄ 	 counter-clockwise	using	the	
formula	𝑒!" 4 (𝑧 − 𝑐),	where 𝜃 = 𝜋 4⁄ .
Finally,	we	add	𝑐 back	to	the	result	to	find	𝑤.
The	final	answer	will	be	placed	within	\\boxed{}.

Question

Response

(a) The	response	of	the	model	after	updating	using	the	
sum-form credit	assignment	method.	The	model	
learns	to	only	output	thinking	steps	without	
actually	solving the	problem!

To	find	the	result,	we	follow	these	steps:
1.	Translate	𝑧 so	that	𝑐 is	at	the	origin:

2 + 2 − 3 + 3 2 𝑖 − 2 − 3𝑖 = 2 − 3 2𝑖
2.	Rotate	the	translated	complex	number	by 𝜋 4⁄ counter-
clockwise.	It is	equivalent	to	multiplying	it	by	𝑒#! $⁄ = ⋯ =
&
&
+ &

&
𝑖.

2
2
+

2
2
𝑖 4 2 − 3 2𝑖 = ⋯ = 4 − 2𝑖

<omit	the	midway	calculation	steps	which	are	all	correct.>
3.	Translate	the	result	back	so	that	𝑐 is	at	its	original	position:

𝑤 = 4 − 2𝑖 + 2 − 3𝑖 = 6 − 5𝑖
Therefore,	the	result	of	the	rotation	is																						.

Question

Response

(b) The	response	of	the	model	after	updating	using	the	
min-form credit	assignment	method.

Let 𝒛 = 𝟐 + 𝟐 − 𝟑 + 𝟑 𝟐 𝒊, and let 𝒄 = 𝟐 − 𝟑𝒊. Let 𝒘 be the
result when 𝒛 is rotated around 𝒄 by 𝝅 𝟒⁄ counter-clockwise. Find 𝒘.

6 − 5𝑖

After	RL	updating

🤔

PRM

Figure 1: Comparison of summation-form and min-form credit assignment. Adv. and Process reward*
in the table means advantage and transformed process reward, respectively. The incorrect steps in the
rollout are highlighted in red, and our PRM reasonably assigns negative scores to these steps. For
simplicity, advantage baseline and KL penalty terms are omitted in advantage calculation here, and
discount factor γ and transform temperature T are set to 1. Arrows indicate changes in sampling
probability, with larger changes marked by contoured arrows.

For steps before the worst step, their existence as the input state induces LLM to generate the worst
step. (iii) Steps after the worst step actually do not contribute to the objective.

Therefore, we define the min-form credit assignment function as follows: For a n-step response, let
step w be the worst step, i.e., w = argmin(rp1 , · · · , rpn). The return G and state-action value Qπ

functions are defined as follows:

G(st, at|τ) =
{
min(rpt , · · · , rpn), if t ≤ w

0, if t > w
(3)

Qπ(st, at) = E
τ
[G(st, at|τ)] (4)

where τ = (s1, a1, r
p
1 , · · · , sn, an, rpn) denotes the trajectory. Eq. (4) is a quantitative expression of

the above three-fold analysis of the objective. To implement this in the simplest way possible, we
transform the process rewards in trajectory τ using:

rp∗i =
exp(−rpi/T)∑n
j=1 exp(

−rpj/T)
· rpi (5)

where T is the transform temperature, and rp∗i is the transformed process reward. The transform
function assigns higher weights to lower rewards. After transformation, the rest of code remains
unchanged. We explain this as follows. As the transform temperature T → 0+, Eq. (5) yields
rp∗w = rpw for the worst step w and rp∗i = 0 for i ̸= w. Setting γ = 1, the return becomes: (i) For step

4

t ≤ w,

Gt =

n∑
i=t

γi−t · rp∗i = rpw = min(rpt , · · · , rpn) (6)

(ii) For t > w, Gt = 0. The return exactly matches Eq. (3) without altering the return computation logic.

Simple implementation. To align with widely adopted token-level PPO loss, we convert step-level
rewards to token-level rewards. We exclusively assign the transformed process reward to the final
token of each step, with all other tokens receiving a reward of 0. To preserve algorithmic flexibility,
we also support verifiable rewards assigned to the last token of the complete response, which can be
used alongside process rewards.

Analysis. Min-form credit assignment restricts the range of value function to be the same as that of
the reward function, which contributes to stabilizing RL training. In contrast, for the summation-form
credit assignment, the range of value is determined by the range of reward and the number of steps,
causing excessive value as the number of steps increases and unintended reward hacking.

We now visualize the differences between summation-form and our min-form credit assignment using
a real training example. As shown in Figure 1, incorrect steps are highlighted in red, with arrows
showing the magnitude and direction of changes in sampling probability. Steps with relatively large
changes in sampling probability are marked by contoured arrows. Note that the first 3 steps are the
thinking, and the subsequent 6 steps are the solution.

Figure 1 shows that summation-form credit assignment significantly alters sampling probabilities,
increasing the sampling probabilities for thinking steps and decreasing that for incorrect solution
steps. However, this results in a shotcut towards reward hacking: the model learns to only output
thinking steps without actually solving the problem! In other words, the model hacks the implicit
pattern inside high-reward steps, i.e., thinking. In contrast, our min-form credit assignment reduces
sampling probabilities across all steps, with the largest reduction at the first incorrect step. This aligns
with the behavior of verifiable rewards (an incorrect final answer leads to a reduction in sampling
probability of all steps) and assigns advantages more rationally based on step correctness.

