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Abstract— Diffusion tensor imaging (DTI) provides crucial
insights into the microstructure of the human brain, but it
can be time-consuming to acquire compared to more read-
ily available T1-weighted (T1w) magnetic resonance imaging
(MRI). To address this challenge, we propose a diffusion bridge
model for 3D brain image translation between T1w MRI and
DTI modalities. Our model learns to generate high-quality
DTI fractional anisotropy (FA) images from T1w images and
vice versa, enabling cross-modality data augmentation and
reducing the need for extensive DTI acquisition. We evaluate
our approach using perceptual similarity, pixel-level agreement,
and distributional consistency metrics, demonstrating strong
performance in capturing anatomical structures and preserving
information on white matter integrity. The practical utility of
the synthetic data is validated through sex classification and
Alzheimer’s disease classification tasks, where the generated
images achieve comparable performance to real data. Our dif-
fusion bridge model offers a promising solution for improving
neuroimaging datasets and supporting clinical decision-making,
with the potential to significantly impact neuroimaging research
and clinical practice.

I. INTRODUCTION

Deep learning has revolutionized our ability to generate
and process complex neuroimaging data, particularly in
bridging modalities like T1-weighted MRI (T1w MRI) and
diffusion tensor imaging (DTI). While both provide crucial
insights into brain structure and pathology, DTI is more time-
consuming and expensive to acquire, creating a need for
efficient cross-modality translation methods. The challenge
of acquiring comprehensive DTI datasets is a significant
bottleneck in neuroimaging research and clinical practice due
to longer scan times, increased patient discomfort, higher
costs, and limited availability. This has motivated the de-
velopment of deep learning approaches to synthesize DTI
data from more readily available T1w images, potentially
expanding access to diffusion imaging biomarkers while
reducing acquisition burden.

Previous approaches to medical image translation [1], [2]
have relied on Generative Adversarial Networks (GANs) [3],
[4], [5] and Variational Autoencoders (VAEs) [6], [7]. Gu et
al. [8] used CycleGAN to map T1 to FA or MD, and vice
versa, demonstrating that synthetic FA images can correct
geometric distortions in diffusion MRI. However, GANs
often suffer from training instability and mode collapse,
while VAEs produce blurred outputs that fail to capture
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fine-grained microstructural information. Denoising diffusion
probabilistic models (DDPMs) have emerged as a promising
approach for generating high-quality images through an iter-
ative denoising process [9], [10]. Most studies have focused
on translating T1w images to CT or T2w images. More
recently, diffusion bridge models [11], [12], [13] have been
developed for a range of image-to-image translation tasks,
including edge-to-handbag conversion, depth-to-RGB trans-
lation, super-resolution, deblurring, and JPEG restoration.
These models have demonstrated superior performance over
conditional diffusion models, primarily because they directly
establish a transition between source and target images. This
direct mapping reduces the distributional gap compared to
conventional diffusion models, which must bridge the larger
gap between Gaussian noise and the target distribution.

Synthetic neuroimaging data can be beneficial for down-
stream predictive modeling tasks, such as Alzheimer’s dis-
ease classification or sex classification (a common bench-
marking task with known ground truth). These tasks typically
use 3D Convolutional Neural Networks (CNNs) [14], [15]
or vision transformers [16] to learn discriminative features
from volumetric neuroimaging data. Sex classification serves
as a benchmark to evaluate the biological plausibility of syn-
thetic data, ensuring that generated images preserve subtle,
distributed sex-related anatomical differences. Alzheimer’s
disease detection is a clinically relevant application that can
benefit from enhanced training datasets, as synthetic data
can help mitigate the scarcity of labeled data. We focus on
these two downstream tasks to evaluate the synthetic scans
generated using the diffusion bridge model.

In this work, we adopt diffusion bridge models for 3D
medical image translation. Our contributions are summarized
as follows:

• We introduce a diffusion bridge model that explic-
itly captures the joint evolution of T1-weighted (T1w)
and Diffusion Tensor Imaging (DTI) domains, enabling
anatomically consistent cross-modality translation while
preserving the structural integrity of white matter path-
ways.

