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In recent days, Rydberg atom quantum simulator platforms have emerged as novel quantum sim-
ulators for physical systems ranging from condensed matter to particle physics. On a fundamental
level, these platforms allow for a direct test of our understanding of the emergence of quantum
statistical mechanics starting from the laws of quantum dynamics. In this paper, we investigate the
fate of quantum dynamics in a model of Rydberg atoms arranged in a square ladder geometry, with
a Rabi frequency 2Ω and a detuning profile which is staggered along the longer direction with ampli-
tude ∆. As the staggering strength ∆ is tuned from ∆/Ω = 0 → ∞, the model exhibits a wide class
of dynamical phenomena, ranging from (i) quantum many-body scars (QMBS) (∆/Ω ∼ 0, 1), (ii)
integrability induced slow dynamics and approximate Krylov fractures (∆/Ω ≫ 1) . Additionally,
by leveraging the underlying chiral nature of the spectrum of this model Hamiltonian, it is possible
to design Floquet protocols leading to dynamical signatures reminiscent of discrete time-crystalline
order and exact Floquet flat bands. Finally, we study the robustness of these dynamical features
against imperfections in the implementation of the Floquet protocols, long-range van der Waals
interactions and inevitable influences from the environment in the form of pure dephasing and the
finite lifetime of the Rydberg excited state.

I. INTRODUCTION

Over the past decade, Rydberg atom quantum sim-
ulators [1–7] have become a versatile testbed to study
fundamental aspects of quantum matter. On one hand,
it can sharpen our understanding of strongly interacting
quantum matter ranging from quantum many-body sys-
tems [8] to lattice gauge theories [9] via the inspection of
quantum phase transition [2, 4, 7], different topological
phases [10], the stability of quantum matter [11] and
effects of different decoherence mechanisms [1] inevitable
in such experimental platforms. On the other hand,
due to advancement of technologies in controlled state
preparation [12, 13], it can also be helpful in demonstrat-
ing the equilibration processes of an out-of-equilibrium
initial state in such synthetic quantum platform and
generation of new quantum phases of matter away from
equilibrium [2, 7].

In this paper our focus will be to understand the
nature of the out-of-equilibrium properties of such
many-body quantum systems. In generic isolated inter-
acting many-body quantum systems, where the total
energy is the only conserved quantity, it is expected
that any out-of-equilibrium initial state relaxes quickly
to a late-time thermal equilibrium which is entirely
controlled by the initial energy density of the state
with respect to the underlying Hamiltonian [14]. This
kind of thermal equilibrium achieved via a completely
unitary quantum evolution, can be understood within
the paradigm of the eigenstate thermalization hypothesis
(ETH) [14–17]. However, it was shown in [2] that under
certain circumstances, even simple initial states evolving
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via a generic Hamiltonian, may fail to thermalize in
the above sense: certain initial states (for e.g., charge
density wave states of various periods) undergo persis-
tent oscillations, evading thermalization within the time
scales up to which coherent unitary evolution could be
maintained. Consequently, these many-body oscillations
were attributed to the presence of quantum many-body
scars (QMBS) [18, 19] — these are eigenstates of the
Hamiltonian which have a considerable overlap with
these initial states and they are almost equidistant in en-
ergy, giving rise to an almost single frequency oscillation.
The phenomena of appearance of quantum many-body
scars in the Rydberg atom quantum simulator platform
in the so called Rydberg blockade regime [20] (i.e.,
no two neighboring atoms can be simultaneously in
the Rydberg excited state due to high energy penalty)
can be most easily understood within the realm of the
paradigmatic PXP model [18, 19]. Furthermore, it was
shown in [21] that by leveraging an underlying chirality
operator, which manifests itself as a many-body π-pulse,
one can design Floquet protocols which leads to the
realization of a period-two discrete time crystalline
order, stabilized by the presence of QMBS. It is worth
emphasizing here, that the presence of this chirality
operator which anticommutes with the Hamiltonian
but commutes with the spatial reflection symmetry
operators associated with the Hamiltonian, imply
the existence of an exponentially large number of exact
zero modes which are protected by an index theorem [22].

The Rydberg atom platforms offer a remarkable
degree of tunability in the arrangement of the atoms and
external LASER induced light-matter interactions [6].
Owing to this tunability, it becomes relevant and also
interesting to ask how do the above features such as the
presence of quantum many-body scars and sub-harmonic
response manifest themselves when the atoms are placed
in a more sophisticated arrangement. To explore this,
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we focus on an arrangement of the Rydberg atoms on a
2-leg square ladder geometry (see Fig. 1), which aims to
understand the properties of two closely spaced Rydberg
chains, with mutual separation smaller than the radius
of the Rydberg blockading. It is well known, that a
PXP model on any bipartite lattice with zero detuning,
preserves the structure of the chirality operator [21],
which means that in the 2-leg square ladder geometry
we also have this chirality operator, hence the spectral
reflection symmetry and the exponentially large number
of exact zero modes follow immediately. Furthermore, in
experiments it also possible to implement site-dependent
detuning profiles [2, 4, 23], however, in this case it is
no longer guaranteed that the above features such as
the existence of a chirality operator and exponentially
large number of exact zero modes, will be preserved
under an arbitrary detuning profile. In this regard
[24] have been able to identify a simple staggered
detuning profile (see Fig. 1) which preserves these
desirable features and leads to the presence of quantum
many-body scars which are qualitatively different in
nature compared to that of the paradigmatic PXP chain.

In this paper, we analyzed the dynamical features in a
model of Rydberg atoms arranged in a square ladder ge-
ometry with a detuning profile which is staggered along
the longer direction. The ground-state and the Ryd-
berg excited state is off-resonantly coupled via lasers with
Rabi frequency 2Ω. We find that tuning the strength
of such staggered detuning (denoted as ∆) results in
a broad range of dynamical phenomena. As pointed
out in [24] this model hosts quantum many-body scars
(QMBS) (∆/Ω ∼ 0, 1) while the qualitative nature of
these scars at ∆ = 1 are very different from those at
∆ = 0. This model also features slow dynamics and
approximate Krylov fractures induced by approximate
emergent integrability arising for ∆/Ω ≥ 2.5 which is a
consequence of the low-energy effective Hamiltonian up
to second-order being exactly integrable and higher order
non-integrable contributing very weakly in this parame-
ter regime and the particular form of the second-order
effective Hamiltonian allows us to explicitly write down
an extensive number of emergent conserved charges.

Apart from such a rich structure in the quench dynam-
ics in this system, by leveraging the underlying chiral
nature of the spectrum of the Hamiltonian, we have been
able to design Floquet protocols leading to dynamical
signatures reminiscent of discrete-time-crystalline order
and exact Floquet flat bands. We have also studied
the robustness of these different class of dynamical
phenomena against the possible imperfections in the
implementation of the Floquet protocols. Finally, we
take into account how the presence of long-range van der
Waals repulsive interactions (which are present in the
actual experimental set up) influences the existence of
quantum many-body scars by inspecting the validity of
assuming such a non-perturbative generalization of the
paradigmatic PXP model in a square-ladder geometry

to be the low-energy effective description of the full
long-range interacting system. We have also discussed
the influence of environmental loss channels on the emer-
gent conservation laws and quantum many-body scars
by considering a finite lifetime for the Rydberg excited
states and the loss of phase-coherence (pure-dephasing).
Though for we mostly focus on results obtained for
atoms arranged in a square-ladder geometry with
staggered detuning in the longer direction, these results
can be easily generalizable for multiple-leg ladder and
2D square geometry with staggered detuning along the
horizontal direction. These generalizations have been
discussed briefly in the appendices (see Appendix-D
for discussion on 3-leg ladders and Appendix-E 3 for
discussion on two dimensional square lattice).

The rest of this paper is organized as follows: in Sec. II
we present the details of the system we study, focusing on
introducing the Rydberg ladder model Hamiltonian Ĥ,
and the associated chirality operators Ĉ1,2. In Sec. III we
briefly recapitulate the existing results (Sec. III A) associ-
ated with the system under consideration (for a detailed
discussion see [24]). Next, we focus on the emergent inte-
grability induced slow dynamics (Sec. III B) in the regime
of large staggered detuning with a special emphasis on
the appearance of extensive number of emergent conser-
vation laws and their imprints on the short-range spectral
correlations. The existence of approximately conserved
operators in addition to the exactly conserved total en-
ergy, imply that staring from any simple initial state the
system should relax to a generalized Gibbs ensemble for
intermediate times, and ultimately relax to the Gibbs
ensemble only after a sufficient amount of time which
is set by the strength of the higher-order integrability
breaking terms. We have shown that starting from a
one Rydberg excitation state, the system relaxes rapidly
to a generalized Gibbs ensemble (defined by initial val-
ues of the exact and approximate conserved charges) and
does not show any deviation from this ensemble till the
time scales probed via numerical simulations. Next, in
Sec. IV, we discuss the existence and stability of exact
revivals from any initial state by designing two differ-
ent classes of Floquet protocols realized by leveraging
the chirality operators associated with the model under
consideration. Our results show that the evolution using
one of the Floquet protocols (Sec. IVA) leads to a state-
dependent subharmonic response i.e., the time-period of
the subharmonic response depends on the periodicity of
the initial state with respect to the associated lattice-
translation operators. We also present results consider-
ing another class of Floquet protocol (Sec. IVB) that
gives rise to exact revivals under the action of every
one-cycle of the Floquet unitary, starting from any ini-
tial state in the presence of non-zero staggered detun-
ing. Lastly, in Sec. V we analyze the stability of QMBS
(Sec. VA) and emergent conservation laws (Sec. VB)
in the presence of spontaneous emission from the Ryd-
berg excited state and pure-dephasing by considering the
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Lindblad (or, Gorini–Kossakowski–Sudarshan–Lindblad)
master equation as an equation of motion mimicking such
effects. Our results indicate that although the persis-
tent oscillations in the fidelity dynamics starting from the
Néel state are unstable against both decoherence mecha-
nisms considered, the Lindblad evolution describing the
spontaneous emission, starting from all the atoms in
the Rydberg ground-state (Rydberg vacuum state) shows
persistent oscillations where the amplitude and frequency
of such oscillation closely follows the dynamics generated
by the unitary evolution to a short time scale. On the
other hand, the emergent conservation laws starting from
generic initial states are more stable against dephasing
and persist for longer time durations.

II. MODEL

In this paper, we focus on the nature of out-of-
equilibrium quantum dynamics in the model governed by
the Hamiltonian (1). This model is a non-perturbative
generalization of the paradigmatic PXP chain [18, 19, 25],
to the case of a 2-leg square ladder geometry with a site-
dependent detuning which is staggered along the longer
direction.

Ĥ = Ω

L∑
j=1

2∑
a=1

P̂↓
j−1,aP̂↓

j+1,aP̂↓
j,aσ̂

x
j,a−∆

L∑
j=1

2∑
a=1

(−1)j σ̂z
ja

(1)

Here σ̂α
j,a are spin- 12 operators at site (j, a), with

j = 1, 2, ..., L, a = 1, 2 and α = x, y, z. The operators

P̂↓
j,a = (1 − σ̂z

j,a)/2 are local projection operators

onto the spin-down state (|↓⟩j,a) or the Rydberg

ground-state (|◦⟩j,a) at site (j, a). For brevity, we

use the notation ˆ̃σα
j,a = P̂↓

j−1,aP̂↓
j+1,aP̂↓

j,aσ̂
α
j,a and for

later convenience, we also denote the diagonal and
off-diagonal parts of the Hamiltonian (in the compu-

tational basis) as Ĥz = −∆
∑L

j=1

∑2
a=1(−1)j σ̂z

j,a and

Ĥx = Ω
∑L

j=1

∑2
a=1

ˆ̃σx
j,a so that Ĥ = Ĥx + Ĥz. In the

language of Rydberg atom quantum simulator platforms
[2, 4, 23], the Rabi frequency is 2Ω and the detuning on
the site (j, a) is (−1)j∆. For this entire paper, we fix
Ω = 1, and vary ∆ to access different dynamical regimes
of the model.

The generalization of the PXP chain (ĤPXP =

−Ω
∑L

j=1
ˆ̃σx
j ) to the model (1) preserves some important

features found in the PXP chain such as (i) reflection
symmetry of the spectrum of the Hamiltonian and (ii)
exponentially large number of zero modes protected by
an index theorem. Both of these properties can be under-
stood by considering the (chirality) operators Ĉ1,2 which
anti-commute with the Hamiltonian.

−∆

−∆

+∆

+∆

−∆

−∆ +∆

+∆ −∆

−∆

+∆

+∆

FIG. 1. A schematic representation of the 2-leg Rydberg
(square) ladder setup with N = 2L = 12 atoms and a stag-
gered detuning profile (∆j,a = (−1)j∆). The solid and dashed
gray lines shows various cuts and spatial reflection symmetry
axes for future convenience. The kinetic constraint i.e., the
strong Rydberg blockaded regime is illustrated as follows: if
one atom is in the |•⟩ ≡ |↑⟩ state (Rydberg excited state, de-
noted by the red sphere), then all it’s neighboring atoms must
be in the |◦⟩ ≡ |↓⟩ state (denoted by blue spheres) and cannot
be flipped to the |•⟩ state under the action of the Hamiltonian
(1).

Ĉ1 = T̂xĈ (2)

Ĉ2 = T̂xT̂yĈ (3)

{Ĉ1,2, Ĥ} = 0 (4)

Ĉ =

L∏
j=1

2∏
a=1

σ̂z
j,a (5)

Here T̂x,y denote the lattice-translation operators by
one unit along the longer and the shorter directions
respectively. Eq. (4) implies that if |E⟩ is an eigenstate

of the Hamiltonian (1) with eigenvalue E, then Ĉ1,2 |E⟩
is also an eigenstate of (1) with eigenvalue −E. For

this reason we shall refer to Ĉ1,2 as chirality operators.