3.2 Advantage Estimation

Following the token-level rewards in § 3.1, we are ready to compute advantages. We compare
several advantage estimators, including GAE (Schulman et al., 2017), RLOO (Ahmadian et al., 2024),
GRPO (Shao et al., 2024), and REINFORCE++ (Hu, 2025), as discussed in § 5.3. RLOO are strong
enough to produce stable and effective results.

For a single prompt, LLM generates K responses. The maximum generation length is limited to
N . Let rvi and rp∗i,j (j = 1, · · · , N) denote the verifiable reward and token-level transformed process
rewards for response yi (i = 1, · · · ,K), respectively. The token-level advantage for yi is formulated
as follows:

Ai,t = rvi − 1

K − 1

∑
k ̸=i

rvk︸ ︷︷ ︸
RLOO with verifiable reward

+

N∑
j=t

γj−t · rp∗i,j −
∑

k ̸=i

∑N
l=1

∑N
j=l γ

j−l · rp∗k,j
(K − 1)N︸ ︷︷ ︸

token-level baseline︸ ︷︷ ︸
RLOO with token-level transformed process rewards

(7)

where t = 1, · · · , N . Specifically: (i) for verifiable rewards, we directly adopt RLOO. (ii) For process
rewards, we employ a token-level baseline to avoid reward hacking, as discussed in the second case
in § 5.1. Moreover, we normalize the baseline with the max generation length N instead of response
length to avoid length biases, similar to concurrent work (Liu et al., 2025).

4 Experiments

4.1 PRM Training and Evaluation

To conduct our RFT experiments, we first require a PRM to provide process rewards. We train our
PRM based on Qwen2.5-Math-7B due to its strong performance in mathematical tasks. Follow-
ing Lightman et al. (2023), we treat the PRM training as a binary classification task. We replace the
final layer of the model with a value head and train the model on the PRM800K dataset (Lightman

5

et al., 2023) in 2 stages. In the first stage, we freeze the LLM parameters and train only the value
head with a learning rate 10−4 for 3 epochs. In the second stage, we unfreeze the LLM parameters
and fine-tune all parameters with a learning rate 10−6 for 1 epoch.

Table 1: Results of BoN evaluation. Rows marked with
* are taken from Xiong et al. (2024).

Method GSM8K MATH
Pass@1 * 83.9 42.4
Majority Voting@1024 * 89.7 57.4
Deepseek-PRM-7B BoN@1024 * 93.0 58.1
PURE-PRM-7B BoN@1024 91.6 62.6

We evaluate our PRM, named PURE-
PRM-7B, using 3 methods: Best-of-N
(BoN) method, ProcessBench (Zheng et al.,
2024), and PRMBench (Song et al., 2025).
For BoN evaluation, we use rollout data
from Xiong et al. (2024). For each ques-
tion in GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), they uses
Deepseek-7B (DeepSeek-AI, 2024) to gen-
erate K = 1024 answers. We score each
step using our PRM, transform process rewards using Eq. (5), and compute an outcome score by
summing the transformed rewards for each answer. The answer with the highest outcome score
is selected as the final answer. Our PURE-PRM-7B achieves BoN@1024 accuracy of 91.6% on
GSM8K and 62.6% on MATH, performing comparably to the best results of 93.0% and 58.1%
reported by Xiong et al. (2024)

On ProcessBench (Zheng et al., 2024), which assesses the PRM’s ability to identify the first process
error, our PRM achieves a state-of-the-art average F1 score of 57.5, surpassing the previous best
F1 score of 56.5 reported in the benchmark. Detailed scores for each subset of ProcessBench are
provided in Appendix A. On PRMBench (Song et al., 2025), which evaluates the fine-grained error
detection capabilities of PRMs, our PURE-PRM-7B ranks third among open-source PRMs2. These
results demonstrate that our PRM achieves top performance and is suitable for fine-tuning LLMs.

4.2 RL Settings

Reward types. Our framework supports 3 types of rewards: process reward only (PURE-PRM),
verifiable reward only (PURE-VR), which matches the training setup of Deepseek R1-Zero, and a mix
of both (PURE-PRM+VR). For verifiable rewards, a reward of +1 is assigned if the generated answer
matches the ground-truth answer; otherwise, a reward of 0 is given. No format-related rewards.

RL dataset. We use the RFT dataset from SimpleRL (Zeng et al., 2025). It samples around 8,000
problems from MATH dataset (Hendrycks et al., 2021) with difficulty lv.3-5. For ground-truth (GT)
answers, PURE-PRM method does not use GT answers. PURE-VR method requires GT answers
for all problems. For PURE-PRM+VR, GT answers are randomly assigned to 1/10 of the problems,
leading to about 800 problems with GT answers and 7,200 open problems. This setup aims to explore
the effectiveness of process rewards as the main signal for RL training.

