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Abstract—Although myoelectric prosthetic hands provide
amputees with intuitive control, their reliance on many EMG
sensors limits accessibility and makes them complex and
expensive. To address this problem, this work presents a
different perspective that makes use of a single EMG sensor and
brief impulse signals in conjunction with Dynamic Time Warping
(DTW) for accurate pattern detection. Conventional techniques
rely on real-time data from multiple sensors, which can be
costly and bulky. The method presents high accuracy while
lowering hardware complexity and expense. A DTW-based
system that reliably identifies muscle activation patterns from
short EMG signals was created and tested. Results show that this
single-sensor approach obtained an accuracy rate of 92%, which
is similar to that of conventional multi-sensor systems. This
research provides a more straightforward and economical
approach that can be used to obtain enhanced myoelectric
control. These findings provide a different perspective on more
easily accessible and user-friendly prosthetic devices, which will
be especially helpful in disaster-affected areas where quick
deployment is essential. Future improvements would investigate
this system's dependability over time and wider implementations
in real situations, to take prosthetic technology one step further.

Index Terms—Biomechatronics, Myoelectric Signals, Prosthetic
Hand, Feedback Control

I. INTRODUCTION
Originally made for cosmetic reasons in the fifteenth century
B.C., prosthetic limbs in Egypt have been researched and
improved by scientists and manufacturers since then. Over time,
prosthetics have included functional elements including metal
bits that could be moved to grip, lock, and bend objects. By
using electromyography (EMG) signals—biological impulses
produced by muscle contraction—modern prostheses
demonstrate how far the field of prosthetics has come and allow
more natural control. Particularly for those who are basic and
offer good feedback, the development of prosthetic technology
will determine how well people who have lost limbs live.
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This requirement becomes more critical following natural
disasters such as earthquakes when limb injuries and eventual
amputations are frequent occurrences.

The significance of developing prosthetic technology is shown
by the happenings of late. One orthopaedic clinic, for example,
handled 560 patients during the 2023 Kahramanmaraş
earthquake; 31 of them needed amputation. Likewise, of the 120
patients treated for soft tissue injuries to the upper extremities in
a plastic surgery department [5], 46.2% needed an amputation,
most of which were for the upper extremities. These tragedies
demonstrate how urgently advanced prosthetic solutions are
needed. Furthermore, [6] estimates indicate that one in 190
Americans now suffers from limb loss; if present trends persist,
that figure could double by 2050.

Notwithstanding their advancements, myoelectric prostheses
still present problems [7]. Uneven control and harsh, unpleasant
motions are common complaints of myoelectric hand users and
physical therapists. These challenges can cause myoelectric
prosthesis rejection rates of up to 23%. These problems
regarding the challenges of day to day life use of prosthetic
hand users are analyzed and researched by many [7, 8, 9, 10].
Atasoy et al. designed a 24 degress of freedom prosthetic hand
which categorizes biological data to various grips using multiple
sensors [8]. Another group of researchers, Wattanasiri et. al.
used a single motor and a multifunctional grip that would be
applicable for many instantces of challeneges of daily life of a
user [9]. Though their design was inappropriate for high-torque
conditions, Ahmed et al. [10] considered substituting pressure
sensors for EMG sensors for muscular signals. Ismail et al. [11]
took a reasonable approach by providing a user interface to
record muscle data for a five-fingered prosthetic hand.

This work offers a more straightforward method by reducing the
sensor requirement with a pattern recognition algorithm over a
single sensor. Utilizing simple signals from a single sensor to
create multiple patterns improves on what the other studies
build upon. The results show that prosthetic hands can be
controlled efficiently with a single-sensor, impulse-based
technique that can match conventional multi-sensor systems.
This development streamlines prosthesis design, which could
lower costs and increase user accessibility. Even with little
sensor data, the system can reliably recognize and categorize
muscle activation patterns by utilizing Dynamic Time Warping
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(DTW) for pattern recognition. The study provides a different
perspective on the systems that have been developing over the
years by experimenting with single-sensor pattern controls. It
demonstrates the viability of using a single EMG sensor for
sophisticated myoelectric control.