• To evaluate the utility of our synthetic data, we conduct
extensive experiments on two key predictive modeling
tasks: (i) Sex Classification, to verify the preservation
of sex-related anatomical features, and (ii) Alzheimer’s
Disease (AD) Classification, demonstrating the potential
of synthetic DTI in augmenting clinical datasets for
improved disease detection.
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II. DATA AND PREPROCESSING
Diffusion tensor imaging (DTI) is a widely used MRI

technique that employs diffusion-weighting to model brain
tissue microstructure in vivo. The diffusion tensor model
approximates local diffusion using a spatially varying tensor,
represented as a 3D Gaussian at each voxel. Although
simpler than advanced approaches like NODDI [17] and
MAP-MRI [18], DTI remains popular due to its compatibility
with single-shell diffusion MRI (dMRI), which is faster and
more practical in clinical settings. DTI is summarized using
four scalar metrics: fractional anisotropy (FA) and mean,
axial, and radial diffusivity (MD, AxD, and RD). These
metrics characterize the shape of the diffusion tensor at each
voxel, derived from its three principal eigenvalues indicating
water diffusion rates along three principal directions. FA
summarizes the directionality of diffusion, calculated from
the diffusion tensor eigenvalues using a standard formula.

FA =

√
1

2

√
(λ1 − λ2)

2
+ (λ2 − λ3)

2
+ (λ3 − λ1)

2√
λ2
1 + λ2

2 + λ3
2

, (1)

where λ1, λ2 and λ3 are the three principal eigenvalues.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[19] is a comprehensive, multisite study initiated in 2004,
at 58 locations across North America. It aims to collect
and analyze neuroimaging, clinical, and genetic data to
identify and better understand biomarkers associated with
healthy aging and AD. We used data from a total of 1,114
participants (age: 74.36±7.74 years; 562 F/552 M), who had
both structural T1w as well as dMRI with a distribution of
(592 CN/391 MCI/131 dementia) for our analysis.

3D T1w brain MRI scans underwent preprocessing steps
[20], [21], including N4 bias field correction, skull stripping,
registration to a template using 6 degrees of freedom rigid-
body registration, and isometric voxel resampling to 2-mm
spatial resolution. The resulting pre-processed images were
of size 91x109x91 and underwent min-max scaling to range
between 0 and 1. This normalization process standardizes
image intensity values for subsequent analyses and model
training. The preprocessing pipeline ensures that the back-
ground of the scans is set to 0 intensity, and due to input
normalization before the CNN model, the effect of the
original background or intensity range on convolution model
performance is negligible. All T1w images were aligned to
a common ENIGMA consortium template [22], and dMRI
were non-linearly registered to the T1w images. The dMRI
processing pipeline is detailed in [20], [23], [24].

III. METHODOLOGY
A. Problem formulation

In this work, we address the problem of 3D medical image
translation. Given paired source and target images, the goal is
to learn a mapping that can predict the corresponding target
images for previously unseen source images.

Let {xi
1, x

i
0}Ni=1 denote a dataset of N paired source and

target images, where xi
1, x

i
0 ∈ Rd and d is the dimensionality

of the images. We assume that the source images are drawn
from a distribution π1(x1) and the target images are drawn
from a distribution π0(x0). The joint distribution of source
and target images can be represented as π0,1(x0, x1) =
π1(x1)π0|1(x0 | x1), where π0|1(x0 | x1) is the conditional
distribution of target image x0 given source image x1.

Our goal is to learn a model of the conditional distribution
π0|1(x0 | x1) from the paired training data, which can then
be used to predict the corresponding target image x0 for a
previously unseen source image x1 at test time.

B. Diffusion bridge models
Diffusion bridge models [11], [13], [12] try to learn

the conditional distribution π0|1(x0 | x1), with a method
consisting of three steps: designing, training and sampling.

1) Designing: The first step is to build a stochastic
process pt, namely, bridge process, that connects the source
π0 and target distributions π1 and is defined for all t ∈ [0, 1]:

pt =

∫
pt|0,1(xt | x0, x1)dx0dx1, (2)

where pt|0,1(xt | x0, x1) is defined as a Gaussian transition
kernel:

pt|0,1(xt | x0, x1) = N
(
αtx0 + βtx1, γ

2
t I
)
. (3)

To ensure the bridge process connects the desired distri-
butions (i.e., p1 = π1 and p0 = π0), the coefficients must
satisfy specific boundary conditions [25]: αt, βt, and γ2

t

are differentiable functions of time where α0 = β1 = 1,
α1 = β0 = γ0 = γ1 = 0, and α2

t + β2
t + γ2

t > 0 for all
t ∈ [0, 1].

