
Swap Monte Carlo for diatomic molecules

Till Böhmer,∗ Jeppe C. Dyre,† and Lorenzo Costigliola‡
Glass and Time, IMFUFA, Department of Science and Environment,

Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
(Dated: April 22, 2025)

In recent years the Swap Monte Carlo algorithm has led to remarkable progress in equilibrating
supercooled model liquids at low temperatures. Applications have so far been limited to systems
composed of spherical particles, however, whereas most real-world supercooled liquids are molecular.
We here introduce a simple size-polydisperse molecular model that allows for efficient thermal equi-
libration in silico with the Swap Monte Carlo method, resulting in an estimated speedup of 103−106

at moderate polydispersity (5-10%). Despite being polydisperse, the model exhibits little difference
between the size-resolved orientational time-autocorrelation functions. Our results demonstrate
the possibility of designing molecular models that can be simulated close to the calorimetric glass
transition.

When a liquid is cooled fast enough to avoid crystal-
lization, the viscosity increases by typically a factor of
1015 before the system solidifies at the glass transition
[1–10]. The relaxation time increases by a similar factor,
and the glass state is arrived at when the equilibration
time exceeds the cooling time. Glass-forming liquids con-
tinue to attract attention from the physics, chemistry,
and material-science communities because fundamental
scientific problems remain unsolved, e.g.: What controls
the extreme slowing down? What causes the ubiquitous
deviations from single-exponential relaxation? How to
describe the physical aging taking place below the glass
transition? To elucidate such challenging questions it is
imperative to have realistic model liquids that can be
simulated in ultraviscous conditions.

This millennium has witnessed unprecedented ad-
vances in glass science that give access to data previously
thought to be far beyond reach. Ultrastable glasses have
made possible the production of glasses, which it would
take thousands of years to make by cooling from the melt
[11]. There have also been tremendous advances in com-
puter simulations, both from hardware improvements in-
cluding the use of graphics processing units (GPUs) [12]
and from algorithmic advances. For systems of point
particles Swap Monte-Carlo (MC) algorithms now allow
for numerically generating ultrastable glasses, as well as
equilibrated extremely viscous liquid states [13–21]. This
and similar approaches [22–24] are continuously being
improved in a field of rapid development. Most recently
ultrastable glasses have been achieved by randomly bond-
ing particle pairs resulting in a mixture of atoms and
polydisperse binary molecules [25], by homogenizing the
local virial stress to produce ultrastable glasses in sim-
ulations [26], and in numerical studies of metallic glass
formers [20, 27].

The Swap MC method allows for unphysical moves
where randomly chosen particles are swapped. This
trick gained renewed attention when Ninarello et al. in
2017 introduced a continuous size-polydisperse system of
spherical particles interacting via a soft repulsive pair

potential [18]. This model proved to be highly stable
against crystallization and demixing, making it ideal for
equilibrating low-temperature supercooled liquid config-
urations via Swap MC [18, 19]. By alternating stan-
dard MC displacement moves with particle swaps, the
dynamics is accelerated by up to ten orders of magnitude,
allowing one to obtain equilibrium configurations be-
low the experimental glass-transition temperature [18].
This model has become a standard system for explor-
ing the physics of deeply supercooled liquids, and studies
of it have enabled advances [12] in the understanding
of glass physics in relation to, e.g., dynamic heterogene-
ity [28, 29], dynamic facilitation [30–32], yielding [33–38],
cooperativity [39], vibrational properties [40, 41], and
physical aging [42–44].

Despite its success, Swap MC has so far only been ap-
plied to point-particle model liquids. Many real-world su-
percooled liquids and glasses are composed of molecules,
however, and a substantial body of experimental research
has documented the distinctive physics of supercooled
molecular liquids [8, 45–47]. This paper introduces a
minimal molecular model, which can be equilibrated effi-
ciently via Swap MC at the molecular level. This allows
one to obtain equilibrium configurations near the experi-
mental glass-transition temperature at a reasonable com-
putational cost, thus providing a first step in connecting
the world of experimental ultrastable molecular glasses
with that of Swap numerical studies.