II. METHOD

A. Required Mechatronical Setup
Workflow of this study is shown below, in figure 1.

Fig. 1. Study workflow.

The study seeks to test and enhance the control options of a
myoelectric-controlled prosthetic hand. To achieve this, a test
setup had to be created to be experimented on, composed of
mechanical and electronic systems. The basic mechanical
system is composed of an Encoder, a DC motor, a worm gear,
and a sliding piece that is connected to two different pins that
move the fingers of the prosthetic, as shown in Figure 2 below.
The encoder provides precise control and prevents the
prosthetic hand to be open/closing beyond its mechanical
limits by measuring each rotation of the DC motor,
while worm gear provides the mechanical advantage needed
for a prosthetic hand to be able to grip objects for testing.
These designs are printed with a 3D printer using PLA
filaments. This mechanical system goes through simulation to
predict the resultant product's kinematics, such as the speed at
the tip of the fingers, to create the optimal mechatronic design.

Fig. 2. Internal view of the mechanical system

The basic electronics system is composed of an EMG sensor
and a control board. The three EMG probes are connected to
the forearm muscle palmaris longus as shown in Figures 3 and
4 below. measures the biological signals as shown in Figure 5
below, and outputs a voltage difference for the control board

to process through an algorithm called Dynamic Time
Warping (DTW).

The EMG data will be gathered by means of the EMG probes
fastened to a person's muscle, as shown in Figure 3 below.
After being filtered, the collected data is sent to an ESP32 for
additional processing. EMGs typically use three probes to
collect data, as shown. They are as follows: live (red), which
produces the signals; neutral (black), which serves as the live
probe's reference point; and ground (white), which filters the
signals.

Fig. 3&4. Connection of EMG probes, as shown on the right
side, to the muscle ‘palmaris longus’ [12].

The EMG probes in Figure 3 are attached to the arm at the
location shown in Figure 4 at the right side of it. Below in
Figure 5 actual EMG data is displayed; the signal variation
reflects muscle contractions that the DTW algorithm filtered.
Which gets processed via DTW after filtering. Every pulse is a
muscle activity read.

Fig. 5. An unfiltered data from surface EMG, retreived from
[13]

B. DTW What and How
The EMG SpeedStudio, with its built-in filtering system, will
later filter this data. The filtering system produces more
dependable data for further processing by eliminating the
electrical noise such as the nearby equipment and biological
noise.
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TABLE I
EXAMPLE DTWMATRIX WHICH USES THE DATA FROM

FIGURE 5.

Filtering and amplifying EMG signals will help to make them
more consistent and reliable, as Abdhul et al. [3] describe.
Following the filtering procedure, EMG signals go through an
algorithm called Dynamic Time Warping (DTW). An example
EMG data set in which the signal variation reveals muscle
contractions filtered with the DTW algorithm is shown in
Figure 5. Described in [14], the DTW is a method that
provides a similarity value for two data graphs by comparing
two data point sequences. Often employed in time series
analysis when timelines are shifted back or forth, it makes
traditional distance measurements like Euclidean distance
insufficient. DTW sidesteps the problems caused by
isalignment or event variability in real time influenced by
signal timing. By means of comparing muscle contraction
graphs over time, DTW is used in this work to generate a
similarity value. The comparison of the biological signals
from the contracted, relaxed and resting muscles produces this
similarity value. This approach seeks to produce a responsive
and realistic prosthetic hand operation by contrasting the real
time data with recorded data sequences.