Hyperparameters. We use veRL (Sheng et al., 2024) to conduct experiments on 3 models: Qwen2.5-
7B (Yang et al., 2024a), Qwen2.5-Math-7B, Qwen2.5-Math-1.5B (Yang et al., 2024b). We use a
constant learning rate of 10−6 for PURE-VR and PURE-PRM+VR and 5× 10−7 for PURE-PRM.
Training steps are set to 500 for Qwen2.5-Math series and 1000 for Qwen2.5-7B. Other shared
hyperparameters are set as follows: prompt batch size of 64, group size of 8 (generating 8 responses
per prompt), training mini-batch size of 512, maximum generation length of 8192 tokens, sampling
temperature of 1.0, KL coefficient of 10−3, transform temperature in Eq (5) of 0.1, save interval for
checkpoints of 50 steps.

Baselines. We compare our method with 3 state-of-the-art RFT methods: (i) Eurus-2-7B-PRIME (Cui
et al., 2025): A model based on Qwen2.5-Math-7B fine-tuned with implicit PRM. (ii) SimpleRL-
Zoo (Zeng et al., 2025): A re-implementation of Deepseek R1’s training recipe on several base
models. (iii) Qwen2.5-7B-DPO-Zero (Xiong et al., 2025): A model based on Qwen2.5-Math-7B
fine-tuned with iterative DPO.

Evaluation metrics. At test time, we evaluate performance on 5 competition-level mathematical
benchmarks, including AIME24 (Li et al., 2024), AMC23 (Li et al., 2024), MATH500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024). We report

2The official leaderboard is at https://prmbench.github.io/.

6

https://prmbench.github.io/

Table 2: Detailed performance of various models across 5 benchmarks. Report pass@1 accuracy
tested with greedy decoding. The blue lines represent the models trained with our recipe.

Base Model Method MATH Minerva Olympiad AIME24 AMC23 Avg.500 Math Bench

Qwen2.5-7B

SimpleRL-Zoo 78.4 31.2 39.1 16.7 50.0 43.1
Base 71.4 23.9 35.3 10.0 52.5 38.6
+ PURE-PRM 76.2 37.1 41.2 13.3 60.0 45.6
+ PURE-VR 75.6 32.7 39.0 16.7 55.0 43.8
+ PURE-PRM+VR 80.4 37.9 43.0 16.7 60.0 47.6

Qwen2.5-Math-7B

Eurus-2-7B-PRIME 79.2 38.6 42.1 26.7 57.8 48.9
SimpleRL-Zoo 80.2 38.2 43.3 23.3 55.0 48.0
Qwen2.5-7B-DPO-Zero 76.8 30.9 37.9 26.7 62.5 47.0
Base 71.8 29.8 35.1 13.3 47.5 39.5
+ PURE-PRM 81.8 38.2 44.7 16.7 60.0 49.3
+ PURE-VR 79.4 36.8 41.8 23.3 60.0 48.3
+ PURE-PRM+VR 82.6 37.1 44.1 20.0 82.5 53.3

Qwen2.5-Math-1.5B

Base 61.4 23.5 29.3 13.3 40.0 33.5
+ PURE-PRM 75.2 26.5 36.4 13.3 50.0 40.3
+ PURE-VR 74.2 27.9 36.0 10.0 55.0 40.6
+ PURE-PRM+VR 76.0 31.6 37.2 16.7 55.0 43.3

scores of best checkpoint saved in training. During training, we track about 20 metrics, including
accuracy, reward, response length, repetition score, etc. Details are provided in Appendix B.

4.3 Main Results

We report the pass@1 accuracy across 5 benchmarks in Table 2. The results indicate that all variants
of our methods perform at least comparable to, or better than baselines. For example, when using
only verifiable rewards, following the setup of SimpleRL-Zoo, our method PURE-VR achieves
average scores of 43.8 and 48.3 on Qwen2.5-7B and Qwen2.5-Math-7B, respectively. These scores
are comparable to the baseline results of 43.1 and 48.0 obtained by SimpleRL-Zoo, confirming the
reliability of our code-base. Based on Table 2, we draw the following observation:

PRM-based approach performs similar to the VR-based approach, but combining the two
yields better results. On the Qwen2.5-Math-7B model, PURE-PRM achieves an average score of
49.3, slightly higher than the 48.3 of PURE-VR. However, the combined method, PURE-PRM+VR,
reaches a score of 53.3, surpassing PURE-VR by approximately 5 percentage points. This trend
remains consistent across the other 2 base models.

0 100 200 300 400 500
Training Steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ve
ri

fia
bl

e
R

ew
ar

d

0 100 200 300 400 500
Training Steps

0.2

0.3

0.4

0.5

0.6

0.7

Pr
oc

es
s-

Ag
gr

eg
at

ed
 O

ut
co

m
e

R
ew

ar
d

PURE-VR
PURE-PRM (sum-form)

PURE-PRM (min-form)
PURE-PRM+VR (sum-form)

PURE-PRM+VR (min-form)

(a) PURE on Qwen2.5-Math-7B

0 200 400 600 800
Training Steps

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
y

on
 M

AT
H

-5
00

PURE-VR
PURE-PRM (min-form)

PURE-PRM+VR (min-form)

(b) Qwen2.5-Math-1.5B

Figure 2: Training curves for different variants of our methods on Qwen2.5-Math series. Process-
aggregated outcome reward is the summation of final process rewards for one response: for sum-form,
it sums PRM-emitted rewards; for min-form, it sums transformed rewards, approximating the
minimum PRM-emitted reward. Thus values across the 2 credit assignment methods are not
comparable. For PURE-PRM, verifiable reward is logged but unused in training.