For a model to capture faithfully the physics of real-
world supercooled molecular liquids, size polydispersity
cannot be allowed. On the other hand, efficient equi-
libration via Swap MC relies on introducing polydis-
persity. That this can lead to significant issues was
recently pointed out by Pihlajamaa et al. [48] for the
above-mentioned “standard” Swap MC system [18] with
δ ≈ 23% polydispersity (defined as variance over squared
average). At deeply supercooled temperatures, the small-
est and largest particles exhibit drastically different be-
havior; thus their average relaxation times differ up to a
factor of 50 and they moreover exhibit markedly differ-
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FIG. 1. (a) Particle-size distribution for the investigated systems with polydispersities δ = 5% and δ = 10%. For comparison, we
include the distribution for the “standard” Swap MC system [18] with δ ≈ 23% (blue curve). Panels (b)-(e) show orientational
time-autocorrelation functions P2(t) (Eq. (2)) during Swap MC (b,c) and standard MD simulation (d,e) for various temperatures
and for the two polydispersities δ = 5% (upper panels) and δ = 10% (lower panels). Corresponding plots for the intermediate
scattering function and the first-order orientational time-autocorrelation function can be found in the Appendix.
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FIG. 2. Orientational relaxation times τSwap (open symbols)
and τMD (full symbols) during Swap and standard MD simula-
tions, respectively, plotted as function of inverse temperature.
The blue symbols are data for the monodisperse ASD system
(δ = 0%).

ent motion mechanisms. To mitigate such polydispersity-
induced effects, we only simulated polydispersities up to
10%. As shown below, Swap MC for our molecular model
remains efficient even for δ = 5%. We show that at such
low levels the influence of polydispersity on the dynamics
is minimal, demonstrating the viability of our model as a
realistic minimal model of deeply supercooled molecular

liquids.
We simulated monodisperse and polydisperse systems

composed of asymmetric dumbbell (ASD) molecules at
the molecular (number) density ρ = 0.932 under peri-
odic boundary conditions. Each molecule consists of two
particles, denoted as A and B (Fig. 1(a)), with masses
mA = 1 and mB = 0.195. Particles A and B of the
same molecule interact via a harmonic bond of equilib-
rium length l = 0.584 and spring constant k = 3000.
The intermolecular interactions are modeled using the
Lennard-Jones (LJ) potential, i.e., the potential between
particles i and j at distance r = |ri − rj | is given by

vij(r) = 4ϵij

[(
r

σij

)−12

−
(

r

σij

)−6
]
. (1)

The pair potential is cut at r = 2.5σij using the shifted-
force method [49, 50].

The size and energy parameters σij and ϵij follow the
standard Lorentz-Berthelot mixing rules, σij = (σi +
σj)/2 and ϵij =

√
ϵiϵj , in which σi and ϵi denote the size

and energy parameter of particle i, respectively. The par-
ticle sizes are given by σA = 1 and σB = 0.788σA for the
monodisperse system. Polydispersity is introduced such
that the A and B particles’ sizes of the same molecule
are scaled by the same amount. Thus the B particle is
slaved to that of the same-molecule A particle accord-
ing to σB = 0.788σA, leaving the harmonic bond length
unchanged (note that this lowers the effective molecular
size polydispersity compared to that of the A and B par-
ticles). The characteristic energies of A and B particles



3

100 101 102 103 104 105

t

0.0

0.2

0.4

0.6

0.8

1.0
P 2

(t)

swap, = 5%(a)

[0, thalf]
[thalf, tend]

0.5 1.0 1.5 2.0
T

3

2

1

v

(b)

Swap-equilibrated
MD-equilibrated

FIG. 3. Confirming that the configurations obtained from
the equilibration procedure using Swap are in equilibrium.
(a) illustrates the absence of aging by showing that orienta-
tional time-autocorrelation data during Swap averaged over
the first half (red symbols) and the second half (black sym-
bols) of the simulation are identical. We show selected data
for the temperatures T =0.31, 0.34, 0.38 and 0.42. (b) Av-
erage per-particle potential energy ⟨u⟩ as function of temper-
ature. The data for Swap-equilibrated configurations (blue
symbols) extend smoothly to lower temperatures the data of
the MD-equilibrated configurations (orange data).