Intuitively, the transition kernel represents the probability
of the system being at xt at time t given its starting point
x0 and endpoint x1; the integral averages over all possible
starting and endpoints (x0, x1). Its mean, αtx0 + βtx1, is a
weighted combination of the starting point x0 and the ending
point x1, and the variance is γ2

t I. Here γ2
t controls the spread

(uncertainty) of the process, and I is the identity matrix that
indicates independence across dimensions.

The choice of coefficients αt, βt, and γt defines different
bridge models, which significantly influences the model’s
performance. These coefficients determine how the stochastic
process interpolates between the source and target distribu-
tions, affecting both the learning dynamics and the quality
of generated samples. In this work, we adopt a simplified yet
effective parameterization recommended in previous studies
[13]:

pt|0,1(xt | x0, x1) = N (xt; (1− t)x0+ tx1, 4γ
2
maxt(1− t)I).

(4)
This particular choice corresponds to setting αt = 1 − t,

βt = t, and γ2
t = 4γ2

maxt(1− t), which satisfies the required
boundary conditions. Zhang et al. [13] found that the optimal
γmax for image-to-image translation tasks, such as Edges-to-
Handbags and Depth-to-RGB image translation, ranges from
approximately 0.125 to 0.25. In this work, we set γmax =
0.125 as the default.



Fig. 1. Overall framework of diffusion bridge models for 3D medical image translation.

2) Sampling: Given transition kernel pt|0,1(xt | x0, x1)
in Equation (3), we can build a bridge process pt by
Equation (2). Then the evolution of conditional probability
pt(xt | x1) is given by the following Stochastic Differential
Equation (SDE):

dXt = b(t,Xt, x1)dt+
√
2ϵtdWt, X1 = x1, (5)

where b(t, xt, x1) = α̇tx̂
∗
0 + β̇tx1 + (γ̇t + ϵt

γt
)ẑt,

x̂∗
0(t, xt, x1) = E[x0 | xt, x1], ẑ∗t =: (xt − αtx̂0 − βtx1)/γt.

ϵt > 0 controls the noise added in the inference time.
Notably, ϵt controls the stochasticity added in the inference
time, it need to be designed and different ϵt can significantly
influence the image translation quality. When ϵt = 0, Eq.
(5) reduces to a deterministic Ordinary Differential Equation
(ODE), while setting ϵt = γtγ̇t − α̇t

αt
γ2
t recovers the DDBM

sampling SDE [12].
3) Training: Equation (5) is not implementable since

x̂∗
0(t, xt, x1) is unknown. However, we can train a denoiser

x̂θ
0 to approximate x̂∗

0(t, xt, x1) via:

x̂∗
0 = arg min

x̂(t,xt,x1)
E
[
λ(t)∥x̂(t, xt, x1)− x0∥22

]
, (6)

where λ(t) is a positive weighting function, E de-
notes an expectation over (x0, x1) ∼ π0,1(x0, x1), xt ∼
pt|0,1(xt | x0, x1). Although x̂∗

0(t, xt, x1) can be estimated
by a neural network, i.e., x̂θ

0(t, xt, x1) ≈ x̂∗
0(t, xt, x1),

in the implementation, we do not directly parameterize
x̂θ
0 as a neural network. Instead, we include additional

preconditioning steps as in SDB [13]. We include ad-
ditional pre- and post-processing steps: scaling functions
and loss weighting as in SDB [13]. Let x̂θ

0(xt,x1, t) =
cskip(t)xt + cout(t)(t)Fθ(cin(t)xt, cnoise(t)), where Fθ is
a neural network with parameter θ, the effective train-
ing target with respect to the raw network Fθ is:
Ext,x0,x1,t

[
λ∥cskip(xt + coutFθ(cinxt, cnoise)− x0∥2

]
,

cin(t) =
1√

α2
tσ

2
0 + β2

t σ
2
1 + 2αtβtσ01 + γ2

t

, (7)

cskip(t) = (αtσ
2
0 + βtσ01) ∗ c2in, (8)

cout(t) =
√

β2
t σ

2
0σ

2
1 − β2

t σ
2
01 + γ2

t σ
2
0cin, (9)

λ =
1

c2out
, cnoise(t) =

1

4
log (t), (10)

where σ2
0 , σ

2
1 , and σ01 denote the variance of x0, variance

of xT and the covariance of the two, respectively.