Moreover, as the Hamiltonian Ĥ and the chirality
operators Ĉ1,2 both commute with the spatial reflection
operation about the vertical cut (solid gray line in
Fig. 1), it follows from [22] that the Hamiltonian (1) has
exponentially large number (in system size N) of exact
mid-spectrum zero modes which are protected by an
index theorem, for any value of ∆.

Since the model (1) shares a number of key features
with the paradigmatic PXP chain, it interesting to ask
whether the non-equilibrium dynamics of (1) shows any
anomalous behavior similar to the quantum many-body
scars [2, 18, 19] or discrete time crystalline order
observed in the periodically kicked PXP chain [21].
A part of this question was answered in [24], where
the quantum many-body scarring phenomenology of
this model was studied for ∆/Ω ∈ [0, 1]. Our goal in
this paper is to present evidence of further anomalous
dynamical behavior both in the quench dynamics for a
range of parameters, and to engineer Floquet protocols
leading to dynamical signatures reminiscent of discrete
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time-crystalline order and exact Floquet flat bands.

III. QUENCH DYNAMICS

Recently, it was argued that the model (1) hosts a
variety of QMBS for parameter choices ∆/Ω ∼ 0, 1 [24].
In this paper we present substantial evidence that in
addition to QMBS, the system hosts other classes of
anomalous quantum dynamics for a range of parameters.
As per our current understanding of quantum quench
dynamics of the model (1), the following schematic
illustrates the broad range of dynamical phenomena
that this model hosts (see Fig. 2).

“FSA” regime “non-FSA” regime

∆ = 0 ∆ = 1 ∆ ≈ 2.5∆ = 1/2 ∆ = ∞

Integrable

Slow Dynamics
Approximate

Krylov Fracture

FIG. 2. Schematic representation of the broad range of dy-
namical features that the model Fig. 1 hosts under the varia-
tion of a single parameter which is the detuning strength (∆)
in units of Ω in this case. As the figure depicted the model
hosts QMBS describable by constructing simple “FSA”-like
picture at ∆ = 0 while the QMBS at ∆ = 1 are “non-
FSA”-like. Apart from QMBS this model also hosts extensive
number of emergent conservation laws and slow dynamics for
∆ > 2.5 and approximate Krylov fractures for 1 < ∆ < 2.5.
Most ergodic point in this schematic is ∆ = 0.5.

As ∆/Ω is varied from 0 → ∞ one encounters (i)
weak ergodicity violation due to the presence of quan-
tum many-body scars (QMBS) [24], (ii) emergent ap-
proximate integrability-induced slow dynamics and ap-
proximate Krylov fractures. In the following sections, we
present a detailed description of (ii), and only provide a
brief recapitulation of (i).

A. Weak violation of Ergodicity

At ∆ = 0, the model (1) becomes a “PXP” model on
the 2-leg square ladder and since this lattice is bipartite,
it is expected to host QMBS [26]. Explicit numerical
evidence for persistent oscillations in the 2-leg square
ladder “PXP” model was presented in [24], where it
was shown that the quantum quench dynamics under
the Hamiltonian (1) starting from the Néel or |Z2⟩ state
(i.e. |◦•◦•◦•...•◦•◦•◦...⟩) or equivalently it’s translated partner
|Z2⟩ state (i.e. |•◦•◦•◦...◦•◦•◦•...⟩), exhibits persistent many-body
oscillations lasting several cycles. Furthermore, these
revivals were tied to the existence of quantum many-
body scars (QMBS) i.e. special anomalous eigenstates
of the Hamiltonian which have a large overlap with the
|Z2⟩ (or |Z2⟩) and are almost equally spaced in energy.
The QMBS observed in [24] for ∆ ∼ 0 were found to

be qualitatively similar to the ones observed in the 1D
PXP chain, in the sense that in principle they could be
understood from a semi-analytical forward scattering
approximation (FSA) picture [18, 19]. This has been
labeled as “FSA”-like QMBS in the schematic Fig. 2.
In addition to these “FSA”-like oscillations, Ref. [24]
presented further numerical evidence of many-body
persistent revivals starting from the |Z2⟩ (or equiva-
lently |Z2⟩) state and the Rydberg vacuum state (i.e.
|vac⟩ = |◦◦...◦◦◦...◦⟩) for ∆ ∼ Ω. This kind of persistent
revivals cannot be understood by a straightforward
adaptation of the FSA scheme, due to the presence
of a finite non-zero detuning on each site. These
types of persistent revivals at ∆/Ω = 1 are dubbed as
“non-FSA”-like QMBS in the schematic Fig. 2.

In this paper, we shall be mostly concerned with quan-
tum evolution associated with the model Hamiltonian
(1). However, keeping in mind that the model (1) is
an idealized representation of physical Rydberg atom
quantum simulator platforms, we have studied the va-
lidity of the specific Rydberg blockade shown in Fig. 1
in Appendix-E by considering long-range van der Waals
(vdW) repulsive interactions between the Rydberg ex-
cited atoms. These interactions are always present in
the real experimental hardware and our results indicate
that in practice, it could be challenging to implement the
specific kinematical constraint illustrated in Fig. 1 in an
actual Rydberg atom quantum simulator platform. This
difficulty can be attributed to the fact that for an actual
Rydberg atom quantum simulator configured in the 2-leg
square ladder geometry (Fig. 1), the strength of the sec-
ond nearest-neighbor repulsive interactions, i.e. interac-
tions among the diagonally placed atoms, are not negligi-
ble compared to the repulsive interaction energy between
the atoms which are nearest-neighbors. This hinders the
existence of QMBS in the system with long-range vdW
interactions, observed in the ideal kinetically constrained
system. However, we have observed that even in this full
long-range interacting quantum many-body system, the
Néel state exhibits persistent oscillations at certain pa-
rameter regimes but due to the reasons mentioned above,
cannot be explained by considering the ideal kinetically
constrained model given by (1).

B. Emergent Integrability and Slow Dynamics

In the limit ∆/Ω → ∞, only the staggered detun-
ing term remains relevant, and thus the Hamiltonian
becomes completely integrable: all Fock states in the
σz basis allowed by the Hilbert space constraint, are
eigenstates of the Hamiltonian. Constructing a perturba-
tive low-energy effective Hamiltonian at small non-zero
Ω/∆ via Schrieffer-Wolff (SW) rotation, reveals that at
second-order the low-energy effective Hamiltonian is inte-
grable. At this order of the perturbation theory, there are
spin-flip processes (see Eq. (6)) which posses an extensive
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number of conservation laws: Ẑπ =
∑

j,a(−1)j σ̂z
j,a and

Q̂j = σ̂z
j,1σ̂

z
j,2, ∀j = 1, 2, ..., L. The presence of these ad-

ditional conservation laws can be understood by consider-

ing the action of Ĥ(2)
eff on the Fock states: the terms in the

second summation of Eq. (6) essentially perform “block-
aded spin-flips” i.e. |...◦j−1•j◦j+1...

...◦j−1◦j◦j−1...⟩ ↔ |...◦j−1◦j◦j+1...
...◦j−1•j◦j+1...⟩

where the “blockade” is due to the P̂↓ projectors at sites
j ± 1 on both legs of the ladder. This leads to the real-
ization of an effective two-level oscillation of a Rydberg
excitation between the two legs of the jth rung, provided
that this rung is “blockaded” appropriately by |◦⟩ states

at surrounding sites. There are few simple consequence
of this blockaded spin-flipping process, namely (i) Fock
states such as the Néel state and the Rydberg vacuum
state remain completely frozen and (ii) the expectation

value of the operators Q̂j = σ̂z
j,1σ̂

z
j,2 ∀j = 1, 2, ..., L re-

main conserved under the action of the second-order ef-
fective Hamiltonian. All eigenstates of Ĥ(2)

eff can be la-
beled by the quantum numbers corresponding to these
conserved quantities, and a recipe of such an enumera-
tion procedure is given in Appendix-C 1.

Ĥ(2)
eff = −Ω2

2∆

L∑
j=1

2∑
a=1

(−1)j ˆ̃σz
j,a −

Ω2

4∆

L∑
j=1

2∑
a=1

(−1)jP̂↓
j−1,aP̂↓

j−1,aP̂↓
j+1,aP̂↓

j+1,aP̂↓
j,a

(
σ̂x
j,aσ̂

x
j,a + σ̂y

j,aσ̂
y
j,a

)
(6)

We find that the third-order effective Hamiltonian van-
ishes exactly and the next non-trivial contribution comes
from the fourth-order of the perturbation theory and is
non-integrable. However, the strength of this integra-
bility breaking term is ∼ Ω3/∆4 and contributes very
weakly for the parameter range ∆/Ω ≥ 2.

The fact that the second-order perturbative Hamil-

tonian Ĥ[2]
eff remains exactly integrable, has certain

consequences in the short range spectral correlations of
the system as well as on the relaxation dynamics from
certain non-equilibrium initial states. As a measure
of short-range spectral correlations we have used the
distribution of the ratio (rn) of consecutive level spacings
(sn), defined as rn = min(sn, sn−1)/max(sn, sn−1) where
sn = En+1 − En denotes the gap between n-th and
(n + 1)th energy level [27]. At values of ∆ ∼ 2Ω, due
to the strength of the integrability breaking term being
weak, the consecutive level-spacing-ratio distribution
(P (r)) resembles a Poissonian nature (see Fig. 4 top
right panel). For ∆ ∼ Ω (see Fig. 4 top left panel), P (r)
exhibits level repulsion which is a consequence of the
fact that the fourth-order integrability breaking terms
are not weak and the effective Hamiltonian now becomes
non-integrable at this coupling. As Fig. 3 (right panel)

demonstrates, the full spectrum of Ĥ[2]
eff and that of the

full Hamiltonian Ĥ (both obtained via numerical exact
diagonalization), agree very well for ∆ ∼ 3Ω, whereas for
∆ ∼ Ω (Fig. 3 (left panel)) one needs to consider higher

order processes (such as Ĥ[4]
eff, obtained via numerical

perturbative SW rotation [28]) to capture the spectral

features of the full Hamiltonian Ĥ.

The emergent integrability is not related to any lattice
symmetries of the Hamiltonian (1). This can be verified
from the spectral analysis of the many-body energy lev-
els of a modified Hamiltonian (see Eq. (7)) having weak
onsite disorder on top of the perfectly staggered detuning

500 600
−0.5

0.0

0.5

∆/Ω = 1

Ĥ
Ĥ[2]
eff

Ĥ[4]
eff

500 600
−0.5

0.0

0.5

∆/Ω = 3

FIG. 3. Comparison of the spectrum of Ĥ (black squares),

Ĥ[2]
eff (blue circles) and Ĥ[4]

eff (red stars) [28] for ∆/Ω = 1 (left
panel) and ∆ = 3Ω (right panel) with N = 16 atoms (only
the middle part of the spectrum is shown). This illustrates

the fact that Ĥ[2]
eff can explain the lack of level repulsion for

∆ ∼ 3Ω, while for understanding the level repulsion nature
of the exact spectrum at ∆ ∼ Ω, higher order processes (i.e.

consideration of Ĥ[4]
eff) become important (see text for details).

profile.

Ĥdis =

L∑
j=1

2∑
a=1

Ωˆ̃σx
j,a −

L∑
j=1

2∑
a=1

(−1)j (∆ + ηRj) σ̂
z
ja (7)

Here, Rj ,∀j = 1, 2, ..., L are uniformly distributed
random numbers between 0 and 1 and η is the strength
of the disorder. Such a disordered Hamiltonian (7) does
not possess any lattice symmetries, but nevertheless the
disorder-averaged mean consecutive level spacing ratio
⟨r⟩ becomes close to 2 ln2 − 1 ∼ 0.386 for ∆/Ω ∼ 2
or greater which indicates a Poissonian level statistics
at these couplings (see Fig. 4 bottom panel). The
observed Poissonian nature of the spectral statistics can
be attributed to the existence of extensive number of
approximate emergent conservation laws.
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0.0 0.5 1.0
r

0

1

2

P (r)

N = 32,DH = 83, 232

〈r〉 = 0.51092866

∆ = 1,mkx = 1,mky = 1

PGOE(r)

PPoisson(r)

0.0 0.5 1.0
r

0

1

2

P (r)

N = 32,DH = 83, 232
〈r〉 = 0.40533375

∆ = 2,mkx = 1,mky = 1

PGOE(r)

PPoisson(r)

0 2 4 6 8 10
∆

0.40

0.45

0.50

〈r〉

2 ln(2)− 1

0.5295

N = 24,DH = 39, 203 (100 realizations)

0 1 2
∆

0.4

0.5

η = 0.05

η = 0.10

η = 0.20

FIG. 4. Top panels: Distribution of consecutive level spacing
ratio statistics (P (r)) for ∆/Ω = 1 (left panel) and ∆/Ω = 2
(right panel) resolving translation symmetries along longer
and shorter direction of Fig. 1 with translations quantum
numbers mkx = 1 (longer direction) and mky = 1 (shorter di-
rection). In both the figures black dashed line stands for gaus-
sian orthogonal ensemble (GOE) statistics and gray dashed
line stands for Poissonian statistics. Bottom panel: Dis-
order averaged mean consecutive level spacing ratio ⟨r⟩ as
a function of staggered detuning strength ∆ for N = 24
sites (DH = 39, 203) averaged over 100 realizations for each
∆, η. Three different colors indicate three different disorder
strengths η = 0.05 (red circles), η = 0.1 (blue circles) and
η = 0.2 (green circles). As shown, ⟨r⟩ changes from ∼ 0.5295
(GOE) to 2 ln(2)− 1 ≃ 0.386 (Poissonian) very rapidly in be-
tween ∆/Ω = 0 and ∆/Ω = 2. The emergent integrability is
achieved for ∆/Ω ∼ 3. Inset of the figure describes variation
of ⟨r⟩ as the detuning is varied in range 0 < ∆ < 2.