are fixed to ϵA = 1 and ϵB = 0.117.
We study systems with different degrees of polydis-

persity by choosing σA to be uniformly distributed as
σA ∈ [1 − ∆, 1 + ∆] with ∆ =

√
12δ/2, which for 5 %

and 10% polydispersity corresponds to ∆ = 0.087 and
∆ = 0.173, respectively. Randomly drawing a value σA

from the distribution for each molecule could lead to sub-
stantial finite size effects by sampling the distribution in-
accurately [51]. Therefore, we sampled the distribution
inspired by the procedure of Küchler and Horbach [21, 51]
by defining 500 different types of molecules, whose σA-
values are equidistantly spaced within [1 − ∆, 1 + ∆].
There are thus four molecules of each size in our system
consisting of 2000 molecules.

Two kinds of simulations were performed: 1) Stan-
dard NVT (MD) simulations employing the time step
∆t = 0.002 and a Nosé–Hoover thermostat with relax-
ation time 0.2. The MD units refer to the size and energy
of A particles in the monodisperse model. 2) Swap MC
simulations, where we alternate between short segments

of NVT simulations (for t = 0.32 each, with ∆t = 0.005)
and 2N consecutive attempts of swapping the param-
eters σA (and, therefore, also σB) of randomly chosen
pairs of molecules. Each swap attempt is accepted with
a probability according to the Metropolis rule, resulting
in acceptance rates of 15-30% (Appendix). To obtain
equilibrium configurations, we performed standard MD
simulations for at least 500τMD at higher temperatures
(T ≥ 0.42), and Swap MC for at least 50-200τswap at low
temperatures (50τswap is used for the three lowest studied
temperatures). Here, τMD and τswap denote the orienta-
tional relaxation time during standard MD and Swap, re-
spectively. That configurations are truly in equilibrium
is confirmed by the absence of aging (see below). We
did not observe any signs of crystallization or structure
formation in any simulations.

All simulations were performed using rumdpy, an
in-development Python simulation package employing
similar optimizations as RUMD [52] to enable GPU-
accelerated MD simulations [53]. Swap moves were im-
plemented on the CPU, however, as they do not benefit
from GPU parallelization. Since particle positions re-
main unchanged during a series of swap attempts, the
neighbor list for interaction calculations can be reused
from the preceding MD sequence, allowing for efficient
GPU calculation.

Fig. 1 illustrates the molecular reorientation dynamics
for δ = 5% and 10% polydispersity at various tempera-
tures for (b,c) Swap and (d,e) standard MD simulations,
quantified via the single-molecule second-order orienta-
tional time-autocorrelation function

P2(t) =
〈
3 cos2 Θ(t)− 1

〉
/2 . (2)

Here, Θ(t) is the angle between the molecule’s orienta-
tion at time 0 and time t, and ⟨...⟩ indicates a moving
time-average and average over all molecules. In case of
Swap, t reflects the cumulative duration of the short MD
sequences in-between the molecule swaps.

For both Swap and standard MD dynamics, the time-
autocorrelation functions exhibit a characteristic two-
step decay: First, a low-amplitude short-time decay (re-
laxation time τ0 ≈ 10−1) corresponding to the molecules
exploring local cages, followed by a long-time decay asso-
ciated with structural relaxation due to breaking of the
local cages. The structural relaxation is significantly ac-
celerated during Swap, especially at low temperatures.
The equilibrium data at temperatures T ≲ 0.38 shown in
Fig. 1(d,e) could only be obtained by employing Swap for
preparing the initial configurations. Achieving equivalent
equilibration using standard MD would require computa-
tional times ranging from months to several years, even
using GPU-based software [52]. Equivalent conclusions
are drawn from the self-intermediate scattering function
quantifying translational dynamics, or from a different
orientational autocorrelation function (Appendix).
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FIG. 4. (a) and (b): Molecule-size resolved orientational time-autocorrelations from standard MD simulations for δ = 5% and
10%. The colors represent data obtained for different 10%-percentiles of the molecule-size distribution (see the color bar). The
shown temperatures are T = 2.0, 0.9, 0.50, 0.40, 0.35 for δ = 5% and T = 2.0, 0.9, 0.52, 0.42, 0.37 for δ = 10%. (c) The quotient
τsmallest/τlargest between the relaxation times found for 10% smallest and 10% largest molecules as a function of temperature.