Algorithm 1 Sampling Algorithm
Require: model x̂θ

0(xt, x1, t), time steps {tj}Nj=0, input dis-
tribution πcond, scheduler αt, βt, γt, η

1: Sample x1 ∼ πcond

2: xN = x1

3: for i = N to 1 do
4: x̂0 = x̂θ

0(xi, x1, ti)
5: ẑi = (xi − αti x̂0 − βtixN )/γti
6: if N ≥ 2 then
7: Sample z̄i ∼ N (0, I)

8: ϵti = η(γti γ̇ti −
α̇ti

αti
γ2
ti )

9: di = α̇ti x̂0 + β̇tixN + (γ̇ti + ϵti/γti)ẑi
10: xi−1 = xi + di(ti − ti−1) +

√
2ϵti(ti − ti−1)z̄i

11: else
12: xi−1 = αti−1

x̂0 + βti−1
xN + γti−1

ẑi
13: end if
14: end for

4) Sampling algorithm: The sampling algorithm design
involves two key components: discretization schemes and
noise schedule ϵt. Based on SDB [1], we implement two
discretization approaches: The first scheme applies Euler
discretization:

xt−∆t ≈ xt − b(t, xt, x1)∆t+
√
2ϵt∆tz̄t, (11)

where z̄t ∼ N (0, I). The second scheme is:

xt−∆t ≈ αt−∆tx̂0 + βt−∆txT + z̃, (12)



where z̃ =
√

γ2
t−∆t − 2ϵt∆tẑt +

√
2ϵt∆tz̄t. We adopt the

sampling algorithm from SDB [13] that integrates both
schemes and let ϵt = η(γtγ̇t− α̇t

αt
γ2
t ). In the implementation

we set ϵt = 1 for stochastic sampling like DDPM [26] and set
ϵt = 0 for determinist sampling like DDIM [27]. Algorithm
1 details the complete sampling procedure.

C. 3D UNet

Fθ of the diffusion bridge model is parameterized as
ADM’s UNet [28]. ADM has demonstrated remarkable suc-
cess in image generation [28], translation [11], [13], and
inverse problems [29], [30]. Our implementation extends
the original ADM UNet to support 3D medical imaging
data while maintaining several key advantages over standard
3D UNet frameworks like MONAI: 1) Flexible architec-
ture supporting customizable attention configurations and
dynamic feature scaling; 2) Advanced conditioning through
feature concatenation and scale-shift normalization; 3) Mod-
ern training optimizations including flash attention, gradient
checkpointing, and FP16 precision. The model follows a
symmetric UNet structure with input processing, downsam-
pling path, middle attention block, upsampling path with
skip connections, and output projection - all adapted for 3D
medical imaging data.

D. 3D CNN

We adopt the 3D CNN model to train the classifier for
downstream task evaluation, i.e., Sex and AD classification.
The 3D CNN model architecture consists of three convo-
lutional blocks, each containing a 3D convolutional layer
with a kernel size of 3, instance normalization, max pooling
with a kernel size of 2 and stride 2, and ReLU activation.
This is followed by a post-convolution block with a 1x1x1
convolution, instance normalization, ReLU activation, and
average pooling with a kernel size of 2 and stride 2. Dropout
with a rate of 0.3 is applied after the post-convolution block.
The final layer is a fully connected layer with 2 output units
for binary classification (male/female or AD/non-AD).

IV. EXPERIMENTS

A. Dataset

The dataset was randomly split into training, validation,
and test subsets in a 7 : 1.5 : 1.5 ratio. This division was
used for training the diffusion bridge model as well as for
downstream tasks, such as sex and AD Classification. We
normalize all brain images to the range [0, 1] using min-
max normalization. To adapt UNet training, we apply zero-
padding to resize brain images from 91× 109× 91 to 128×
128× 128. This setting is also used for training our Sex and
AD classifiers in downstream tasks. In the metric evaluations,
we keep the original image size as 91× 109× 91.

B. Experimental setup

1) Diffusion bridge model: Our configurations for diffu-
sion bridge models are presented in Table I. We adopt the
same settings for αt, βt, and γt as in SDB [13], with the
recommended γmax = 0.125. We set the batch size to 8 and

TABLE I
CONFIGURATIONS FOR DIFFUSION BRIDGE MODELS.

Stage Hyperparameter Configuration
Design γmax 0.125

Train

learning rate 5× 10−5

Batch size 8
Micro batch size 2

Ema rate 0.9999

Sampling
Steps 40

η
0 (ODE sampler)
1 (SDE sampler)

employ a micro-batch processing technique with a micro-
batch size of 2. In the sampling stage, the number of sam-
pling steps for all experiments is set to 40 by default. We set
η = 1.0 for stochastic sampling and set η = 0 for determinist
sampling. As η = 0, the diffusion bridge model consistently
generates the same image, ensuring reproducibility.