Next, we analyze the training dynamics of our methods to understand the limitations of the PRM-
based approach and explain why PURE-PRM+VR is superior. Figure 2 illustrates the training curves
for five variants of our methods on Qwen2.5-Math series, leading to the following findings:

7

Summation-form credit assignment collapses training even at the beginning, while the min-
form method significantly enhances training stability. As shown in Figure 2a, both PURE-PRM
(sum-form) and PURE-PRM+VR (sum-form) experience collapse at step 25. At step 80, their average
benchmark scores drop to around 30, which is much lower than the base model’s score of 39.5. In
contrast, the min-form methods remain stable over 200 steps, achieving average scores of 49.3 and
53.3 for PURE-PRM (min-form) and PURE-PRM+VR (min-form), respectively.

Dense rewards substantially improve learning efficiency compared to sparse rewards. Figure 2b
shows the curves of accuracy on MATH-500 for 3 variants of our methods. We find that PRM-involved
approaches takes around 30% of the training steps to achieve the same accuracy as PURE-VR.

Reward hacking is inevitable when rely solely on PRM, though it can be delayed through
algorithmic adjustments. While PURE-PRM (min-form) produces a well-tuned model, reward
hacking still occurs at step 270, where verifiable rewards decrease sharply while process-aggregated
outcome rewards increase in Figure 2a. This issue was observed in all experiments using the PURE-
PRM method, indicating that reward hacking is a persistent challenge when relying solely on PRM
and limits further progress. However, compared to sum-form credit assignment, min-form approaches
delays the onset of reward hacking significantly. Such reward hacking corresponds to the third case
in § 5.1, which is inevitable due to the current architecture of PRMs.

Incorporating a few ground-truth signals can effectively reduce reward hacking. PURE-
PRM+VR (min-form) uses a mixed dataset of 800 problems with GT answers and 7,200 open
problems. Thus, during training, process rewards guide the RFT process primarily, while verifiable
rewards serve as an auxiliary signal. As shown in Figure 2a, this approach achieves a stable training
process similar to PURE-VR and attains the highest average benchmark score of 53.3. This suggests
a practical solution to address reward hacking by including a small proportion (around 10%) of
ground-truth signals during the RFT stage.

5 Analysis

5.1 Reward Hacking induced by PRM

In this section, we detail the reward hacking cases observed during training. We categorize these
cases into the 3 types. Specific examples for each type are provided in Appendix C.

Case 1: Only thinking, not solving. This behavior occurs when steps with certain patterns, such as
thinking, are rewarded significantly more than others, and the inappropriate credit assignment further
widen the gap in advantages between steps. As a result, the model learns to exploits these patterns to
achieve higher scores. As shown in Figure 1, the sum-form credit assignment increases the likelihood
of generating thinking steps while reducing that of incorrect solution steps, resulting in an armchair
general. However, exploiting specific patterns is not always negative. For example, using patterns
like backtracking and verification improves reasoning skills (Guo et al., 2025; Gandhi et al., 2025).

Case 2: Extremely few steps (1 step). This happens when an unsuitable advantage baseline is used.
In § 3.2, we employ a token-level baseline for process rewards. An alternative approach is a step-level
baseline, formulated as follows:

Ai,t = rvi − 1

K − 1

∑
k ̸=i

rvk +

N∑
j=t

γj−t

rp∗i,j − 1

K − 1

∑
k ̸=i

∑
l r

p∗
k,l

|yk|s

 (8)

where |yk|s represents the number of steps of the k-th response within the group. The advantage
baseline for process rewards in Eq. (8) means the average process reward of other responses in the
group. However, we find the step-level baseline is biased against the number of steps. When the
process-aggregated outcome reward are equal, response with more steps are penalized more heavily
by the baseline, causing the model to favor responses with fewer steps. Eventually, the model learns
to output only a single step with an excessively large number of tokens. This undermines the purpose
of PRM, which is to evaluate the process step by step.

Case 3: Extremely few steps (0 step). In this case, the model learns to output irrelevant responses
such as “Thank you.”, “Happy Birthday.”, or even empty responses. Since PRM infers in a causal
manner, it assigns high rewards to these meaningless steps, not realizing that no further content

8

follows. This issue stems from the current architecture of discriminative PRMs (i.e., the causal
attention mask). Our solution is adding GT-level signal as an aid, such as verifiable rewards in
PURE-PRM+VR. Another potential solution is the generative PRMs, which we leave for future work.

300 320 340 360 380 400
Training Steps

1000

2000

3000

4000

5000

6000

7000
R

es
po

ns
e

Le
ng

th
incorrect response
correct response

300 320 340 360 380 400
Training Steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

C
lip

 R
at

io

incorrect response
correct response

300 320 340 360 380 400
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
ig

h
R

ep
et

iti
on

 R
at

io

incorrect response
correct response

300 320 340 360 380 400
Training Steps

0.40

0.45

0.50

0.55

0.60

Pr
oc

es
s-

ag
gr

eg
at

ed
 O

ut
co

m
e

R
ew

ar
d

300 320 340 360 380 400
Training Steps

0.3

0.4

0.5

0.6

0.7

0.8

Ve
ri

fia
bl

e
R

ew
ar

d

300 320 340 360 380 400
Training Steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 o
n

M
AT

H
-5

00

x = 365

Figure 3: Training curves for PURE-PRM+VR with doubled process rewards based on Qwen2.5-
7B. The correctness of responses are judged by the verifier. Process-aggregated outcome reward
(bottom-left) is the summation of transformed process rewards for one response. No smooth is
applied. Training collapses at step 365, showing a sharp drop of rewards and accuracy.