For ∆ ∼ 2Ω and beyond, the strength of Ĥ[4]
eff becomes

negligible and the evolution of the approximately con-
served charges Q̂j ,∀j = 1, 2, ..., L, under the full Hamil-
tonian becomes more constrained near their initial values.
As a consequence, certain initial states (which can be la-

beled by the eigenvalues of {Q̂j}, say {qj}), exhibit ex-
ceptionally slow dynamics, as can be seen in Fig. 5 where
the instantaneous expectation values of these operators
under the full Hamiltonian i.e. {⟨Qj(t)⟩} remain close
to their initial values for very long times. For quench
dynamics from such initial states, observables should in
general relax to a generalized Gibbs ensemble (GGE)
when an extensive number of exact conservation laws are
present. In contrast in the absence of any such exact

conservation laws, the system should eventually relax to
the Gibbs ensemble (GE). The exact quantum dynamics
of the model (1) illustrates that in this system, where
the emergent conservation laws are approximate and not
exact, the exact quantum dynamics still fails to relax to
the appropriate GE and remains very well describable to
extremely late times via GGE (till time scales set by the
fourth order effective Hamiltonian). This is illustrated in
Fig. 6, where we show the late-time relaxation of a one-
body operator (hj,a ≡ σ̂z

j,a− ˆ̃σx
j,a) for N = 12 and N = 16

atoms at ∆ = 0, 5Ω starting from a one-particle product
state i.e. |1P⟩ = |•◦◦◦...◦◦◦◦◦...◦⟩. For ∆ ∼ 0, only the total en-

ergy i.e. ⟨ψ(t)|Ĥ|ψ(t)⟩ is an exactly conserved quantity,
and hence, the system should relax to the corresponding
Gibbs ensemble with the appropriate temperature. In
contrast, for ∆ ≫ Ω, or in this case ∆ = 5Ω, as there
are an extensive number of (approximate) conservation
laws, the system fails to relax to the Gibbs ensemble for
long times. Instead, the system relaxes to a GGE defined
by the Lagrange multipliers corresponding to all the con-
served charges (exact or approximate) . These Lagrange
multipliers are determined by requiring that the initial
values of all the conserved charges be equal to the expec-
tation value of the operators with respect to the GGE
(see Appendix C)

In Fig. 7 we show the variation with ∆/Ω of the
infinite-time average and the Gibbs ensemble ETH
values of the quasi-conserved charges. We consider
the following states: |vac⟩ ≡ |◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦⟩ (blue open
circles), |Z2⟩ ≡ |◦•◦•◦•◦••◦•◦•◦•◦⟩ (magenta open circles),
|4P⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (green open circles), |2P⟩ ≡ |◦◦•◦◦◦◦◦◦◦◦•◦◦◦◦⟩
(orange open circles), |Z(2)

4 ⟩ ≡ |◦◦◦•◦◦◦••◦◦◦•◦◦◦⟩ (brown open cir-

cles) in the main panel and in the inset |Z(1)
4 ⟩ ≡ |◦•◦◦◦•◦◦◦◦◦•◦◦◦•⟩

(red open circles). For all states in the main panel,
the energy expectation value is zero, which combined
with the fact that the spectrum of (1) has a reflection
symmetry at any ∆ ̸= 0, implies that all of these states
should relax to the infinite temperature (β = 0) Gibbs
ensemble if they achieve a thermal equilibrium. The
ETH value of the quasi-conserved charges (dashed gray
line) for β = 0 is very close to zero (= 1/DH , DH being

the Hilbert space dimension). For the state |Z(1)
4 ⟩ the en-

ergy expectation value is not zero (⟨Z(1)
4 |Ĥ|Z(1)

4 ⟩ = −Lδ)
and hence, β ̸= 0. This in turn implies that the ETH
value of the quasi-conserved charges corresponding to
this state depend on the value of ∆/Ω shown as black
dashed line, while the infinite-time average values are
given as open red circles. This figure illustrates the
fact that for certain initial states with zero energy
density, corresponding to the infinite temperature Gibbs
ensemble, the infinite-time average value drifts from the
ETH value as ∆/Ω is increased from ∆ = 0 signaling a
form of ETH violation. For other states the ETH and
the infinite-time average value coincide, implying that
these states do not violate ETH.

Moreover, some special initial states, growth of the
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FIG. 5. Top panel: Illustration of slow evolution of one of the
approximate emergent conserved charges (⟨Q̂1⟩ = ⟨σ̂z

1,1σ̂
z
1,2⟩)

as a function of time (tΩ) under the full Hamiltonian (1) at
various values of ∆ starting from the initial state |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ for
N = 16 atoms. Different colors indicate different values of ∆:
gray solid line (∆ = 0), cyan solid line (∆ = 1Ω) and red solid
line (∆ = 2Ω) respectively. Bottom panel: Illustration of slow
dynamics from other initial states at ∆ = 2Ω. Three initial
states are |ψ1⟩ ≡ |Z2⟩ (blue solid line), |ψ2⟩ ≡ |vac⟩ (blue solid
line) and |ψ3⟩ ≡ |◦◦•◦◦◦◦◦◦◦◦•◦◦◦◦⟩ (green solid line). All initial states
shown in both the panels are infinite temperature states, and
the ETH predicted GE value of Q̂1 = σ̂z

1,1σ̂
z
1,2 for all of them

is zero (denoted by the dashed black line). In all cases the
state has been evolved via ED method.

correlations is extremely slow along the horizontal
bonds. This is evident from Fig. 8 where the mutual
information content (for definition see Appendix-B)
of the horizontal (I1,2) and the vertical bond (I1,Lx

)
are shown as a function of time for the |1P⟩ state (i.e.
|•◦...◦◦◦...◦⟩) for ∆ = 4Ω for N = 16 atoms. While for the
horizontal bond the mutual information remains close
to zero, for the vertical bond it shows large time-period
oscillations. Such contrasting behaviors along the two
directions can be traced back to the fact that for large
enough ∆/Ω, an effective Rabi flip-flop takes place which
is almost exact: |•◦...◦◦◦...◦⟩ ↔ |◦◦...◦•◦...◦⟩.Such slow dynamics,
along with the existence of simple local quasi-conserved
charges {qj} could in principle, be utilized to store L/2
“classical” bits of information on a ladder of N = 2L
atoms (see Appendix C).

As a consequence of these approximate conserva-
tion laws which influence the quench dynamics of the
system even for ∆ ∼ 2Ω, the bipartite von Neumann
entanglement entropy S(|E⟩) (see Appendix-B) of the
eigenstates |E⟩ of the Hamiltonian (1), shows a broad

0 500 1000tΩ
0.35

0.50

0.80

1.00

〈ĥ1〉t GE GGE

FIG. 6. Illustration of the relaxation to different ensembles
for two different values of ∆/Ω and system sizes starting from
the |1P⟩ ≡ |•◦◦...◦◦◦◦...◦⟩ state. The dashed lines represent values of

⟨ĥ1,1(t)⟩ (a one-body operator, see text for details) predicted
from GE (magenta dashed line) and GGE (black dashed line)
(see Appendix-C 3). The solid lines represent the results of the
evolution under the full Hamiltonian (1) for (i) ∆ = 0 (blue
solid line represents N = 16 atoms, cyan solid line represents
N = 12 atoms) and (ii) ∆ = 5Ω (red solid line represents
N = 16 atoms, orange solid line represents N = 12 atoms).
In all cases the state has been evolved via ED method.

0 2 4 6 8 10
∆/Ω

−1.0

−0.5

0.0

0.5

1.0

〈Q̂1〉
ETH(β = 0)

0 2 4 6 8
−1

0

〈Q̂1〉 |ψ0〉 = |Z(1)
4 〉

ETH

|vac〉 |Z2〉 |4P〉 |2P〉 |Z(2)
4 〉

FIG. 7. In this figure we show the variation of the infinite-

time average value ⟨Q̂1⟩ and the corresponding Gibbs ensem-
bles values predicted by ETH for the quasi-conserved charges
with ∆/Ω starting from different initial states |ψ0⟩. For the
main panel the states considered are |vac⟩ (blue open circles),
|Z2⟩ (magenta open circles), |4P⟩ (green open cirlces), |2P⟩
(orange open circles), |Z(2)

4 ⟩ (brown open circles) which all
have zero energy. At late times, these states should relax to
the β = 0 Gibbs ensemble and the ETH value for the quasi-
conserved charges is zero (denoted by the dashed gray line).

For the inset we consider the state |Z(1)
4 ⟩ which does not have

zero energy and hence the ETH values of the quasi-conserved
charges depend on ∆/Ω (dashed black line). The correspond-
ing infinite-time average values are shown in the inset (red
open circles). See text for details.
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0 10 20 30tΩ
0

1

2 log(2)
I1,Lx(t) I1,2(t)

FIG. 8. Time evolution of mutual information along hori-
zontal (blue solid line) and vertical (red solid line) nearest
neighbour bonds for the |1P⟩ state (i.e. |•◦...◦◦◦...◦⟩) for ∆ = 4Ω
for N = 16 atoms. The maximum possible value attain-
able for the mutual information is 2 log(2) (denoted by the
black dashed line) which is realized for ideal Rabi flip-flops
|•◦...◦◦◦...◦⟩ ↔ |◦◦...◦•◦...◦⟩ (eee text for details). The state has been
evolved using a discrete time-step integrator [29].

distribution across the entire range of the spectrum
(see Figs. 9,10). We have checked numerically that the
eigenstates close to the middle of the spectrum obey
volume law, but the coefficients corresponding to these
volume law scalings have a broad distribution. This
can be taken as a signature of an approximate Krylov
fracture taking place due these approximate emergent
conservation laws. In Appendix-C, we have analytically
constructed all eigenstates of the second-order effec-

tive Hamiltonian Ĥ[2]
eff. These eigenstates have simple

“Bell-pair” like states embedded in some of the rungs,
while the other rungs remain completely unentangled
when the entanglement entropy is measured across the
vertical cut (henceforth denoted as UD cut), designated
as dashed gray line in Fig. 1. Such a structure can
help us in understanding, to some degree, the nature
of the bi-partite von Neumann entanglement entropy
of the eigenstates of the full Hamiltonian at ∆ = 2Ω.
We note here that this only explains the entanglement
from the UD cut. The entanglement entropies across
the left-right bi-partition (henceforth denoted as LR
cut) are exactly zero for all the analytically constructed
eigenstates (labeled by a collection of conserved charges

{zπ, q1, q2, ..., qL}) of Ĥ[2]
eff. However, as these eigenstates

are highly degenerate, we suspect that a full numerical
diagonaliztion scheme which is unaware of such ap-
proximate symmetries, outputs arbitrary hybridizations
of these analytically constructed eigenstates, leading
to a non-zero values of entanglement entropies for the
eigenstates across the LR cut. The finite bandwidth of
the tower of states in Figs. 9(d) and 10(d) are due to the
influence of higher order processes, and can be captured

quantitatively via Ĥ[4]
eff (see Fig. 3(b)). That being said,

at this moment we do not have any understanding of

the eigenstates of Ĥ[4]
eff from an analytical point of view,

as the construction and diagonalization of Ĥ[4]
eff were

performed using numerical schemes.
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FIG. 9. Bipartite von Neumann entanglement entropy (for
definition see Appendix B) of all many-body eigenstates of
the Hamiltonian with respect to the LR partition at ∆/Ω = 0
(top left panel), ∆/Ω = 0.5 (top right panel), ∆/Ω = 1 (bot-
tom left panel) and ∆/Ω = 2 (bottom right panel) respec-
tively for N = 28 atoms in the kx = ky = 0 sector. The
solid dashed black line denotes the Page value (i.e. the av-
erage entanglement entropy of Haar-random states) in this
specific symmetry sector. The broad distribution of values of
entanglement entropies for ∆/Ω = 1, 2 suggest that there is a
Krylov fracture of the Hilbert space, albeit approximate.

We end this section by noting that the system gov-
erned by the Hamiltonian Eq. (1) is integrable only at
∆/Ω → ∞. For large but finite values of ∆, starting
from any initial state system in the thermodynamic limit
will eventually relax to the Gibbs ensemble with the ef-
fective inverse temperature β is set by the initial energy
density. To understand the onset of thermalization and
the finite size effects we have studied the the behavior
of adiabatic gauge potential (AGP) for different system
sizes N for various values of ∆/Ω. It has been argued in
earlier works [30], that the scaling behavior of the norm
of the regularized AGP is an extremely sensitive indica-
tor of quantum chaos, and can detect its onset even in
circumstances where widely used alternative probes such
as the mean consecutive level spacing ratio [27] fails to
do so. The scaling behavior of the regularized AGP can
correctly predict the onset of quantum chaos even for
very modest system sizes as this directly probes features
of a many-body Hamiltonian at time scales which are ex-
ponentially large in system size. In Appendix F we have
considered this sensitive indicator of quantum chaos, and



9

−10 0 10
E

0

2

4

6

SUDvN ,∆ = 0, N = 28

−10 0 10
E

0

2

4

6

∆ = 5

log(2)
2log(2)

SUDvN ,∆ = 0.5, N = 28

−50 0 50

2.5

5.0

−20 0 20
E

0

2

4

6

SUDvN ,∆ = 1, N = 28

−20 0 20
E

0

2

4

6

log(2)

2log(2)

SUDvN ,∆ = 2, N = 28

FIG. 10. Bipartite von Neumann entanglement entropy (for
definition see Appendix B) of all many-body eigenstates of
the Hamiltonian with respect to the UD partition at ∆/Ω = 0
(top left panel), ∆/Ω = 0.5 (top right panel), ∆/Ω = 1 (bot-
tom left panel) and ∆/Ω = 2 (bottom right panel) respec-
tively for N = 28 atoms in the kx = ky = 0 sector. The solid
dashed black line denotes the Page value (i.e. the average
entanglement entropy of Haar-random states) in this specific
symmetry sector. The broad distribution of the values of the
von Neumann entanglement entropy for ∆/Ω = 1, 2 suggest
that there is a Krylov fracture of the Hilbert space, albeit
approximate. Inset of the figure in top right panel is the bi-
partite von Neumann entanglement entropy of all many-body
eigenstates of the Hamiltonian with respect to UD partition
at ∆/Ω = 5, black dashed line indicates the entanglement en-
tropy obtained from the analytical construction of the eigen-

states from H[2]
eff for states having 1 and 2 Bell pairs respec-

tively which are cut by the UD partition giving a contribu-
tion of log 2 per Bell pair in the entanglement entropy (see
Appendix-C 1).

illustrated that for all the parameter regimes discussed
in the paper, the idealized kinetically constrained system
(1) is overall quantum chaotic, even if various forms of
ergodicity breaking behavior exists for finite-size systems
at finite times for specific initial states.