The architectural specifications for 3D UNet are shown in
Table II. We reduced some hyperparameters to accommodate
high pixel (128×128×128) 3D brain image translation; see
Table II for more details. While reducing architectural pa-
rameters (base channels, residual blocks, channel multipliers,
attention resolutions) may theoretically limit model capacity,
our experiments validate that the streamlined configuration
maintains strong performance for medical image translation
tasks.

TABLE II
ARCHITECTURAL SPECIFICATIONS OF OUR 3D UNET MODEL.

Hyperparameter Configuration
Spatial Resolution 128× 128× 128
Input Channels 1
Base Features 32
Feature Multipliers (1×, 2×, 2×)
Attention Resolutions 16, 8
Attention Heads 1
Head Channels 16
Dropout Rate 0.1
Attention Mechanism Flash

2) Sex and AD classifier: The model was trained using the
Adam optimizer with a learning rate of 0.0001. The learning
rate was adjusted using a ReduceLROnPlateau scheduler,
which reduces the learning rate by a factor of 0.5 if the
validation loss does not improve for 5 epochs. The model
was trained for 50 epochs with a batch size of 8, using cross-
entropy loss as the criterion. All experiments used random
seed 42 for reproducibility. During training, the best model
based on validation accuracy was saved. After training, the
best model was loaded and evaluated on the test set to
obtain the final test accuracy. The model’s performance was
evaluated on both Sex Classification and AD Classification
tasks.

C. Metrics

MS-SSIM. We used the Multi-Scale Structural Similarity
Index Measure (MS-SSIM) [31], as implemented in the
MONAI generative module, to evaluate perceptual similarity
between generated and reference images. The MS-SSIM was



Fig. 2. Image translation from T1 to FA with 3 subjects. The table presents four types of images for three different subjects: true T1 images, synthetic FA
images, and true FA images. To illustrate the approach, we include example images from participants representing three groups: healthy elderly controls,
individuals with mild cognitive impairment (MCI), and those with Alzheimer’s disease (dementia).

Fig. 3. 2D MS-SSIM between real and synthetic FA images across different views. µ represents the mean of MS-SSIM across all slices. The MS-SSIM
value for each slice is computed as the mean across 167 subjects in the test dataset. The synthetic FA images are generated by the same pretrained diffusion
bridge model with different samplers: ODE sampler (η = 0), SDE sampler (η = 1.0).

Fig. 4. 3D MS-SSIM, PSNR and MMD evaluation between real and synthetic FA images across 167 subjects. The synthetic FA images are generated
by the same pretrained diffusion bridge model with different samplers: ODE sampler (η = 0), SDE sampler (η = 1.0).

computed using a Gaussian kernel, and the weights were set
to [0.3, 0.5, 0.2] for both 3D and 2D MS-SSIM. The MS-
SSIM ranges from 0 to 1; higher values indicate greater
similarity between the images.

PSNR. We used the Peak Signal-to-Noise Ratio (PSNR) to
evaluate the pixel-wise difference between two images. For
images normalized to the range [0, 1], the PSNR is calculated

as follows:

PSNR = 10 log10

(
1

MSE

)
, (13)

where MSE is the mean squared error between the images.
Higher PSNR values indicate greater similarity between the
images.

MMD. We used the Maximum Mean Discrepancy (MMD)



[32] to quantify the difference between two image distri-
butions based on samples drawn from them. We used the
implementation provided in the MONAI generative module.
Lower MMD values indicate greater similarity between the
distributions.

D. Results and analysis

1) MS-SSIM for 2D slices: Fig. 2 shows that the generated
images exhibit crisp anatomical detail that closely resemble
the true DTI scalar maps of FA. Figure 3 shows the 2D MS-
SSIM between real and synthetic FA images across different
views: Axial view, Sagittal view and Coronal view. The
synthetic images exhibit high similarity through the brain,
maintaining a score above 0.9 even in anatomically complex
interior regions. The main reason is that there is just less
brain in the outer images, so the score is higher when more
of the image is background. Besides, this may be due to the
greater anatomical complexity and density of white matter
structures in these central areas. Additionally, the synthetic
FA images generated by the SDE sampler exhibit a slight
decrease in MS-SSIM, though the difference is minimal.
The ODE sampler, on the other hand, produces deterministic
results and offers better reproducibility.