5.2 Causes of Training Collapse

In this section, we train Qwen2.5-7B using PURE-PRM+VR with doubled process rewards, and
show the training curves of pattern-related metrics in Figure 3, including response length, clip ratio,
repetition score, rewards, and accuracy on MATH-500. The clip ratio measures how often responses
are cut off due to the maximum generation length limit. The repetition score evaluates how repetitive a
response is by calculating the longest common prefix (LCP) lengths between all pairs of its suffixes 3.
We consider responses with repetition score above 0.2 as highly repetitive. Details on metrics are
provided in Appendix B.

As shown in Figure 3, training collapses at step 365, showing a sharp drop of rewards and accuracy..
Before step 360, incorrect responses judged by the verifier are longer and more repetitive than the
correct responses, but that does not collapse the training. Both the clip ratio and high repetition ratio
for correct responses remain at 0 until step 361. After that, the response length, clip ratio, and high
repetition ratio for both incorrect and correct responses rise sharply until step 380. Based on these
observations, we derive the following conclusions:

Long and highly repetitive “correct” responses cause training collapse. At step 361, the clip
ratio and high repetition ratio for correct responses become greater than 0. This large number of
positive signals for repetitive patterns is fatal to training. We refer to these samples as pseudo-positive
samples. We attempt to treat pseudo-positive samples as incorrect samples and assign 0 rewards
instead of +1 rewards, but this does not help much. The model learns to repeat content in ways that
the LCP function can not detect, as detailed in Appendix B. Verifiers can not identify pseudo-positive
samples. While PRM has the potential to detect them, it currently fails to do so because such patterns
are not included in its training data. This highlights a need for future PRM development to not only
assess the correctness of steps but also evaluate the quality of patterns.

The model learns repetitive patterns quickly, leading to collapse within 5 gradient steps. From
the unusual metrics at step 361 to the training collapse at step 365, the model rapidly learns to repeat
content. Our training setup ensures one gradient step per training step, meaning the collapse happens
within just 5 gradient steps.

3This is implemented using a function from Open-Reasoner-Zero (Hu et al., 2025).

9

0 50 100 150 200 250
Training Steps

0.35

0.40

0.45

0.50

0.55

0.60

Ve
ri

fia
bl

e
R

ew
ar

d

0 50 100 150 200 250
Training Steps

0.50

0.55

0.60

0.65

0.70

0.75

M
AT

H
-5

00

GRPO GAE REINFORCE++ RLOO

Figure 4: Training curves on Qwen2.5-7B using PURE-PRM+VR with different advantage estimators.

5.3 PURE with Other RL Algorithms

In this section, we apply PURE with various advantage estimators beyond RLOO, including GAE,
GRPO, and REINFORCE++. The training curves are shown in Figure 4. To make different algorithms
compatible with the compound of verifier rewards and process rewards, we make adjustments similar
to those in Eq. (7). For GRPO, the advantage is defined as:

Ai,t =
rvi − mean(rv)

std(rv)
+

∑N
j=t γ

j−trp∗i,j − mean
(∑N

l=1

∑N
j=l γ

j−l · rp∗j
)

std
(∑N

l=1

∑N
j=l γ

j−l · rp∗j
) (9)

where mean and standard deviation (std) are calculated over K responses in a group. For REIN-
FORCE++, the advantage is:

Ai,t = rvi +

N∑
j=t

γj−trp∗i,j (10)

From Figure 4, we find that all methods show similar performance before step 150. However,
REINFORCE++ experiences a spike at around step 220. Although GAE converges a bit slower
than others, it performs slightly more stably in the last 50 steps. Due to its additional learnable
value network, GAE takes about 30% more time for forward and backward passes. Considering
performance, training time, and stability, we select RLOO as our preferred advantage estimator.

6 Related Work

6.1 Reinforcement Fine-Tuning

Reinforcement fine-tuning (RFT) is a promising technique to improve the performance of
LLMs (Ouyang et al., 2022; Yue et al., 2024; Wei et al., 2025). OpenAI’s o1 model (Jaech et al., 2024)
was among the first to demonstrate the significant potential of large-scale reinforcement learning for
enhancing reasoning abilities in LLMs. Recent studies have further confirmed that a straightforward
reinforcement learning approach, using verifiable rewards, can scale effectively (Guo et al., 2025;
Team et al., 2025; Zeng et al., 2025). However, previous research has faced difficulties in effectively
utilizing PRM (Guo et al., 2025) in training-time, which is the primary focus of our work in PURE.