In Figure 6 below, two graphs of data sequances are visible.
Comparing these two with dynamic time warping algorithm
would give a similarity value. The signals ‘i’ and ‘j’ are
different in data point voltage on the left and time location on
the bottom. The data set ‘i’ even has one more data point on
time domain. As shown in Figure 6 and Equation (1), if DTW
algorithm is applied a similarity value will be generated. This
value is placed and shown in Table 1 above, 0.29. The
Equation (1), the initial value of Di, j = d(xi, yj) + min, is the
distance between first and second data points between the
graphs of ‘i’ and ‘j’. As shown in Table 1 above, next points
are the minimum of the bottom box, left box, and bottom left
boxes. The values in these boxes are put through the algorithm
and the DTW matrix starts to form. In Table 1, the DTW
matrix continues to build with the Equation (1), until the top
right of the table, the last box of values are filled, which will
give the overall similarity value of both graphs, or data
sequances, which in this case resulted in the value ‘2.67’.
Further the values diverge from zero, the less similar the data
sequences are. In reality, this algrorithm is run instantly in the
microchip ESP32, constantly measuring the similarities of
various datasets and biological signals, comparing them to the
expected and recorded biological signals.

Fig. 6. Formula and example graphs for DTW.

�1,2 = 1.69 − 1.57 + ���
�0,1 = ∞
�0,2 = ∞
�1,1 = 0.12

= 0.29 (1)

A user interface, has assisted in generating the data
gathered from the DTW similarity matrix. Hoshigawa et al.
[13] addressed how myoelectric prosthetic hand control is
constrained even with machine learning algorithms. On
the other hand, this work used a user interface (UI) based
calibration technique with a more stable algorithm as
another control strategy.

Compared to DTW, the other pattern recognition algorithms
have their own downsides. For example one of the most
commonly used algorithms is called Support Vector Machine
(SVM). SVM operates by locating the hyperplane in a high-
dimensional space that best divides various data classes. SVM
may be trained on labeled EMG data to categorize various
muscle activation patterns into distinct hand movements,
which is useful for myoelectric control such as DTW [16].

SVM requires way more training data and parameters to
perform and although it can outperform DTW in some cases,
SVM tends to work better in more stable datasets, any skip on
data points or static can disrupt SVM outputs way more than
DTW outputs. DTW is designed to filter out misalignments in
data hence the name “warping” of the time domain.

III. RESULTS

A. Patterns Recorded
The raw signals coming from the EMG sensor are filtered and
measured between 3.3V and 0V through the ESP32 shown in
Figure 7 below. The left signal can be categorized as “Pattern
0” and the right signal can be categorized as “Pattern 1”.

Fig. 7. EMG detected filtered muscle contraction patterns

The filtered signals are recorded in the SD Card with intervals
of 20 milliseconds as shown in Figure 8 below.
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Fig. 8. Example recording of muscle patterns from Fig. 7.

These patterns are then searched through the live EMG signals
of the user and every time one of the patterns is recognized by
the DTW algorithm, the algorithm generates a “1” or a
“0”. Combining “1” s and “0”’s, with a small delay in between,
users can generate multiple different motion patterns with just
a single EMG.

B. Accuracy and Statistics
In the experiment below in Table 2, four different types of
signals are tested in a confusion matrix. In four patterns, made
out of the signals in Figure 7 above, the user can generate 4
combinations of “00”, “01”, “10” and “11”. The confusion
matrix calculates the accuracy of the algorithms for generating
four patterns.

TABLE II
CONFUSION MATRIX OF INTENDED PATTERNS.

After 46 successes and 4 failures, the algorithm provides a
92% accuracy, compared to other research on this subject,
with 10 different patterns unlike 4, Castro et. al. [17] achieve
80% average accuracy. However, Castro’s accuracy goes up to
97% as they reduce the patterns to 6. It is important to point
out that Castro’s calculations are done by 10 EMG sensors,
unlike this study's single EMG.
Measured signals tend to provide delays between 414ms to
644ms between the signal applying and the motors start
moving as shown in Table 3 below. This delay is due to the
nature of Dynamic Time Warping making sure the single
channel EMG signal is similar enough to the recorded signal
pattern 1 and different enough then the pattern 0. In Table 3
below, the signal measurements are taken with a 23 ms
intervals. The default state of the muscles provides a 1.85~
similarity signal to the searched pattern, when the similarity

starts changing, it indicates the contraction is beginning. When
the similarity value reaches below a certain number, in this
case the value 1.12. The signal is determined to be similar
enough to the searched pattern and motor starts to move the
fingers with the intended outcome. In this case, the given
delay is measured with the point where the signal is received,
“14930ms” and, where the motor starts moving “15321ms”,
which gives a delay of “609 ms”.