IV. FLOQUET ENGINEERING

In Ref. [21], it was shown that by leveraging the under-
lying chirality operator associated with the PXP model
(on any bipartite lattice), it is possible to design Floquet
protocols, such as periodic kicks in the form of a many-
body π-pulse, leading to dynamical signatures reminis-
cent of discrete time-crystalline (DTC) order which are
stabilized by QMBS. This naturally raises the question of
whether it is possible to design interesting Floquet pro-

tocols with the help of the two chirality operators Ĉ1,2
we introduced earlier in Sec. II (see Eqs. (2),(3)). As ex-
pected, the protocol proposed in [21] (see Eq. (8)), hence-
forth referred to as protocol-0, gives rise to a subharmonic
response (in the form of period-2 exact revivals) in the
model (1) for ∆ = 0, starting from any initial state

ÛF (τ) = Ĉe−iτĤ∆=0 (8)

This happens as {Ĥ∆=0, Ĉ} = 0 and Ĉ2 = 1̂ which im-

plies that Û2
F (τ) = 1̂. However, protocol-0 does not give

rise to exact revivals for ∆ ̸= 0, since {Ĥ∆ ̸=0, Ĉ} ̸= 0. In
what follows, we shall show that by using the appropri-
ate chirality operators for non-zero staggered detunings,
i.e. Ĉ1,2 (Eqs. (2),(3)), we can generate two new classes
of Floquet protocols, which allow us to realize exact re-
vivals, for any ∆ ̸= 0.

A. Protocol-I: Subharmonic response

We now consider a modified version of protocol-0,
which is obtained by replacing Ĉ by Ĉ1 in Eq. (8), giving
rise to a new protocol (henceforth referred to as protocol-
I) defined by the following unitary evolution operator

Û I
F (τ) = Ĉ1 e−iĤτ (9)

In the context of Rydberg atom quantum simulators,
such a protocol can be thought of as a unitary evolution
via the Hamiltonian Ĥ for time τ , followed by the
action of the chirality operator Ĉ1 = T̂xĈ, which itself is
composed of the (instantaneous) action of a many-body
π-pulse, followed by an (instantaneous) spatial transla-
tion of the atoms by one sites along the longer direction
in a cyclic fashion. Successive action of this unitary on
any initial state of the system, defines for us a Floquet
protocol, with Û I

F (τ) as the Floquet unitary with time
period τ . For such a protocol, using Eq. (4) given

earlier, one can see that Û I
F (2mτ) = (Û I

F (τ))
2m = T̂ 2m

x

(m ≥ 1). This relation implies that if an initial state

|ψ(0)⟩, satisfies T̂ 2m
x |ψ(0)⟩ = |ψ(0)⟩, then it revives

exactly after 2m cycles under the Floquet protocol (9).
In other words, every Fock state returns to itself exactly
after a specific number of cycles, which is set by the
lattice-translation properties of that state with respect
to T̂x. As a result of this delayed exact revivals, the in-
teracting quantum many-body system described above,
exhibits a state-dependent subharmonic response which
is suggestive of discrete-time-crystalline order [31, 32].
This state-dependent exact revivals are illustrated in
Fig. 11 by studying (numerically) the micromotion
associated with protocol-I.

As mentioned earlier, implementing the protocol-I
described above in real platforms, requires the tech-
nological ability to apply a many-body π-pulse and to
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FIG. 11. Illustration of realization of exact revivals under
protocol-I (Eq. (9)). Return probability F(t) = |⟨ψ(0)|ψ(t)⟩|2
is plotted as a function of time starting from different initial
states: (i) |vac⟩ (blue dashed), (ii) |Z2⟩ (red dashed) and (iii) a
generic Fock state |AR⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (black solid) at ∆ = 0.5Ω
for N = 16 atoms. As evident from the figure, all states
revive after a number of cycles dictated by the translational
properties of the initial state. In all cases the states have been
evolved using a discrete time-step integrator [29].

simultaneously (i.e. without acquiring any kinematical
phase) translate the atoms to a new location. Although
this is extremely challenging, in light of recently demon-
strated technological progress in [7, 33], such operations
may become achievable in near future.

We will now focus on how the imperfections in the
action of the many-body π-pulse can influence the sub-
harmonic response shown in Fig. 11. We consider the
influence of an imperfect many-body π-pulse, where the
phase rotation can deviate from π by an amount ϵ. In
this case, the unitary evolution operator of one cycle for
protocol-I becomes.

Û I
F (τ ; ϵ) = T̂xe−i(π−ϵ)N̂ e−iτĤ (10)

where N̂ =
∑L

j=1

∑2
a=1 n̂j,a, n̂j,a =

(
σ̂z
j,a + 1

)
/2. In

Fig. 12, we show the stability of the exact revivals start-
ing from the initial state |vac⟩ (top panel), |Z2⟩ (mid-
dle panel) and |AR⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (bottom panel) for
∆ = 0.5, τ = 1 for N = 16 atoms at different values
of ϵ, ϵ = 0 (red) , ϵ = 0.01 (blue) , ϵ = 0.02 (green) ,
ϵ = 0.08 (brown) and ϵ = 0.1 (black).

As the chirality operator Ĉ2 also anti-commutes with
the Hamiltonian Ĥ for any value of ∆, one can substi-
tute Ĉ1 in Eq. (9), by Ĉ2 to generate an equivalent proto-

col that has similar features: i.e., ÛF (2mτ) = T̂ 2m
x T̂ 2m

y

(m ≥ 1). In this case, the revival period depends on the
translation properties of the initial state along both di-
rections. This can again be observed by computing the
Floquet micro-motion in a similar fashion as above.
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FIG. 12. This figure represents the degree of robustness of
exact revivals under protocol-I due to imperfections in the
many-body π-pulse. Return probability F(t) = |⟨ψ(0)|ψ(t)⟩|2
is plotted as a function of time for ∆ = 0.5, τ = 1 with N = 16
atoms starting from the states |vac⟩ (top panel) and |Z2⟩ (mid-
dle panel) and |AR⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (bottom panel) at different
values of imperfection ϵ in the π-pulse, denoted as, ϵ = 0
(red), ϵ = 0.01 (blue), ϵ = 0.02 (green), ϵ = 0.08 (brown) and
ϵ = 0.1 (black) respectively. As the figure illustrates, the |vac⟩
state is more stable against imperfections in the application
of the exact many-body π-pulse. In all cases the states have
been evolved using a discrete time-step integrator [29].

B. Protocol-II: Exact Floquet flat bands

We now introduce a second class of Floquet protocol
(henceforth called protocol-II), which gives rise to exact
revivals after every cycle, starting from any initial state
for any value of ∆ ̸= 0 and hence constitutes a different
class of dynamical phenomena compared to protocol-I.
The one-cycle Floquet unitary for protocol-II reads

Û II
F (τ) = Ĉe−iĤ−∆0

τ/2Ĉe−iĤ∆0
τ/2 (11)

Where Ĥ±∆0
is the Hamiltonian with staggered detun-

ing ∆j,a = (−1)j∆0 and ∆j,a = −(−1)j∆0 respectively.
Due to the identity

Ĉe−iĤ−∆0τ/2Ĉ = e+iĤ+∆0
τ/2 (12)
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We have

Û II
F (τ) = Ĉe−iĤ−∆0

τ/2Ĉe−iĤ+∆0
τ/2 = 1̂ (13)

The validity of the identity Eq. (12) can be verified by
expanding the exponential on it’s left hand side (LHS)
in powers of τ and showing that it is equal to the corre-
sponding term in the right hand side (RHS). This equiv-
alence for the mth power is shown below

Ĉ (−iτ/ 2)m
m!

m terms︷ ︸︸ ︷(
Ĥz + Ĥx

)
...
(
Ĥz + Ĥx

)
...

(
Ĥz + Ĥx

)
Ĉ

=
(−iτ)m
2m m!

m terms︷ ︸︸ ︷
Ĉ−1

(
Ĥz + Ĥx

)
Ĉ ... Ĉ−1

(
Ĥz + Ĥx

)
Ĉ ... Ĉ−1

(
Ĥz + Ĥx

)
Ĉ

=
(−iτ)m
2m m!

m terms︷ ︸︸ ︷(
Ĥz − Ĥx

)
...

(
Ĥz − Ĥx

)
...

(
Ĥz − Ĥx

)

=
(−iτ)m
2m m!

(−1)m

m terms︷ ︸︸ ︷(
−Ĥz + Ĥx

)
...

(
−Ĥz + Ĥx

)
...

(
−Ĥz + Ĥx

)
=

(+iτ)
m

2m m!
Ĥ−∆0

(14)

In the manipulations above, we have used the following
two equations, which follow from the algebra of the Pauli
spin operators.

Ĉ−1ĤzĈ = +Ĥz (15a)

Ĉ−1ĤxĈ = −Ĥx (15b)

As we can see from Eq. (14), the term corresponding
to the m-th power of τ in the LHS of Eq. (12) is equal
to the m-th power of Eq. (12) in the RHS, which implies
that the identity Eq. (12) holds. This in turn completes

the proof that for drive protocol Eq. (11), Û II
F (τ) = 1̂.

Since Û II
F (τ) = 1̂, under protocol-II, every initial

state exhibits exact revivals with a period equal to
the time period of the protocol (τ) and the system
hosts exact Floquet flat bands at any value of ∆0 ̸= 0.
This is illustrated in Fig. 13 by studying (numerically)
the micro-motion associated with the protocol-II for a
system with N = 20 atoms, ∆0 = 0.5, τ = 1 for three
different initial states (same as those in Fig. 11).

Similar to the case of protocol-I, We will now return
to the question of how the imperfections in the action
of the many-body π-pulse influences the appearance of
exact Floquet flat band as depicted in Fig. 13.

As mentioned in the above section, we consider an im-
perfect many-body π-pulse, where the deviation in the
phase rotation from π is symbolically represented by an
amount ϵ. In this case, the one-cycle unitary takes the
following form

Û II
F (τ ; ϵ) = e−i(π−ϵ)N̂ e−iĤ−∆0τ/2e−i(π−ϵ)N̂ e−iĤ∆0τ/2

(16)
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FIG. 13. Illustration of realization of exact Floquet flat band
via protocol-II starting from different initial states. Return
probability F(t) = |⟨ψ(0)|ψ(t)⟩|2 is plotted as a function of
time starting (i) |vac⟩ ( blue dashed line), (ii) |Z2⟩ (red dashed
line) and (iii) a generic Fock state |AR⟩=|•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (black
dashed line) at ∆0 = 0.5Ω for N = 16 atoms. As evident
from the figure, all states revive after exactly one cycle of the
protocol described in Eq. (11). In all cases the states have
been evolved using a discrete time-step integrator [29].

where N̂ =
∑L

j=1

∑2
a=1 n̂j,a, n̂j,a =

(
σ̂z
j,a + 1

)
/2. In

Fig. 14, we show the nature of the revivals starting from
the initial state |vac⟩ (top panel), |Z2⟩ (middle panel)
and |AR⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩ (bottom panel) for ∆0 = 0.5, τ = 1
for N = 16 atoms at different values of ϵ, ϵ = 0 (red),
ϵ = 0.01 (blue), ϵ = 0.02 (green), ϵ = 0.08 (brown) and
ϵ = 0.1 (black).
Figs. 12,14 indicate that the Rydberg vacuum state

(see top panels of Figs. 12,14) is more stable against the
imperfection in the application of the many-body π-pulse
for both the protocol-I and protocol-II. We have not been
able to understand the reason of such stability and a
detailed analysis of this reason will be a subject of future
study.
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FIG. 14. This figure demonstrates the robustness of exact
revivals under protocol-II due to imperfections in the many-
body π-pulse. In this figure the return probability F(t) =
|⟨ψ(0)|ψ(t)⟩|2 is plotted as a function of time starting for ∆0 =
0.5Ω, τ = 1 with N = 16 atoms starting from the states |vac⟩
(top panel) and |Z2⟩ (middle panel) and |AR⟩ ≡ |•◦◦•◦•◦◦◦◦◦◦•◦◦◦⟩
(bottom panel) at different values of imperfection ϵ in the
π-pulse, denoted as, ϵ = 0 (red), ϵ = 0.01 (blue), ϵ = 0.02
(green), ϵ = 0.08 (brown) and ϵ = 0.1 (black) respectively. In
all cases the states have been evolved using a discrete time-
step integrator [29].

V. EFFECTS OF ENVIRONMENT

The relevant experimental platforms, which host
such model Hamiltonians, i.e., Rydberg atom quantum
simulator platforms, have inevitable interactions with
the environmental degrees of freedom [1, 34]. In a real
system, the Rydberg excited states have a finite lifetime
and it might be possible that the Rydberg excited
state of an atom undergoes spontaneous emissions,
which projects it onto the Rydberg ground-state of that
atom from time to time. For a single atom in such
a platform, an incoherent dynamics may appear as a

result of fluctuations in the Rabi frequency and the
detunings from one shot to another in a real experiment.
These environmental effects at a single atom level can
accumulate in an interacting many-body setup and give
rise to interesting dynamics that cannot be explained
by considering only unitary evolution governed by a
Hamiltonian. Thus, it would be important to check the
robustness of the emergent conservation laws and of the
quantum many-body scars when such environmental
loss channels are present. There are also other effects
that could appear due to lattice imperfections and can
be handled by considering a quenched disorder in the
couplings of the Hamiltonian while still considering the
system as being isolated and evolving unitarily.