6.2 Reward Models for LLM Alignment

In the area of LLM alignment, outcome reward models (ORMs) are used to evaluate the quality of
the entire response generated by LLMs. Employing ORMs for aligning LLMs with human values has
become a common practice in the post-training stage (Ouyang et al., 2022; Bai et al., 2023; Touvron
et al., 2023). However, ORMs fall short in providing detailed feedback for complex tasks that involve
multiple reasoning steps. In contrast, process reward models (PRMs) provide more detailed feedback

10

by evaluating each step of the reasoning process, allowing LLMs to learn more effectively from
mistakes made during reasoning (Lightman et al., 2023; Yuan et al., 2024; Cui et al., 2025). Studies
have shown that PRMs outperform majority voting and ORMs in test-time scaling (Lightman et al.,
2023; Wang et al., 2023; Xiong et al., 2024). Nevertheless, the application of PRMs during the
training phase remains largely unexplored, which is the central topic of PURE.

7 Conclusion and Future Work

In this paper, we present PURE: Process sUpervised Reinforcement lEarning, a framework leverages
process rewards to improve the reasoning abilities of LLMs. Extensive experiments demonstrate that
PURE effectively alleviates reward hacking induced by PRM, attributed to the proposed min-form
credit assignment. This method allows PRM-based RFT to achieve performance similar to verifiable
rewards-based approaches within 30% steps, and further outperform them with the assistance of a
few ground-truth signals. Additionally, we summarize the observed reward hacking cases during
training, and find that pseudo-positive samples collapse training. We hope these insights will guide
future work.

There are several promising directions for further improving PRM-based RFT. First, developing
generative PRMs is both urgent and crucial. As discussed in § 5, current PRMs are unable to address
the third type of reward hacking mentioned in § 5.1, and also cannot evaluate the quality of patterns
like endless repetition. Generative PRMs, however, could potentially resolve these issues by making
better use of the strong language capabilities of LLMs. Second, iterative training between PRM and
LLM is essential to ensure that the PRM continuously adapts to the output distribution of LLMs. We
believe these areas offer valuable opportunities for future exploration.

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,

Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Jie Cheng, Ruixi Qiao, Yingwei Ma, Binhua Li, Gang Xiong, Qinghai Miao, Yongbin Li, and Yisheng
Lv. Scaling offline model-based rl via jointly-optimized world-action model pretraining. arXiv
preprint arXiv:2410.00564, 2024a.

Jie Cheng, Gang Xiong, Xingyuan Dai, Qinghai Miao, Yisheng Lv, and Fei-Yue Wang. RIME:
Robust preference-based reinforcement learning with noisy preferences. In Proceedings of the 41st
International Conference on Machine Learning, volume 235, pp. 8229–8247. PMLR, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024. URL https://github.com/deepseek-ai/DeepSeek-LLM.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

11

https://github.com/deepseek-ai/DeepSeek-LLM

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier
Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement learning.
arXiv preprint arXiv:2312.01072, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://arxiv.org/abs/2503.24290

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
and challenging benchmark for process-level reward models. arXiv preprint arXiv:2501.03124,
2025.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Lilian Weng. Reward hacking in reinforcement learning. lilianweng.github.io, Nov 2024. URL
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding
correction for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint arXiv:2412.01981,
2024.

Tongtian Yue, Jie Cheng, Longteng Guo, Xingyuan Dai, Zijia Zhao, Xingjian He, Gang Xiong,
Yisheng Lv, and Jing Liu. Sc-tune: Unleashing self-consistent referential comprehension in large
vision language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13073–13083, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

13

https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://github.com/RLHFlow/RLHF-Reward-Modeling

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559, 2024.

14

A Benchmark Scores of Our PRM

We report the detailed scores on ProcessBench (Zheng et al., 2024) and PRMBench (Song et al.,
2025) in Table 3 and Table 4, respectively.

Table 3: F1 scores of each subset in ProcessBench. The blue line represents our PRM. Other lines are
taken from Zheng et al. (2024).

Model GSM8K MATH Olympiad- Omni- AverageBench MATH
Math-Shepherd-PRM-7B 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Deepseek-8B 38.8 33.8 16.9 16.9 26.6
Skywork-PRM-7B 70.8 53.6 22.9 21.0 42.1
Qwen2.5-Math-7B-PRM800K 68.2 62.6 50.7 44.3 56.5
PURE-PRM-7B 69.0 66.5 48.4 45.9 57.5

Table 4: Results on ProcessBench. The blue line represents our PRM. Other lines are taken from
Song et al. (2025).

Model S1 (Simplicity) S2 (Soundness) S3 (Sensitivity) Overall
MathShepherd-Mistral-7B 47.1 45.7 60.7 47.0
RLHFlow-PRM-Deepseek-8B 47.6 57.5 68.1 54.2
Skywork-PRM-7B 59.6 68.5 73.3 65.1
Qwen2.5-Math-7B-PRM800K 52.1 71.0 75.5 65.5
PURE-PRM-7B 52.2 70.2 75.8 65.3

B Details of Training Metrics

We detail 4 metrics used in the main text of the paper, including process-aggregated outcome reward,
clip ratio, repetition score, and high repetition ratio.

Process-aggregated outcome reward. This metric reflects the value of a response with respect
to process rewards. In practice, it is calculated as the sum of transformed process rewards for the
min-form credit assignment, approximating the minimum PRM-emitted reward for a given response.