TABLE III
DELAY DUE TO THE NATURE OF DTW ALGORITHM

IV. DISSCUSSION

This paper establishes that a single EMG sensor with short
impulse signals, along with Dynamic Time Warping (DTW)
for pattern recognition, can be used to efficiently control a
myoelectric prosthetic hand. This technique builds on top of
the conventional multi-sensor methods by reducing the
hardware specifications without sacrificing control precision.

The necessity of improving prosthetic technologies is
highlighted by the crisis situations where limb injuries are
common. The problems of existing multi-sensor myoelectric
prosthetics (such as their expense, complexity, and lack of
user satisfaction) are discussed in the introduction, which also
highlights the need for a more straightforward and effective
alternative.

This work is comparable to previous studies in the field that
aim to enhance myoelectric prosthesis functionality and
control. Similar to the work of Wattanasiri et al. [9] on
multifunctional grip mechanisms and Atasoy et al. [8] on the
development of a prosthetic hand with many degrees of
freedom, the goal of this study is to improve control
mechanisms to improve user experience. This study maintains
the domain of EMG sensors, as opposed to Ahmed et
al.'s [10] usage of pressure sensors, but it reduces hardware
complexity and expense by simplifying the sensor
arrangement to a single sensor.
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This research leaves several unsolved questions. Although the
study shows that a single EMG sensor can be used for control,
it does not completely address how this strategy works in a
variety of real-world settings, such as long-term use or varying
muscle states. Furthermore, the influence of various forms of
muscular tiredness on the precision of the control and the
accuracy of the signal is not investigated. The comparison
between this approach and more advanced multi-sensor
systems in extremely dynamic and changing situations is
another unanswered point in the study.

Subsequent investigations can build upon this work by
verifying the robustness of the single-sensor technique in a
wider range of demanding real-world scenarios. It is also vital
to look into the system's long-term dependability and user
adaptability. To improve the user experience, future
development might concentrate on including more feedback
systems, similar to haptic feedback with a piezo patch (a band
that contracts with voltage) or a vibration motor (a motor that
vibrates with voltage). A deeper understanding of how to best
optimize prosthesis control may be gained from comparative
research using alternative pattern recognition algorithms and
sensor setups. Its influence and usefulness may also be
increased by investigating how scalable this method is for
various prosthetic devices and application kinds. In theory, the
patterns that can be generated by simple binary pattern
recognition can be limitless.

V. CONCLUSION
Using Dynamic Time Warping (DTW) for pattern recognition,
this study offers an improved method of controlling
myoelectric prosthetic hands with a single EMG sensor and
brief impulse signals. This approach represents a different
perspective from conventional multi-sensor systems and
shows that complex myoelectric control can be accomplished
with less complicated gear. The findings show that the
accuracy of the single-sensor, impulse-based method can
effectively equal that of traditional multi-sensor systems. It
may be possible to lower expenses, increase accessibility, and
simplify the design of prosthetic devices through this
simplification.
The study highlights the practicality of employing a low-tech
sensor technique to enable natural and dependable control
over prosthetic hands. This is particularly relevant in situations
where advanced prostheses are desperately needed, including
disaster recovery situations. This work creates new
opportunities for the development of user-friendly prosthetic
devices that can improve amputees' quality of life by
concentrating on a less complicated and more affordable
alternative.
Although the study yielded encouraging results, it also
identified areas that require additional research, such as the
system's long-term stability and its effectiveness in various
real-world circumstances. In the end, this research adds to the
enhancement of prosthetic technologies to offer
more useful and accessible options for individuals requiring
them.
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