In this section, we focus on studying the effect of the
inevitable coupling to an external environment on the
nature of the anomalous non-equilibrium dynamics dis-
cussed in Sec. III. In this paper we will only study the
effects of two such environmental loss channels: (i) pure-
dephasing and (ii) spontaneous emission of photons due
to the finite lifetime of Rydberg excited states. Both
of these effects have been addressed by considering the
Lindblad master equation as a description of the quan-
tum dynamics of this open quantum system. This Lind-
blad master equation is an equation of motion for the
full density matrix of the system, which describes both
coherent and dissipative parts of the evolution within the
paradigm of Born-Markov approximation. The dissipa-
tive part of the quantum dynamics arising due to the
aforementioned loss channels are manifested by the ac-
tion of appropriate jump-operators Ĵ{α} associated with
the loss channels {α}. For pure dephasing, these jump-

operators take the form Ĵ
(d)
j,a =

√
γd σ̂

z
j,a while for sponta-

neous emission Ĵ
(e)
j,a =

√
γe σ̂

−
j,a, where γd and γe denote

the strength of the dephasing and decay rate of the Ry-
dberg excited-state respectively.
Within the Born-Markov approximation [34], the full

open quantum dynamics of a many-body quantum sys-
tem (in terms of its density operator ρ̂(t)) is gov-
erned by the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation, which is often referred to as
simply the Lindblad master equation. This master equa-
tion has the following form

dρ̂(t)

dt
= L̂ [ρ(t)]

= −i[Ĥ, ρ̂(t)] +
∑
α

(
Ĵ(α)ρ̂(t)Ĵ

†
(α) −

1

2

{
Ĵ†
(α)Ĵ(α), ρ̂(t)

})
(17)

Where
∑

α symbolically denotes the sum over all quan-

tum channels described by the jump operators Ĵ(α). In
these subsequent sections, we will focus on (i) fate of the
quantum many-body scar induced persistent oscillations
observed in [24] and (ii) robustness of the emergent ap-
proximate conservation laws (see Sec. III B of main text
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and Appendix-C) that appear in the limit (∆/Ω ≫ 1)
when the two aforementioned environmental loss chan-
nels are considered.

A. Stability of QMBS

1. Dephasing
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FIG. 15. Evolution of ⟨M̂z(t)⟩ as a function of time t for
(i) ∆ = 0, |ψ(0)⟩ = |Z2⟩, (ii) ∆ = 1, |ψ(0)⟩ = |Z2⟩ and (iii)
∆ = 1, |ψ(0)⟩ = |vac⟩, considering that the Rydberg atoms
experience dephasing at a rate γd/Ω = 0, 0.05, 0.1, 0.2

In Fig. 15, we show the evolution of average magneti-
zation ⟨M̂z(t)⟩ ≡ Tr[ρ̂(t)M̂z], where ρ̂(t) is the instanta-
neous (normalized) density operator of the system gov-

erned by Eq. (17) and M̂z ≡ ∑L
j=1

∑2
a=1 σ̂

z
j,a/N . We

consider three different combinations of the staggered de-
tuning strength (∆) and initial pure state (|ψ(0)⟩): (i)
∆ = 0, |ψ(0)⟩ = |Z2⟩, (ii) ∆ = 1, |ψ(0)⟩ = |Z2⟩ and (iii)
∆ = 1, |ψ(0)⟩ = |vac⟩ in the presence of a non-zero de-
phasing γd. At these parameter points, the chosen states

exhibit persistent oscillations due to presence of QMBS
[24] in the closed system undergoing unitary evolution.
However, our results indicate that these persistent oscilla-
tions are not robust against dephasing: an increase in the
dephasing rate diminishes the off-diagonal components of
the density matrix (in Fock basis), resulting in the loss
of coherent oscillations. In this steady-state (dρ̂/dt = 0)
all the Fock states have the same weight, which com-
bined with the constrained nature of the Hilbert space of
the system governed by Eq. 1, implies that the steady-
state magnetization value is close to −1/2 in the presence
of any non-zero dephasing, as evident from the Fig. 15.
This figure also demonstrates that for very weak dephas-
ing strengths e.g., γd/Ω = 0.05, the persistent oscillations
in average magnetization evolution do still appear in the
same frequency of oscillation as observed for unitary evo-
lution, albeit with a reduced amplitude.

2. Spontaneous emission

In Fig. 16, we show the evolution of average magne-
tization ⟨M̂z(t)⟩ as a function of time t, for (i) ∆ =
0, |ψ(0)⟩ = |Z2⟩ , (ii) ∆ = 1, |ψ(0)⟩ = |Z2⟩ and (iii)
∆ = 1, |ψ(0)⟩ = |vac⟩ considering that an atom in the
Rydberg-excited state can spontaneously emit a photon
at rate γe and relax to the Rydberg ground-state. As
mentioned in the previous sections, for these parameter
choices the isolated system (γe = 0) exhibits persistent
oscillations due to presence of QMBS (also see [24]). For
a non-zero spontaneous emission rate, there is a com-
petition between the Rabi spin-flip term and the spon-
taneous emission term: if no spin-flip processes occur,
then the system in the presence of spontaneous emissions,
will continuously convert all the Rydberg-excited atoms
into Rydberg ground-state atoms and the final steady-
state will be the Rydberg vacuum state |vac⟩. Thus, the
steady-state expectation value of the average magneti-
zation operator, M̂z would be −1, and ⟨M̂z(t)⟩ would
approach this value as time evolves, with the rate of
approaching the steady-state being proportional to γe.
When there are spin-flip processes induced by the Rabi
oscillation term in the Hamiltonian, there will be compe-
tition between the strength of coherent oscillation in the
constrained Hilbert space i.e. the Rabi frequency 2Ω and
the strength of spontaneous emission γe. As a result, the
steady-state magnetization value will depend on the spe-
cific choice of the parameter values used in the Lindblad
evolution. For Ω ≫ γe, the steady-state magnetization
(M ss

z ) value would approach −1/2, i.e., M ss
z ∼ −1/2 (see

top panel of Fig. 16) following the arguments given in
Sec. VA1, whereas in the opposite regime, i.e., Ω ≪ γe
one has M ss

z ∼ −1. In the intermediate regimes, the
value of M ss

z has to be computed explicitly by solving
the equation of the steady-state dρ̂/dt = 0. In Fig. 16 we

show the evolution of average magnetization ⟨M̂z(t)⟩ as a
function of time t, for the aforementioned three different
combinations of ∆, |ψ(0)⟩ at four representative values of



14

0 5 10 15 20
tΩ

−0.75

−0.50

−0.25

0.00

〈M̂
z
(t

)〉

0 5 10 15 20
tΩ

−0.6

−0.4

−0.2

0.0

〈M̂
z
(t

)〉

0 5 10 15 20
tΩ

−1.0

−0.8

−0.6

−0.4

〈M̂
z
(t

)〉

γe = 0

γe = 0.05

γe = 0.1

γe = 0.2

FIG. 16. Evolution of ⟨M̂z(t)⟩ as a function of time t for (i)
∆ = 0, |ψ(0)⟩ = |Z2⟩, (ii) ∆/Ω = 1, |ψ(0)⟩ = |Z2⟩ and (iii)
∆ = 1, |ψ(0)⟩ = |vac⟩, considering that the Rydberg excited
state can spontaneously emit a photon with rate rate γe = 0
(gray solid line), γe = 0.05 (green solid line), γe = 0.1 (red
solid line), and γe = 0.2 (blue solid line) respectively. See
text for details.

the decay rate γe = 0 (gray solid line), γe = 0.05 (green
solid line), γe = 0.1 (red solid line), and γe = 0.2 (blue
solid line) respectively, for a ladder with N = 8 atoms.
The figures demonstrate that the persistent oscillations
observed in the unitary evolution, are not robust against
spontaneous emission for generic initial states. However,
as observed in the bottom panel of Fig. 16, for the state
|ψ(0)⟩ = |vac⟩, consisting of all atoms in the Rydberg
ground-state, the persistent oscillations in the magne-
tization dynamics are more robust against spontaneous
emission.

B. Stability of Approximate Emergent
Conservation Laws

We now consider the behavior of the quasi-conserved
charge ⟨Q̂1(t)⟩ ≡ Tr[ρ̂(t)Q̂1] under the time evolution
governed by the Lindblad master equation (see Eq. (17)).
In Fig. 17 we consider three initial states, namely (i)
|ψ0⟩ = |Z2⟩ (top panel), (ii) |ψ0⟩ = |1P⟩ (middle panel)
and (iii) |ψ0⟩ = |vac⟩ (bottom panel) for a 2-leg ladder
with N = 8 atoms at ∆ = 4Ω and different strengths
of environmental loss channels: γd/Ω = 0.1 (red solid
curve), γd/Ω = 0.2 (blue solid curve), γe/Ω = 0.1
(red dashed curve), γe/Ω = 0.2 (blue dashed curve),
γd = γe = 0 (gray solid curve). This figure exhibits
the robustness of the conservation laws against the two
aforementioned loss channels.

It is expected and also evident from Fig. 17 that for
generic initial states, the emergent conservation laws
are more stable against dephasing than compared to
spontaneous emission, since one event of spontaneous
emission of Rydberg-excited atoms on any of the sites
(j, 1) or (j, 2) changes the sign of the quasi-conserved

charge Q̂j . Furthermore, we note that pure dephasing
does not alter the sign of the quasi-conserved charge
⟨Q̂1(t)⟩ for all the initial states considered here up to
times tΩ ∼ 20. Hence, the storage of L/2 classical
bits of information by the utilization of sign of such
emergent approximate conservation laws as discussed
in Appendix-C 2 is a robust mechanism even in the
presence of pure-dephasing. There is an important
exception to this generic expectation: there exists one
special initial state, namely the |vac⟩ state, for which the
quasi-conserved charges seem to be more robust against
spontaneous emission compared to dephasing. From the
inset of the bottom panel of Fig. 17 it becomes evident
that for the |vac⟩ state, an increased strength of the
rate of spontaneous emission (γe) enhances the degree
of fulfillment of the approximate emergent conservation
laws. This happens as after each event of spontaneous
emission, one Rydberg excited-atom is converted into a
Rydberg ground-state and hence the expectation value
of the quasi-conserved charges shift towards the ini-
tial time expectation value with respect to the |vac⟩ state.

Individual Quantum Trajectories: The evolution of the
Lindblad master equation describes the non-unitary evo-
lution of the system’s density matrix within the Born-
Markov approximation [34]. This non-unitary nature of
the dynamics arises from the fact that the system is in-
teracting with the environment which results in incoher-
ent evolution of the system’s degrees of freedom. It is
possible to describe the solution of the GKSL master
equation as an average over the ensemble of density ma-
trices constructed from several realizations of stochasti-
cally evolved pure quantum states where the stochastic-
ity comes from the continuous monitoring of the quantum
system under consideration. This completely equivalent
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FIG. 17. Illustration of the stability of the emergent quasi-
conserved charges Q̂1 at ∆/Ω = 4 starting from three dif-
ferent initial states (|Z2⟩ top panel, |1P⟩ middle panel and
|vac⟩ bottom panel) under dephasing (γd ̸= 0) and sponta-
neous emission (γe ̸= 0) for a 2-leg ladder with N = 8 atoms.
Different colors in the figure indicate different values of the
strength of the rate of dephasing and spontaneous emission
with γe, γd = (0, 0) (gray solid line), γe = 0.1 (red solid line),
γe = 0.2 (blue solid line), γd = 0.1 (red dashed line) and
γd = 0.2 (blue dashed line) respectively. In all the figures,
the colors are the same as that of the top panel. See text for
details.

approach known as Monte Carlo wave function (MCWF)
approach, or as the quantum trajectory approach, allows
one to track the evolution of the open system as a func-
tion of time in terms of pure quantum states [34–38]. In
the quantum trajectory approach, one evolves the quan-
tum state |ψ(t)⟩, which is a vector of dimension DH (DH

being the Hilbert space dimension) and is thus computa-

tionally less expensive than the full Lindblad evolution.
Apart from the lower numerical complexity, analysis of
individual quantum trajectories are also important due
to the fact that when a physical noisy quantum hardware
under continuous monitoring evolves in time, it does not
evolve according to the Lindblad evolution, but rather
follows a stochastic pure state evolution which is similar
to a single realization of a quantum trajectory, where the
jumps (Ĵ(α)) correspond to a manifestation of a physical
loss in the system [39]. The quantum trajectory approach
also enables the possibility of monitoring quantum entan-
glement of the system under different continuous mea-
surement processes [40, 41].
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FIG. 18. Time evolution of the instantaneous expectation

values of the approximate emergent conserved charges Q̂(α)
j

(j = 1, 2, 3, 4 stands for rung index in a 2-leg square ladder
with N = 8 atoms) starting from the |1P⟩ ≡ |◦◦◦•◦◦◦◦⟩ state at
∆/Ω = 5, for two different quantum trajectories α = 1, 2
when dephasing (γd = 0.1Ω) is considered. This figure shows
that the sign of conserved charged do not alter during the evo-
lution for two different realization of the quantum trajectory
MCWF method. This is the case for most of the trajectories
as the average Lindblad description also depicts the same sce-
nario. See Fig. 17 and text for details.