Clip ratio. The clip ratio indicates the proportion of samples in the replay buffer that are truncated
due to the maximum generation length limit. After training collapses, LLMs often generate infinitely
repetitive responses until hit the maximum context length.

Repetition score. The repetition score measures the level of repetition in a response by calculating
the longest common prefix (LCP) lengths between all pairs of its suffixes. However, this method
can only identify basic repetition patterns. A more complex form of repetition involves the use of
near-synonyms, where words differ but the meaning remains the same. Such cases are not detected
by the LCP method. This limitation explains why treating pseudo-positive samples as incorrect still
results in training collapse, as mentioned in § 5.2. The model learns to exploit complex repetition
patterns to bypass the LCP function.

High repetition ratio. We consider responses with a repetition score greater than 0.2 as highly
repetitive. This metric shows the percentage of samples in the replay buffer that fall into this category.

C Examples of Reward Hacking

We show examples for each reward hacking case in Figure 5, 6, and 7. In practice, we use double line
breaks ("\n\n") to separate individual steps within the response.

15

Compute	 𝟏
𝐜𝐨𝐬𝟐𝟏𝟎°

+ 𝟏
𝐬𝐢𝐧𝟐𝟐𝟎°

+ 𝟏
𝐬𝐢𝐧𝟐𝟒𝟎°

Let's	break	down	the	problem	step	by	step:

Step	1:	Express	the	Given	Expression	Using	Trigonometric	Identities
Rewrite	each	term	of	the	expression	using	identities	like	 *

+,-𝟐.
= sec/𝑥 and 𝟏

-01𝟐𝒙
= csc𝟐𝑥,	and	further	

express	them	in	terms	of tan/𝑥 and	cot/𝑥 to	simplify	the	structure.

Step	2:	Simplify	the	Expression	by	Combining	Constant	Terms
Combine	any	constant	terms	resulting	from	the	identities	used	in	the	previous	step	to	reduce	the	
expression	to	a	more	manageable	form	involving	trigonometric	functions.

Step	3:	Convert	Cotangent	Terms	to	Tangent	Terms
Use	the	relationship	cot	𝑥 = *

341	.
to	express	cotangent	squares	in	terms	of	tangent	squares,	aiming	for	

consistency	in	the	trigonometric	functions	used.

Step	4:	Explore	Angle	Relationships	Using	Multiple-Angle	Identities
Consider	relevant	multiple-angle	identities	(such	as	for	tan	3𝑥)	to	establish	equations	or	relationships	
between	the	angles	involved,	potentially	leading	to	a	simplification	of	the	expression.

Step	5:	Relate	Cotangent	to	Tangent	Using	Complementary	Angle	Identities
Use	the	identity	cot	𝑥 = tan(90° − 𝑥)to	rewrite	cotangent	terms	as	tangent	terms	of	complementary	
angles,	facilitating	a	possible	pairing	or	symmetry	in	the	expression.

Step	6:	Apply	Known	Trigonometric	Sum	Identities	or	Results
Identify	and	apply	any	known	results	or	specific	identities	related	to	the	sum	of	squares	of	tangents	and	
cotangents	for	the	given	angle	configuration	to	evaluate	the	expression	directly.

Step	7:	Combine	Results	to	Compute	the	Final	Value
Add	the	results	from	the	simplified	trigonometric	sum	to	the	constant	terms	obtained	earlier	to	arrive	at	
the	final	numerical	value	of	the	expression.

Question

Response

Figure 5: Reward hacking, case 1: only thinking, not solving. In this example, the LLM analyzes the
problem and gives a few equations for trigonometric simplifications, but does not substitute actual
numbers to calculate and solve the problem. This is because the LLM hacks the implicit pattern
inside high-reward steps, i.e., thinking.

D Additional Experiments

D.1 Ablation on Transform Temperature

In this section, we ablate the transform temperature defined in Eq. (5), which controls the level of
approximation to the min-form credit assignment. We choose Qwen2.5-7B as the base model and run
PURE-PRM+VR with 3 values of transform temperature individually for 230 steps. The results are
shown in Table 5 and Figure 8, which indicates that 0.1 is the best for the transform temperature.

16

In	∆𝑷𝑸𝑹,	we	have	𝑷𝑸	 = 	𝑸𝑹	 = 	𝟑𝟒 and	𝑷𝑹	 = 	𝟑𝟐.	Find	the	length	of	median	𝑸𝑴.

Let’s	first	identify	the	type	of	triangle	and	use	the	properties	of	the	median	in	an	isosceles	triangle.
Given	that 𝑃𝑄	 = 	𝑄𝑅	 = 	34,	∆𝑃𝑄𝑅 is	isosceles	with	𝑃𝑄	 = 	𝑄𝑅.	In	an	isosceles	triangle,	the	median	to	the	base	(the	side	opposite	the	
vertex	angle)	also	acts	as	the	altitude	and	the	angle	bisector	of	the	vertex	angle.	So,	the	median	𝑄𝑀 from	vertex	𝑄 to	the	midpoint	𝑀 of	
the	base	𝑃𝑅 will	split	the	isosceles	triangle	into	two	congruent	right	triangles.
Let's	place	the	triangle	in	the	coordinate	plane	to	make	calculations	easier.	Assume	𝑃	 = 	 (0, 𝑏),	𝑄	 = 	 (0, 0),	and	𝑅	 = 	 (32, 0).	Here,	
𝑃𝑄	 = 	𝑄𝑅	 = 	34 and	𝑃𝑅	 = 	32.
Since	𝑃𝑄	 = 	34 and	𝑄	 = 	 (0,0),	point	𝑃 is	at	a	distance	of	34	units	from	the	origin	along	the	y-axis.	So,	the	coordinates	of	𝑃 are	(0, 𝑏),	
and	the	distance	from	𝑃 to	𝑄 is	the	y-coordinate	of	𝑃,	which	is	𝑏.	Therefore,	we	have:	