2) Metrics for different subjects: We evaluated MS-SSIM,
PSNR, and MMD for 167 subjects in the test dataset,
as shown in Figure 4. Across all three metrics, the vast
majority of test synthetic subjects sampled by SDE exhibit
high scores, with MS-SSIM approaching 1, PSNR exceeding
30 dB, and MMD remaining below 0.005. These results
demonstrate that the proposed method effectively maintains
both perceptual fidelity and distributional consistency in the
generated images. However, the presence of a few low-
scoring outliers indicates failure cases where the generated
images deviate more noticeably from their references. These
outliers may stem from limitations in the training dataset,
which consists of only 780 image pairs. Expanding the
dataset in both size and diversity could potentially enhance
the model’s performance on these challenging cases. Addi-
tionally, we observe that synthetic images generated using the
ODE sampler perform slightly worse in MS-SSIM, PSNR,
and MMD evaluations, aligning with the observed trends in
2D MS-SSIM results.

3) Downstream tasks: We evaluated how well the syn-
thetic data retains neurobiologically relevant features via
downstream tasks including sex and AD classification (Ta-
ble III). Our analysis reveals several key insights regarding
the classification performance across different image types.
First, for AD classification, the synthetic images exhibit
very similar performance to the real images, suggesting that
relevant anatomical detail is well-preserved in the bridge
diffusion process. However, for sex classification, we note
a small but significant drop in performance for the synthetic
images, indicating that the translation may be better at
preserving some types of anatomical details than others.
Second, an intriguing finding is that synthetic T1 images,
although translated from real FA images, achieved better
accuracy (91.7%) than their source FA images (88.0%) in

the AD classification tasks. This suggests that our model
not only successfully transfers information between modal-
ities but also enhances certain structural features during the
translation process, potentially making them more suitable
for classification tasks. Compared to the SDE sampler, the
synthetic T1 images generated by the ODE sampler achieve
higher accuracy in both AD and sex classification. However,
the synthetic FA images exhibit relatively lower accuracy in
sex classification. Notably, the ODE sampler produces de-
terministic images, ensuring reproducibility, while the SDE
sampler enhances reconstruction quality in certain tasks.

TABLE III
DOWNSTREAM TASKS PERFORMANCE: SEX AND AD CLASSIFICATION

ACCURACY.

Training data Test data Sampler AD Sex

Real FA
Real FA - 88.0 86.8

Synthetic FA SDE 88.0 83.2
Synthetic FA ODE 88.0 74.3

Real T1
Real T1 - 91.7 88.6

Synthetic T1 SDE 90.7 82.0
Synthetic T1 ODE 91.7 82.6

V. CONCLUSIONS

We introduced a diffusion bridge model for 3D brain
image translation between T1-weighted MRI and DTI modal-
ities. The model generates high-quality DTI-FA images from
T1 images and vice versa, validated using MS-SSIM, PSNR,
and MMD metrics. Analysis across brain views and test
subjects reveals robustness and generalization, while high-
lighting potential limitations related to training data size
and diversity. Synthetic DTI data retains neurobiologically
relevant features, validated through sex and AD classifica-
tion tasks, showcasing cross-modality information transfer
and potential feature enhancement. The approach achieves
anatomically consistent translation while preserving white
matter pathway integrity, demonstrating its potential for
augmenting neuroimaging datasets.

There are several applications of synthetic DTI in re-
search and clinical practice. DTI is not always implemented
in resource-limited or time-limited settings, as it is time-
consuming to collect and the extra scan time may not be
tolerable for some patients. Future work will evaluate the
utility of these DTI maps in supporting clinical decision-
making. Although the translation works well for patients
with MCI and dementia, further work would be needed to
determine image translation accuracy when other pathologies
are present, such as vascular disease, stroke, or microinfarcts.
Ongoing related work in the MRI field includes pan-contrast
MRI synthesis [33] to generate the full range of contrasts
attainable with MRI, and MRI harmonization using dis-
entangled latent space representations [34]. Also, diffusion
MRI generates a full diffusion function at each voxel, and
future work could extend the current model to generate
the full tensor or orientation density function, including
additional constraints to ensure that the data stays within
the relevant manifold (e.g., positive definite tensors and unit



mass, symmetric ODFs). Future work will also evaluate
performance on larger datasets, higher resolution translation,
and refined performance in capturing complex anatomical
structures, ultimately impacting neuroimaging research and
clinical practice.
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