As shown in Fig. 17, the emergent approximation laws,
when starting from a generic initial state, seem to be
more robust against dephasing loss mechanism compared
to spontaneous emissions. For this reason, it is interest-
ing to look at individual quantum trajectories for the
dephasing case. In Fig. 18 we show evolution of all
the approximately conserved charges starting from the
|1P⟩ state, when a dephasing rate γd = 0.1Ω is con-
sidered. This figure illustrates that even for individual
quantum trajectories, the conservation laws seem to be
respected approximately. Moreover, the sign of the con-
served charged do not change in time for a long duration,
which further strengthens the classical bit storage capa-
bilities illustrated in Appendix-C 2

VI. CONCLUSION AND OUTLOOK

In this paper we have demonstrated that leveraging
the controllability of Rydberg atom platforms in terms of
both the geometry of the optical tweezer arrays as well as
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the tunability of the external parameters, enables us to
realize various forms of anomalous quantum dynamics:
(i) appearance of extensive number of emergent con-
servation laws leading to approximate Krylov fractures
and integrability-induced slow dynamics, (ii) Floquet
protocols leading to subharmonic responses reminiscent
of discrete-time-crystalline order and exact Floquet
flat bands. We have also presented a basic analysis of
the stability of some of the dynamical features against
imperfections of various kinds namely, imperfections
in the application of a many-body π-pulse and effects
of environmental loss channels such as spontaneous
emission and dephasing. Our results indicate that the
Rydberg vacuum state is more stable against imperfec-
tions in the application of a many-body π-pulse for both
protocol-I and protocol-II. We have not been able to
understand the reason of such stability and a detailed
analysis of this reason will be the subject of future
study. We have also demonstrated that the emergent
conservation laws are stable against pure-dephasing but
not against the consideration of the finite lifetime of
the Rydberg-excited states by looking at the evolution
of the system density matrix via the Lindblad master
equation. This conclusion was further supported by
the robustness of the conservation laws for individual
quantum trajectories. Our results indicate that both
the conservation laws and the quantum many-body
scars are unstable in the presence of both dephasing and
spontaneous emission from the Rydberg excited states.

Finally we shown that in practice it could be challeng-
ing to implement the specific kinematical constraints
illustrated in Fig. 1 in an actual Rydberg atom quantum
simulator platform with only isotropic van der Waals
repulsive interactions, making it difficult to observe
these broad class of dynamical phenomena in an actual
experimental setup. This can be attributed to the fact
that for an actual Rydberg atom quantum simulator
configured in the ladder geometry (Fig. 1), the strength
of the second nearest-neighbor repulsive interactions, i.e.
interactions among the diagonally placed atoms, are not
negligible compared to the repulsive interaction energy
of the first nearest neighbors. We discuss this briefly in
Appendix-E. We have also pointed out that there exists
an interesting parameter regime where the Néel state
undergoes persistent revivals even in the full system
with long-range van der Waals repulsive interactions
which can be mimicked by adding next-nearest neighbor
interactions in addition to Eq. (1).

However, our analysis in this paper leads us to believe
that engineering of the kinematic constraints shown in
Fig. 1 opens up a range of possibilities for exploring novel
out-of-equilibrium phases and phenomena in real quan-
tum hardware. In this regard, using more sophisticated
orbitals such as P or D orbitals as the electronic excited
states of Rydberg atoms may be useful, as they allow
us take advantage of the appearance of novel “magic

distances” [42] and can aid the engineering of such
kinetic constraints in Rydberg atom quantum simulator
platforms. This can open up the possibility of exploiting
more complex form of atomic interactions realizable in
real quantum hardware, and has larger possibilities in
the fields of quantum simulation, quantum information
processing and quantum computation applications.

Thus in conclusion tuning the geometry [24], dimen-
sionality [43] and trying out different atomic species [44]
by utilizing their hyperfine degrees of freedom, it could be
possible to design and explore a broad class of interact-
ing quantum many-body systems with novel phases and
dynamical features. This may open up a gateway to-
wards exploring minimal models of other rich variety of
interacting quantum field theories and lattice gauge the-
ories present ubiquitously in particle physics apart form
those observed in Ref. [1, 9, 45]. We would address these
in our future studies related to Rydberg atom quantum
simulator platforms.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Arnab Sen, Immanuel
Bloch, Vedika Khemani, Peter Zoller, Klaus Mølmer and
Shovan Dutta for stimulating discussions and insightful
comments. The authors would also like to acknowledge
valuable discussions in two consecutive programs held at
ICTS-TIFR – “A Hundred Years of Quantum Mechan-
ics” (code: ICTS/qm100-2025/01) and “Quantum Tra-
jectories” (code: ICTS/QuTr2025/01).

Appendix A: Symmetries of the Hamiltonian and
Hilbert Space Dimensions

In this section, we chart out the symmetries of the
model (1). By inspection we note that for ∆ ̸= 0, the

Hamiltonian commutes with the operators T̂x
2
and T̂y. It

is possible to construct a computational basis, in which
the basis states are labeled by the eigenvalues of the sym-

metry operators T̂x
2
and T̂y (see Ref. [46] for a review on

construction of symmetry reduced Hilbert spaces). For
reference, in Table I, we list the Hilbert space dimensions
of some chosen sectors of these symmetry operators. The

eigenvalues of T̂ 2
x and T̂y are denoted by kx and ky re-

spectively in Table-I.

It is crucial to note that the Hamiltonian (1) has ad-
ditional lattice symmetries when ∆ = 0. In this case the
Hamiltonian (1) commutes with the operators T̂x, T̂y and

P̂x.
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N No Symmetry kx = 0 kx,y = 0 kx = 0, ky = π kx,y = π

4 7 7 5 2 0

8 35 21 12 9 8

12 199 71 36 35 32

16 1,155 301 156 145 144

20 6,727 1,351 676 675 672

24 39,203 6,581 3,308 3,273 3,264

28 228,487 32,647 16,324 16,323 16,320

32 1,331,715 166,621 83,388 83,283 83,232

TABLE I. Hilbert space dimensions of (1) (with ∆ ̸= 0) for
system size N = 4− 32 without any symmetry and for some
specific symmetry sectors labeled by kx and ky (the eigenval-

ues of the symmetry operators T̂ 2
x and T̂y respectively).

Appendix B: Entanglement Measures

The bipartite von Neumann entanglement entropy
[47, 48] for any (pure) quantum state |ψ⟩, given the bi-
partition X ,X c (X ∪ X c = E , the entire system), is de-
fined as,

SvN
ent (X ) = −TrX (ρX log ρX ) (B1)

where ρX = TrX c (|ψ⟩ ⟨ψ|) is the reduced density
matrix (RDM) of sub-system X with respect to it’s
conjugate X c.

In the main text, we have presented results for
two kinds of bi-partitions, namely (i) “LR” (short for
left-right) partition and (ii) “UD” (short for up-down)
partition. In the LR partition, X is either taken to be
left half or the right half of the ladder. For setting a
fixed convention, we make this bi-partition along the
middle (in the sense of site indices) of the chain. For the
UD partition, X is either the upper leg or the lower leg
of the ladder.

For a kinetically constrained system like (1), the
Hilbert space does not have a direct product structure:
for any bi-partition X ,X c with X ∪ X c = E , the full
Hilbert space, say HE , is not equivalent to the direct
product of Hilbert spaces HX and HX c i.e., HE ̸=
HX

⊗
HX c (both Hilbert spaces HX and HX c are ob-

tained by considering open boundary conditions). In
such a scenario, a quantum state |ψ⟩ ∈ HE , can in princi-
ple be expressed in the product Hilbert space HX

⊗
HX c

as

|ψ⟩ =
DX∑
α=1

DXc∑
β=1

ψX ,X c

α,β |ΦX
α ⟩ ⊗ |ΦX c

β ⟩ (B2)

where {ψX ,X c

α,β } are complex numbers describing the

state, {|ΦX
α ⟩}, {|ΦX c

β ⟩} are suitable basis for HX and

HX c respectively with Hilbert space dimensions DX and
DX c . The Hilbert space constraint is taken care of by
the additional condition that for indices α, β, for which
the state ket |ΦX

α ⟩⊗|ΦX c

β ⟩ /∈ HE , i.e. does not satisfy the

Hilbert space constraint, we simply fix ψX ,X c

α,β = 0. Once

the state |ψ⟩ has been written in the form of Eq. (B2),
one can readily compute partial traces of |ψ⟩ ⟨ψ| over
the Hilbert space of X c to obtain the sub-system RDM
ρX , required for computing the desired entanglement
entropy via Eq. (B1).

(j, a) (j+1, a)

(j, a)

FIG. 19. Schematic illustration of the mutual information
computation for the horizontal (cyan) and vertical bonds (or-
ange). Also see Eq. (B3) and text below it.

In Sec. III B, we also considered the evolution of mutual
information between two sites. In general, the mutual
information between any two subsystems, X and Y is
defined as

I(X ,Y) = SvN
ent(X ) + SvN

ent(Y)− SvN
ent(X ∪ Y) (B3)

This quantity I(X ,Y) for any state, for any bi-
partition X ,Y, describes the total amount of correlation
shared between X and Y, which includes both classical
and quantum correlations [49, 50]. From a quantum in-
formation point of view, the mutual information encodes
the amount of information about the sub-system X that
can be obtained from the sub-system Y. In this case, it
is not necessary that X ∪ Y = E . For the specific results
displayed in Sec. III B, i.e. the mutual information of the
horizontal bonds we take X = {(j, a)}, Y = {(j + 1, a)}
and for vertical bonds we take X = {(j, a)}, Y = {(j, a)}
in Eq. (B3) with j = 1, a = 1.

Appendix C: Effective Hamiltonian for ∆/Ω ≫ 1

At ∆ = ∞, the spectrum of (1) is known exactly: all
computational basis states (i.e. Fock states in the σ̂z ba-
sis) are eigenstates of the Hamiltonian. To quantitatively
study the effect of this integrable point near ∆ ∼ Ω, we
construct a Schrieffer-Wolff (SW) rotation of the basis
which shall make the effective Hamiltonian block diago-
nal in the eigenbasis of the diagonal part of the Hamilto-
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nian Ĥz up to first order in Ω/∆. To this end we consider

the generator of the SW rotation iŜ,

iŜ = − Ω

2i∆

L∑
j=1

2∑
a=1

(−1)j ˆ̃σy
j,a (C1)

The structure of the generator iŜ implies

[
iŜ, Ĥz

]
= −Ĥx (C2)

The effective low-energy Hamiltonian, in the appropri-
ate rotated basis reads

Ĥeff = P̂Zπ

(
eiŜĤe−iŜ

)
P̂Zπ

= Ĥ(0)
eff + Ĥ(1)

eff + Ĥ(2)
eff + Ĥ(3)

eff + ...
(C3)

Where

Ĥ(0)
eff = P̂ZπĤzP̂Zπ , Ĥ(1)

eff = 0

Ĥ(2)
eff = P̂Zπ

(
1

2!

[
iŜ, Ĥx

])
P̂Zπ

Ĥ(3)
eff = P̂Zπ

(
1

3!

[
iŜ,

[
iŜ, Ĥx

]])
P̂Zπ

Ĥ(4)
eff = P̂Zπ

(
1

4!

[
iŜ

[
iŜ,

[
iŜ, Ĥx

]]])
P̂Zπ

(C4)

In the above perturbation theory, all odd-order terms
vanish and only even-order terms have a non-trivial con-
tribution. By direct computation of the commutators,

one arrives at the expression for Ĥ(2)
eff

Ĥ(2)
eff = −Ω2

2∆

L∑
j=1

2∑
a=1

(−1)j ˆ̃σz
j,a −

Ω2

4∆

L∑
j=1

2∑
a=1

(−1)jP̂↓
j−1,aP̂↓

j−1,aP̂↓
j+1,aP̂↓

j+1,aP̂↓
j,a

(
σ̂x
j,aσ̂

x
j,a + σ̂y

j,aσ̂
y
j,a

)
(C5)

Already at second order, the effective Hamiltonian pro-
vides us with a lot of intuition about the dominant phys-
ical processes taking place in the quench dynamics of the
system. At this order, any allowed Fock state undergoes
Rabi oscillations induced via the XX + Y Y terms. This
effective Hamiltonian also suggests the consideration of
a number of “emergent” constants of motion for a sys-
tem with 2L degrees of freedom. It is worth mentioning
that, for a deeper understanding, it should be explored
whether one can explicitly cast the effective Hamiltonian
up to second order in a Bethe integrable form, and will
be addressed in a future study. For example, consider
Eq. (27) of the paper [51], which has a lot of similar-
ity with the dynamical terms of the second order effec-
tive Hamiltonian. In their work, they cast the ansatz
wavefunction in a coordinate Bethe ansatz form. Inter-
estingly, this structure of the Hamiltonian also has close
similarity with Eq. (2.10) of [52]. The models studied in
[51, 52] both exhibit “jamming” and/or slow dynamics as
a consequence of these additional conservation laws. The
second-order effective Hamiltonian also gives rise to jam-
ming and slow dynamics due to existence of the following
extensive number of conservation laws (see Eq. (C7))

Ẑπ =

L∑
j=1

2∑
a=1

(−1)j σ̂z
j,a (C6)

Q̂j = σ̂z
j,1σ̂

z
j,2 ∀j = 1, 2, ..., L (C7)

Considering the conservation of the total energy, we
have L + 2 number of constants of motion, which sug-
gests that the effective Hamiltonian (up to second order)
is integrable, and it is possible to write down explicitly

the eigenvalues and eigenvectors of Ĥ[2]
eff = Ĥ(0)

eff + Ĥ(2)
eff

in each charge sector labeled by the quantum numbers
{zπ, q1, q2, ..., qL}. In the following section, we present an
outline for the process of enumeration of all the eigenvec-

tors and the eigenvalues of Ĥ[2]
eff.