Figure 2 summarizes the speedup achieved by Swap
relative to standard MD by showing the respective ori-
entational relaxation times τswap (open symbols) and
τMD (full symbols) as functions of the inverse temper-
ature. Relaxation times are defined via the condition
P2(τ) = 1/e. The speedup provided by Swap increases
markedly with decreasing temperature. While it de-
creases with decreasing polydispersity, it remains signif-
icant even for δ = 5%, whereas δ = 2.5% proves insuffi-
cient to yield a meaningful speedup.

To estimate the maximum speedup achieved in this
study, we examine τswap and τMD at the lowest acces-
sible temperature, T = 0.29. Since τMD(T = 0.29) ex-
ceeds the time scale resolvable by standard MD simula-
tions, we extrapolate it using established models for the
temperature-dependence of relaxation times. We applied
both the Vogel-Fulcher-Tamann (VFT) equation [54] and
a parabolic law [55] (which yield different predictions),
leading to a range of values. For δ = 10%, we find a
maximum speedup τMD(T = 0.29)/τswap(T = 0.29) of
approximately 104−106; for δ = 5% the range is approx-
imately 103 − 104 for. Using τ0 defined above and fol-
lowing the criterion τMD(Tg)/τ0 = 1012 we estimate the
experimental glass-transition temperatures to be Tg(δ =
10%) ≈ 0.265 − 0.285 and Tg(δ = 5%) ≈ 0.250 − 0.270.
This method for estimating Tg for the molecular models
is the same used for the standard Swap model [18, 19].

In addition to the data for 5% and 10% polydisper-
sity, we include in Fig. 2 also the standard MD relax-
ation times of the monodisperse system (blue symbols).
There is a mild dependence of τMD(T ) on the polydis-
persity, i.e., the relaxation time at a given temperature
increases slightly with increasing δ. A similar effect was
reported by Parmar et al. for a modified version of the
Kob-Andersen binary LJ mixture [20].

To confirm that the configurations obtained via Swap
are in thermal equilibrium, we demonstrate in Fig. 3(a)
the absence of any physical aging. For a system that
is not in equilibrium, one will observe an explicit de-

pendence of the time-resolved autocorrelation function
C(t1, t2) on the waiting time t1, such that C(t1, t1 + t)
depends on both t1 and t [56, 57]. This behavior is
not observed for the Swap-equilibrated configurations;
thus P2(t) averaged over the first half of the simula-
tion t1 ∈ [0, t1/2] (red symbols) is indistinguishable from
that averaged over the second half t1 ∈ [t1/2, tfinal] (black
symbols). Another confirmation that the systems are
in thermal equilibrium involves monitoring the average
per-particle potential energy, which is shown in Fig 3(b)
for Swap- (blue) and MD-equilibrated (orange) configu-
rations as a function of temperature. The data for Swap-
equilibrated configurations extend the data of the MD-
equilibrated configurations to lower temperatures with-
out any noticeable kink or bend, as would be observed if
Swap did not reach equilibrium [58].

This study has introduced a simple molecular model
system that captures the essential features of real-world
deeply supercooled molecular liquids, like the existence
of molecular bonds, anisotropic intermolecular interac-
tions and rotational degrees of freedom. In terms of
the accessible temperature range, Fig. 2 confirms that
the equilibrium configurations can be obtained at tem-
peratures comparable to those studied in typical exper-
iments [45, 47], i.e., τMD/τ0 ∼ 106 − 1012 correspond-
ing to real times approaching seconds. An important
aspect to consider is the role of polydispersity, which is
absent in a real molecular liquid. Polydispersity is not
expected to significantly alter the underlying physics if
the smallest and the largest molecules in the system ex-
hibit the same or very similar dynamics. To test this
we study in Figs 4(a) and (b) the molecule-size resolved
reorientation dynamics. This is done by plotting P2(t)
for different 10%-percentiles of the molecule-size distribu-
tion at selected temperatures. Clearly, the smallest and
the largest molecules behave similarly. This is confirmed
in (c), which shows the quotient of relaxation times of
the 10% largest and the 10% smallest molecules. While
there is an increase upon cooling, the ratio eventually
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saturates and does not exceed 1.2 and 1.5 for 5% and
10% polydispersity, respectively. This is in stark contrast
to τlargest/τsmallest ≈ 50 found for point-particle systems
with larger polydispersity [48]. We conclude that the pro-
posed ASD system with polydispersity around 5-10% can
serve as a minimal model for real-life deeply supercooled
molecular liquids.