𝑏	 = 	34
So,	the	coordinates	of	𝑃 are	(0, 34).
The	coordinates	of	𝑄 are	(0, 0) and	the	coordinates	of	𝑅 are	(32, 0).
Next, let’s	find	the	coordinates	of	the	midpoint	𝑀 of	the	base	𝑃𝑅.
The	midpoint	𝑀 of	the	base	𝑃𝑅 (where	𝑃	 = 	 (0, 34) and	𝑅	 = 	 (32, 0))	is	given	by	the	midpoint	formula:

𝑀 =
𝑥! + 𝑥"
2 ,

𝑦! + 𝑦"
2 	

Here,	(𝑥!, 𝑦!) = (0, 34) and	(𝑥", 𝑦") = (32, 0) :

𝑀 =
0 + 32
2 ,

34 + 0
2 =

32
2 ,

34
2 = (16, 17)

So,	the	coordinates	of	the	midpoint	𝑀 are	(16, 17).
Then,	let’s	calculate	the	length	of	the	median 𝑄𝑀.
The	median	𝑄𝑀 is	the	line	segment	from	𝑄 = (0, 0) to	𝑀 = (16, 17).	The	length	of	the	median	can	be	found	using	the	distance	formula	
between	two	points	(𝑥!, 𝑦!) and	(𝑥", 𝑦"):

Distance	= 𝑥" − 𝑥! " + 𝑦" − 𝑦! "

Here,	the	points	are	𝑄	 = 	 (0, 0) and	𝑀	 = 	 (16, 17) :
𝑄𝑀 = 16 − 0 " + 17 − 0 " = 16" + 17"

Calculate	16^2 and	17^2:
16" 	= 	256
17" 	= 	289

So,
𝑄𝑀	 = 	 256	 + 	289 = 545

Therefore,	the	length	of	the	median	𝑄𝑀	is

Question

Response

545

Figure 6: Reward hacking, case 2: extremely few steps (1 step). In practice, we divide steps according
to double line breaks "\n\n" and then PRM scores each step. When the advantage baseline is
inappropriate, such as step-level baseline discussed in § 5.1, the model learns to deliberately avoid
outputting "\n\n", preferring short-step response. In this example, there is no "\n\n" character in the
generated response, resulting in the entire response being split into only one step.

Evaluate	the	expression	 𝟖𝟎 − 𝟒 𝟓 + 𝟑 𝟏𝟖𝟎
𝟑
and	express	it	as	 𝑴,	where	𝑴 is	an	integer.

Thank	you.

Question

Response	1

<eos>

Response	2	(empty	response)

I	can	help	you	solve	this	problem.

Response	3

Figure 7: Reward hacking, case 3: extremely few steps (0 step). This is the most common cases
for PURE-PRM. When relying solely on the PRM, training eventually boils down to this case after
numerous steps of training. It is inevitable because the PRM scores based on the question and
historical steps, and it does not know the role of the current step in the overall response.

17

0 50 100 150 200
Training Steps

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
y

on
 M

AT
H

-5
00

T = 0.1 T = 0.01 T = 1

Figure 8: Ablation on transform temperature defined in Eq. (5). We use PURE-PRM+VR to fine-tune
Qwen2.5-7B in this experiment.

Table 5: Results of PURE-PRM+VR with different transform temperature, defined in Eq (5). We
conduct the experiments based on Qwen2.5-7B and report pass@1 accuracy tested with greedy
decoding.

Method MATH Minerva Olympiad AIME24 AMC23 Avg.500 Math Bench
Base 71.4 23.9 35.3 10.0 52.5 38.6
+ PURE-PRM+VR (T = 0.01) 76.2 37.1 39.0 6.7 55.0 42.8
+ PURE-PRM+VR (T = 0.1) 76.2 37.1 41.2 13.3 60.0 45.6
+ PURE-PRM+VR (T = 1.0) 75.8 33.5 38.7 13.3 52.5 42.8

18

	Introduction
	Preliminaries
	Credit Assignment Problem in Reinforcement Learning
	Process Reward vs. Verifiable Reward

	PURE: Process Supervised Reinforcement Learning
	Min-form Credit Assignment
	Advantage Estimation

	Experiments
	PRM Training and Evaluation
	RL Settings
	Main Results

	Analysis
	Reward Hacking induced by PRM
	Causes of Training Collapse
	PURE with Other RL Algorithms

	Related Work
	Reinforcement Fine-Tuning
	Reward Models for LLM Alignment

	Conclusion and Future Work
	Benchmark Scores of Our PRM
	Details of Training Metrics
	Examples of Reward Hacking
	Additional Experiments
	Ablation on Transform Temperature