1. Full Spectrum of Ĥ[2]
eff

First, we note by inspection that the vacuum state

|vac⟩ is annihilated by Ĥ[2]
eff, the effective Hamiltonian

up to second order i.e. Ĥ[2]
eff = Ĥ(0)

eff + Ĥ(2)
eff . Now, we

consider adding particles on top of the |vac⟩ state by
forming singlets/triplets of the following form

|j,±⟩1P =
1√
2

(
|...•j ...
...◦j ...⟩ ± |...◦j ...

...•j ...⟩
)

(C8)
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where for brevity of notation, the dots “...” within
the symbol |⟩, imply absence of any Rydberg excita-
tions/particles. The states |j,±⟩1P ,∀j = 1, 2, ..., L are

exact eigenstates of Ĥ[2]
eff with eigenvalue ±2∆−3Ω2/4∆.

Similarly, one can construct two particle states on top of
the |vac⟩ state, with particles placed on neighboring sites
(on alternate rungs) in the following way,

|j, 1⟩2P = |...◦•j ...
...•◦j ...⟩

|j, 2⟩2P = |...•◦j ...
...◦•j ...⟩ (C9)

which are zero modes of Ĥ[2]
eff, ∀j = 1, 2, ..., L. This

construction can be generalized to many contiguous sites
as follows,

|j, 1⟩3P = |...•◦•j ...
...◦•◦j ...⟩

|j, 2⟩3P = |...◦•◦j ...
...•◦•j ...⟩ (C10)

Again the states, |j, 1⟩3P and |j, 2⟩3P, ∀j = 1, 2, ..., L

are eigenvectors of Ĥ[2]
eff and the energy eigenvalue has

to be determined by inspection. This procedure can be

continued to yield more eigenvectors of Ĥ[2]
eff, until every

other site in the ladder is filled, which leaves us with two
eigenvectors |Z2⟩ and |Z2⟩. Alternatively, one may also
put non-contiguous excitations, which will again be exact
eigenstates of the effective Hamiltonian

|(j1, 1) , (j2,±)⟩nP =
1√
2

(
|...•◦•j1

...•j2
...

...◦•◦j1 ...◦j2 ...
⟩ ± |...•◦•j1

...◦j2
...

...◦•◦j1 ...•j2 ...
⟩
)

|(j1, 2) , (j2,±)⟩nP =
1√
2

(
|...◦•◦j1

...•j2
...

...•◦•j1
...◦j2

...⟩ ± |...◦•◦j1
...◦j2

...
...•◦•j1

...•j2
...⟩

)
(C11)

with the condition that the block of contiguous spins
based to the left of site j1 have at least one inesrtion of |◦◦⟩
between the excitations placed at site j2. Additionally,

further non-zero modes of Ĥ[2]
eff can be constructed by

placing “Bell-pair” like states which are separated by at
least one insertion of |◦◦⟩ in between. Following these

simple rules one may enumerate all eigenvectors of Ĥ[2]
eff.

2. Storing classical bits of information

Utilizing the slow dynamics induced by the extensive
number of approximate conservation laws, it is possi-
ble to store classical information, encoded via a class of
appropriately chosen initial states which can be labeled
uniquely in terms of the eigenvalues of “L”-quasi con-
served charges in a square ladder with N = 2L Rydberg
atoms. This stored information can be retrieved at later
times by performing simple projective readout measure-
ments. To see how this can be achieved, consider a string
of L-classical bits (c1, c2, ..., cL) where ci ∈ [−1,+1]

∀i = 1, 2, ..., L, i being the rung index. Now, this classi-
cal string of information can be encoded as initial val-
ues of the approximately conserved local charges qj ’s
at all rungs as qj = cj . As an example, in a ladder
with N = 2L = 12 atoms, one can encode the classical
information “bit-string” (+1,+1,+1,−1,+1,−1,+1) in
the initial quantum state |ψ(0)⟩ = |◦◦•◦◦◦◦◦◦◦•◦⟩. This choice
is not unique and the states |◦◦•◦•◦◦◦◦◦◦◦⟩,|◦◦◦◦◦◦◦◦•◦•◦⟩,|◦◦◦◦•◦◦◦•◦◦◦⟩ are
completely equivalent. In the course of full quantum dy-
namics via the Hamiltonian (1) for ∆ ≫ Ω, the expec-

tation values of all Q̂j ’s stay almost frozen, and more
importantly do not change their sign, for times as large
as tΩ ∼ 104, which is much beyond the time to which
coherence can be maintained in experimental platforms.
By a simple readout procedure, one can determine the
sign of ⟨Q̂j⟩t at any time t during the experiment. By
looking at this string of information, one can recover the
encoded classical string (c1, ..., cL) as

ci =
⟨Q̂i⟩t
|⟨Q̂i⟩t|

∀i = 1, 2, ..., L (C12)

From the structure of Eq. (C5), it is easy to interpret
the form of the initial Fock state required to encode the
bit-string (c1, ..., cL).

3. Ensemble of relaxation: Gibbs vs Generalized
Gibbs

Under unitary quantum evolution via Ĥ[2]
eff, the sys-

tem preserves the following operators: Ĥ[2]
eff, Ẑπ and Q̂j

∀j = 1, 2, ..., L. This implies, that if the system evolves

purely via Ĥ[2]
eff, at late times it should relax to the gener-

alized Gibbs ensemble (GGE) described by appropriate
Lagrange multipliers associated with these conservations
laws (exact or approximate),

ρ̂GGE =
1

ZGGE
exp

−βĤ[2]
eff − λπẐπ −

L∑
j=1

λjQ̂j

 (C13)

where ZGGE is a normalization factor which ensures
that Tr (ρ̂GGE) = 1. On the other hand, as the additional
extensive number of conservation laws are only approxi-
mate, the system (which evolves via the Hamiltonian (1))
should relax (at very late times set by the fourth order
effective Hamiltonian) to the Gibbs ensemble

ρ̂GE =
1

ZGE
exp

[
−βĤ

]
(C14)

where ZGE is a normalization constant such that
Tr (ρ̂GE) = 1. For both cases, the relevant Lagrange
multipliers i.e. {β, λπ, λ1,2,...,L} for GGE and β for GE,
are determined by requiring the equality of the initial
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values of the conserved charges to the expectation val-
ues of conserved operators with respect to this ensemble.
In practice, we have done this by minimizing the related
cost functions fGGE({β, λπ, λ1,2,...,L}) and fGE(β) using
numerical solvers [53]

fGE(β) =
(
Tr

(
ρ̂GEĤ

)
− Tr

(
ρ̂0Ĥ

))2

(C15)

fGGE({β, λπ, λ⃗}) =
∑
η

(
Tr

(
ρ̂GGEÎη

)
− Tr

(
ρ̂0Îη

))2

(C16)

Where {Îη} collectively stands for all the conserved

quantities of Ĥ[2]
eff, ρ̂0 is the initial density operator and

the dependence of ρ̂GE/GGE on the Lagrange multipliers
is implicitly assumed.

Appendix D: 3-leg ladder

We now focus on a new model which is related to the 2-
leg square ladder in a simple way. We now consider the
3-leg ladder with the same staggered detuning pattern
along the longer direction of the lattice and study the
nature of quantum quench dynamics for a range of pa-
rameter values. As before we consider periodic boundary
conditions, and the Hamiltonian now reads

Ĥ3-leg = Ω

L∑
j=1

3∑
a=1

ˆ̃σx
j,a −∆

L∑
j=1

3∑
a=1

(−1)jσz
j,a (D1)

where ˆ̃σα
j,a ≡ P̂↓

j+1,aP̂↓
j−1,aP̂↓

j,a−1P̂↓
j,a+1σ̂

α
j,a with

α = (x, y, z)

1. Quantum many-body scars

We now consider quantum quench dynamics starting
from simple initial product state (in Fock/computational

basis). Due to the periodic boundary condition, it is not
possible to accommodate the Néel state |Z2⟩ on a lattice
with odd number of legs without violating the Rydberg
blockading constraint. For this reason we do not consider
the quantum quench dynamics at ∆ = 0 in this case since
for the 2-leg ladder it was the Néel state which showed
anomalous revivals for this parameter choice. We shall
instead focus on the dynamics from other initial states
which are allowed in a 3-leg ladder configuration of the

lattice such as |vac⟩ ≡ | ◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦⟩ and the |1P⟩ ≡ | ◦◦◦◦◦◦◦◦◦•◦◦

◦◦◦◦◦◦⟩
state at ∆ = 1.
As Fig. 20 top pane illustrates, for the case of the

3-leg ladder |vac⟩ shows anomalous revivals which the
other state do not. Here for the |vac⟩ state one has

⟨vac|Ĥ3-leg|vac⟩ = 0 which, combined with the fact that
the spectrum of (D1) has a spectral reflection symme-
try implies that the system should relax to an infi-
nite temperature (βvac = 0) Gibbs ensemble. In con-
trast, for the |1P⟩ state, the initial energy density is

⟨1P|Ĥ3-leg|1P⟩ = −2∆, which corresponds to a Gibbs
ensemble of inverse temperature β1P ≃ −10−5, however
this state does not show any anomalous persistent re-
vivals in the return probability.

2. Emergent Conservation Laws and Slow
Dynamics ∆/Ω ≫ 1

For ∆/Ω ≫ 1 the low-energy effective Hamiltonian can
be obtained by in the same way as in Appendix-C by con-
sidering a 3-leg version of the generator for SW rotations
(see Eq. (C1)). As before, the rotation ensures there are
no high-energy processes in first-order and the term cor-
responding to the second-order effective Hamiltonian now
has the form (D2). Similar to the 2-leg case, the effective
low-energy Hamiltonian in this case (D2) only allows a
specific spin-flip processes to take place if a “blockading”
condition is satisfied. This specific blockading constraint
and the spin-flip process can be understood in the same
way as for the 2-leg case by considering the terms in-
volving σ̂x/y in the second-order effective Hamiltonian
which is given below (see Eq. D2). We have assumed
periodic boundary conditions in both directions which
implies a− 2 ≡ a+ 1 and a+ 2 ≡ a− 1 for a = 1, 2, 3 in
a 3-leg ladder.

Ĥ[2]
3-leg,eff = −Ω2

2∆

∑
j,a

(−1)j ˆ̃σz
j,a −

Ω2

4∆

∑
j,a

∑
j′,a′

(−1)j
[
P̂↓
j−1,a−1P̂↓

j+1,a−1P̂↓
j,a−2P̂↓

j−1,aP̂↓
j,a+1P̂↓

j,aP̂↓
j,a

(
σ̂y
j,aσ̂

y
j,a−1 + σ̂x

j,aσ̂
x
j,a−1

)]
+ (−1)j

[
P̂↓
j−1,a+1P̂↓

j+1,a+1P̂↓
j−1,aP̂↓

j+1,aP̂↓
j,a−1P̂↓

j,a+2P̂↓
j,a

(
σ̂y
j,aσ̂

y
j,a+1 + σ̂x

j,aσ̂
x
j,a+1

)]
(D2)

As a consequence, a class of initial states (specific Fock states) exhibit a simple motion that can be described by
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only considering the “blockaded-hopping” of the Rydberg

excitations on the sites of the lattice allowed by Ĥ[2]
3-leg,eff

for times before the effects of the fourth-order terms of
the perturbative Hamiltonian sets in (see bottom panel of

Fig. 20). For the initial state |1P⟩ ≡ | •◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦⟩, evolving

under the action of Ĥ[2]
3-leg,eff, at any instant of time t,

the quantum state can be written in the form |ψ(t)⟩ =
ℓ1(t) |(1, 1))⟩+ℓ2(t) |(1, 3))⟩+ℓ3(t) |(1, 3))⟩, with |ℓ3(t)| =
|ℓ2(t)| where |(j, a)⟩ denotes the one particle state with
the particle/Rydberg excitation on the site (j, a) of the
3-leg ladder which can be clearly seen from the bottom
panel of Fig. 20.

0 10 20 30 40tΩ
0.0

0.5

1.0

F

∆/Ω = 1, Lx = 6, Ly = 3

|vac〉 |1P〉

0 5 10 15 20tΩ
−1

0

1
∆ = 5Ω, |ψ(0)〉 = |1P 〉 , Lx = 6, Ly = 3

〈σ̂z1,1σ̂z1,2σ̂z1,3〉(t)
〈σ̂z1,1〉(t)

〈σ̂z1,2〉(t)
〈σ̂z1,3〉(t)

FIG. 20. (Top panel) Return probability F(t) =
|⟨ψ(0)|ψ(t)⟩|2 starting from different initial states for ∆/Ω =
1 on a 3-leg ladder (see Eq. (D1)) with periodic boundary con-
ditions. (Bottom panel) Illustration of 3-body conservation
law ⟨σ̂z

1,1σ̂
z
1,2σ̂

z
1,3⟩ (black solid curve) for the 3-leg ladder start-

ing from a different one particle state i.e. |1P⟩ ≡ | •◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦

⟩.
In this case, the product of σ̂z’s on each rung behaves as an
emergent conserved quantity. The state has been evolved us-
ing a discrete time-step integrator [29].

As a consequence of such a evolution the 3-body
operator σ̂z

1,1σ̂
z
1,2σ̂

z
1,3 remains approximately conserved

throughout the quantum evolution at ∆/Ω = 5. This
is qualitatively similar to the 2-leg square ladder case,
where product of 2-body spin operators remained ap-
proximately conserved. Thus, the results described in
the main text for a 2-leg square ladder can be easily ex-
tended for a 3-leg square ladder with staggered detuning
along the horizontal direction.