The presented procedure can be readily extended to
more complex molecular models. However, the efficiency
of Swap equilibration is likely to decrease with increas-
ing complexity. This is because larger molecules require
larger available volume to relax, which can no longer be
provided by swapping the sizes of atoms. Nevertheless,
the above procedure should be applicable to trimer sys-
tems. Exploring this direction of research will be the
subject of future work.

In summary, we have introduced a Swap MC procedure
for efficiently generating equilibrium supercooled liquid
configurations of a simple diatomic molecular model in
silico, which allows for reaching temperatures approach-
ing that of the experimental glass transition. This was
achieved using a system composed of dimers with a mi-
nor size polydispersity at the molecule level, in conjunc-
tion with an algorithm alternating between swapping the
sizes of randomly chosen pairs of molecules and short
NVT simulations. By analyzing relaxation times for the
dynamics with and without swaps, the procedure was
found to accelerate equally the rotational and transla-
tional (Appendix) degrees of freedom. We explored the
acceleration of dynamics in the low-polydispersity limit
and found that Swap remains efficient down to 5% poly-
dispersity. Analyzing the molecule-size-resolved dynam-
ics, we showed that polydispersity in the 5–10% range
hardly alters the qualitative physical behavior of the
system, which runs contrary to what applies for point-
particle systems of higher polydispersity [48]. These find-
ings suggest that the introduced model is a promising
candidate for future studies of deeply supercooled molec-
ular liquids – in particular for comparing to the large
body of experimental data, e.g., on the dielectric relax-
ation of molecular glass formers [8, 46, 47].
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APPENDIX

Other time-autocorrelation functions

Figures 5 and 6 show equivalents of Fig. 1 for the self-intermediate scattering function Fs(t) and the first-order
orientational autocorrelation function P1(t) = ⟨cosΘ(t)⟩, respectively. Both display the same features as found for
P2(t) in the main manuscript; in particular the speedup provided by Swap is identical.
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FIG. 5. Intermediate scattering function Fs(t) evaluated for q = 7.5, approximately corresponding to the first maximum of the
AA structure factor, for Swap and standard MD dynamics and the different polydispersities. For the temperature color-code
see Fig. 1.
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FIG. 6. First-order orientational autocorrelation function P1(t) = ⟨cosΘ(t)⟩ for Swap and standard MD dynamics and the
different polydispersities.
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Swap acceptance rate

Figure 7 displays the average equilibrium acceptance rate for molecule swaps as a function of temperature for both
δ = 5% and 10% polydispersity. The values are of the same order as the acceptance rates for the standard Swap
model [19, 21].
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FIG. 7. Average equilibrium acceptance rate for molecule swaps as a function of temperature for both δ = 5% and 10%
polydispersity.

Removing polydispersity

Working at low polydispersities we wondered whether it might be possible to find a procedure that maps an
equilibrium configurations with moderate polydispersity to an equilibrium configuration with no polydispersity. In
Fig. 8 we illustrate that simply removing the polydispersity at t = 0 while keeping temperature constant does not yield
the desired result: We observe a slow time-evolution of the average per-particle potential energy that proceeds on a
time scale of the same order as τMD. At the same time is worth noticing that the observed drop in potential energy
is not big, and this might be an indication that this configuration is an equilibrium configuration for the δ = 0% at
slightly higher temperature. We plan to explore this possibility in future works.
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FIG. 8. Time evolution of the average per-particle potential energy after removing the polydispersity at t = 0 for a configuration
equilibrated at T = 0.40.
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