Appendix E: van der Waals interactions and validity
of the first nearest neighbor Rydberg Blockade

In a Rydberg atom quantum simulator setup (such as
in [2, 7]), neutral alkali atoms are trapped and arranged
in a desired lattice geometry (such as in Fig. 1) with op-
tical tweezer arrays, and are driven off-resonantly (with
site-dependent detunings ∆r⃗) with a laser gives rise effec-
tive Rabi oscillations between the ground |G⟩ and the Ry-
dberg excited state |R⟩ with frequency 2Ω. The Hamil-
tonian of the system reads

ĤFull
Ryd =

∑
r⃗

(Ωσ̂x
r⃗ −∆r⃗σ̂

z
r⃗ ) +

V0
2

∑
r⃗,r⃗′

n̂r⃗n̂r⃗′

|r⃗ − r⃗′|6 (E1)

where r⃗ denotes the position vectors of the trapped
atoms, which can be thought of as sites of a lattice.
Furthermore, we have assumed that the electronic
excited states for the atom is |R⟩ = |nS⟩. When
the atoms are in their Rydberg excited states, they
experience an isotropic long-range repulsive van der
Walls interaction (vdW) which falls off as 1/d6 where d
is the separation between the excited atoms. The last
double sum is taken over all possible pairs of atoms
placed on sites r⃗, r⃗′ of the ladder with N = 2L sites and
n̂r⃗ = (σ̂z

r⃗ + 1) /2 = |R⟩r⃗ r⃗⟨R| is the projection operator
corresponding to the Rydberg excited state |R⟩ at site r⃗.

In order to have an understanding of how accurately
the idealized kinetically constrained models mimic the
features of the fully interacting long-range system, we
present a direct comparison between them. First, we
briefly revisit the 1D Rydberg chain and the associated
1D PXP model (Appendix-E 1), and then come to the
case of the 2-leg square ladder (Appendix-E 2) and then
we briefly discuss the existence of Rydberg blockaded
regime when the Rydberg atoms are arranged in a 2D
square lattice with a staggered detuning along the longer
direction (Appendix-E 3).

1. 1D Rydberg Chain

The Rydberg blockading regime can be realized from
(E1), if the repulsive vdW interaction energy is much
higher than other energy scales of the system. In such
a scenario the system can be described by a simpler ef-
fective Hamiltonian obtained by perturbative arguments
[23]. In order to understand how accurately, the effective
Hamiltonian in a constrained Hilbert space represents
the dynamics of the full system as depicted by Eq. (E1),
we first focus on the paradigmatic PXP chain with site-
dependent detunings ∆j (henceforth referred to as the
PXP+Z model) and the related fully interacting long-
range model. The fully interacting long-range Hamilto-
nian for the 1D chain is the one dimensional analogue of
Eq. (E1), whereas in the limit V0 ≫ ∆j ,Ω the low-energy
effective Hamiltonian reads
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Ĥeff
Ryd =

L∑
j=1

(
Ωˆ̃σx

j −∆j σ̂
z
j

)
+
V0
2

∑
j,j′>NN1

n̂j n̂j′

|j − j′|6 (E2)

Here the double sum in the equation above is over
all pairs of sites which are not nearest neighbors of
each other. If the parameters V0,Ω,∆j are such that
V0 ≫ ∆j ,Ω ≫ V0/2

6, then the repulsive interaction term
in (E2) is extremely small and the evolution of the sys-
tem is entirely captured by the PXP+Z model. Such a
situation is achieved by taking ∆j ,Ω ∼ 1 and V0 = 10Ω,
in which case the condition V0 ≫ ∆j ,Ω ≫ V0/2

6 is sat-
isfied in an order of magnitude sense. If, however, V0/2

6

is not negligible compared to ∆j ,Ω, then the repulsive
interaction term is going to play a significant role in the
approximate evolution of the full system and needs to be
considered. This is the case if, for example, the parame-
ters are such that V0 ≫ ∆j ,Ω ≫ V0/3

6 and we can only
neglect long-range interactions at distances greater than
two lattice separation units, in which case the Hamilto-
nian (E2) further simplifies to a short-range interacting
Hamiltonian with the following form

Ĥeff,NN2

Ryd =

L∑
j=1

(
Ωˆ̃σx

j −∆j σ̂
z
j

)
+
V0
2

∑
j,j′∈NN2

n̂j n̂j′

|j − j′|6
(E3)

Here j, j′ ∈ NN2 means that the double sum only con-
tains the j, j′ pairs which are separated by exactly two
lattice separation units.

In Fig. 21 we show a comparison of the Hamiltonians
(E1),(E3): the left panel shows that the low-energy part
of the spectrum of the full long-range interacting system
(E1) can be faithfully captured by the entire spectrum
of the kinetically constrained Hamiltonian (PXP+Z
model). As the inset of this panel demonstrates, there
is no qualitative difference in the energy eigenvalues
even when the second nearest neighbor interactions
(Eq. (E3)) are considered beyond the Rydberg blockade
regime. The right panel Fig. 21 shows the quantum
evolution of the system starting from the Néel state and
we can conclude that, although the qualitative features
remain the same, there are quantitative differences in
the behaviors predicted by (E1), (E3) and the kinetically
constrained model with no additional vdW interactions
(which is the PXP+Z model in this case). Comparison of
both spectral as well as dynamical features of these three
descriptions indicate that the PXP+Z model provides
a good qualitative description of the full long-range
interacting many-body system described by Eq (E1).

2. 2-leg Rydberg Square Ladder

We now investigate the validity of the specific Rydberg
blockade constraint for the 2-leg square ladder system,
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FIG. 21. 1D Rydberg chain as captured via the Hamiltonians
(E1), (E3) and the PXP+Z model (denoted in the legend by

Ĥ1, Ĥ2 and Ĥ3 respectively) for N = 12 atoms and V0 = 10Ω:
(top panel) spectrum and (bottom panel) evolution of the
return probability starting from the Néel state. See text for
details.

that was assumed throughout the main text (see Fig. 1),
by considering the full long-range interacting system and
its various approximations. The fully interacting long-
range system is now given by the 2-leg square ladder
version of Eq. (E1) while the low-energy effective Hamil-
tonian in the limit V0 ≫ ∆j,a,Ω now reads

Ĥeff
Ryd =

L∑
j=1

2∑
a=1

(
Ωˆ̃σx

j,a −∆j,aσ̂
z
j,a

)
+
V0
2

∑
r⃗,r⃗′>NN1

n̂r⃗n̂r⃗′

|r⃗ − r⃗′|6
(E4)

It is crucial here to note that the second nearest
neighbor distance between two atoms in this case is√
2 (in lattice separation units). This implies that

for the 2-leg square ladder geometry, the conditions
which the parameters V0,∆j,a,Ω must satisfy so that
the long-range interactions beyond the first neighbor
could be neglected is V0 ≫ ∆j,a,Ω ≫ V0/(

√
2)6.

However, this condition cannot be met even in an order
of magnitude sense, as can be seen, for example, by
taking Ω,∆j,a ∼ 1, V0 = 10Ω which is required to
satisfy V0 ≫ ∆j,a,Ω, but makes it impossible to satisfy

∆j,a,Ω ≫ V0/(
√
2)6. This leads us to believe that,

the specific form of the constraint assumed throughout
the main text, could be in practice difficult to achieve
in actual experiments in a Rydberg atom quantum
simulator platform.

To illustrate this, in Fig. 22 we compare the evolution
of fidelity starting from the Néel state, under the fully
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FIG. 22. Comparison of the return probability F =
|⟨ψ(0)|ψ(t)⟩|2 by evolving an initial state under the fully in-
teracting long-range Hamiltonian (E1) (red solid line) taking
V0 = 10Ω and the idealized kinetically constrained system 2D
PXP+Z model (1) (black dashed lines) for N = 16 atoms.
The specific initial conditions are as follows: (top panel)
|ψ(0)⟩ = |Z2⟩ ,∆ = 0 (middle panel) |ψ(0)⟩ = |Z2⟩ ,∆/Ω = 1
and (bottom panel) |ψ(0)⟩ = |vac⟩ ,∆/Ω = 1. In all cases the
states have been evolved via exact diagonalization method.

interacting long-range Hamiltonian (E1), and the kinet-
ically constrained Hamiltonian (1). This figure shows
that even the qualitative nature of quantum dynamics of
these two Hamiltonians (E1) and (1) are quite different
each other, and hence we come to the conclusion that, the
kinetic constraint illustrated in Fig. 1, is not a faithful
representation of the actual long-range interacting sys-
tem that would be realized in an experimental setup.

Ĥeff,NN2

Ryd =

L∑
j=1

2∑
a=1

(
Ωˆ̃σx

j,a −∆j,aσ̂
z
j,a

)
+
V0
2

∑
r⃗,r⃗′∈NN2

n̂r⃗n̂r⃗′

|r⃗ − r⃗′|6
(E5)

From Fig. 22 bottom panel it is clear that the |vac⟩
state does not show any anomalous revivals when the full
long-range interacting system is considered. However,

as Figs. 22 top and middle panel demonstrate, the |Z2⟩
state shows a substantial degree of anomalous oscillation
lasting several cycles, which cannot be explained from
the PXP+Z approximation.
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FIG. 23. Comparison of the eigenvalues of the three Hamil-
tonians (E1),(E5) and (E6) (denoted by Ĥ1, Ĥ2 and Ĥ3 in
the legend respectively) for ∆ = 1, V0 = 12Ω. Only the low-
energy part of the spectrum has been displayed.

However, these oscillations can be qualitatively de-
scribed by augmenting the PXP+Z model with second
nearest neighbor vdW interactions as in (E5). This con-
clusion is further supported by the fact that considering
a short-range interacting system governed by the Hamil-
tonian (E5), which is obtained from (E4) by consider-
ing interactions only up to the second-nearest neighbors,
seems to capture both the spectral and dynamical fea-
tures of the fully interacting long-range Hamiltonian (E1)
(see Fig. 23, Fig. 24)

0.0 2.5 5.0 7.5 10.0tΩ
0.0

0.5
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∆ = 1, |ψ(0)〉 = |Z2〉
H1 H2 H3

FIG. 24. Comparison of the return probability F =
|⟨ψ(0)|ψ(t)⟩|2 computed by evolving the initial state |ψ(0)⟩ =
|Z2⟩ state via three different Hamiltonians (E1),(E5),(E6) (de-
noted by H1,H3,H2 in the legend respectively) for a system
of N = 12 atoms with ∆ = 1, V0 = 12Ω (see text for details)
In all cases the state has been evolved by a discrete time-step
integration method [29].

In Fig. 24 the return probability F = |⟨ψ(0)|ψ(t)⟩|2
starting from the |Z2⟩ state is shown as a function of time
by evolving the state under the Hamiltonian (E1) (red
solid line), (E5) (black dashed line) and (E6) (blue solid
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line) for a system with N = 12 atoms at ∆ = 1. Thus
for reasons mentioned above the second nearest-neighbor
vdW interactions are essential in understanding the
qualitative features of quantum dynamics depicted by
the full long-range interacting system.

Ĥeff,NN2

Ryd =

L∑
j=1

2∑
a=1

(
Ωσ̂x

j,a −∆j,aσ̂
z
j,a

)
+
V0
2

∑
r⃗,r⃗′∈NN1,2

n̂r⃗n̂r⃗′

|r⃗ − r⃗′|6

(E6)
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Ĥ1 Ĥ2 Ĥ3

FIG. 25. Comparison of the return probability F =
|⟨ψ(0)|ψ(t)⟩|2 computed by evolving the initial state |ψ(0)⟩ =
|Z2⟩ state via three different Hamiltonians (E1),(E5),(E6) (de-
noted by H1,H3,H2 in the legend respectively) for a sys-
tem of N = 12 atoms with ∆ = 1, V0 = 30Ω (main) and
∆ = 1, V0 = 50Ω (inset) respectively (see text for details) In
all cases the state has been evolved by a discrete time-step
integration scheme [29]

It is also worth noting that increasing the strength of
the vdW repulsive interaction (or equivalently reducing
the lattice constant), increases the configurational energy

of the Néel state (i.e., ⟨Z2|ĤFull
Ryd|Z2⟩) and results in con-

finement of this state (see Fig. 25). From the comparison
between the dynamics obtained from the three different
Hamiltonians (E1),(E6),(E5), we can conclude that the
confinement is a consequence of next nearest neighbor in-
teraction, since the dynamics of the Néel state obtained
by evolving the state via Hamiltonians (E5),(E6) agree
qualitatively with that obtained from the fully interact-
ing long-range system governed by (E1).

3. Two Dimensional Square Lattice

The two dimensional (2D) PXP model has been shown
to host QMBS [54]. However, the inability of the kinet-
ically constrained model such as (1), to faithfully rep-
resent the quantum dynamics of the fully interacting
long-range system (E1) for a 2-leg ladder geometry (see
Appendix-E), brings into question the existence of QMBS
in a physical two-dimensional Rydberg atom simulator in

which vdW interactions are always present. The Hamil-
tonian for the 2D PXP+Z model (with site dependent
detunings ∆j,a = (−1)j∆) of dimension Lx ×Ly is given
by

Ĥ2D
PXP+Z = Ω

Lx∑
j=1

Ly∑
a=1

ˆ̃σx
j,a −∆

Lx∑
j=1

Ly∑
a=1

(−1)j σ̂z
j,a (E7)

where ˆ̃σx
j,a ≡ P̂↓

j+1,aP̂↓
j−1,aP̂↓

j,a−1P̂↓
j,a+1σ̂

x
j,a
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FIG. 26. Comparison of the return probability F =
|⟨ψ(0)|ψ(t)⟩|2 as function of time t starting from the Néel state
in the 2D geometry for a 4× 4 square lattice, computed with
(i) full long-range interacting system (solid curves) with dif-
ferent vdW interaction strengths V0 = 10Ω (orange), V0 = 5Ω
(red), V0 = 2Ω (green) and (ii) the idealized 2D PXP approx-
imation (black dashed line) for ∆ = 0(see text for details). In
all cases the states have been evolved via a discrete time-step
integration scheme

Fig. 26 shows the comparison of the return probabil-
ity of the initial Néel state (|Z2⟩) when evolved via the
Hamiltonian Eq. (E7) (dashed black curve) with the cor-
responding results of the long-range interacting system
for V0 = 10Ω (orange curve), V0 = 5Ω (red curve). The
parameter choices V0 = 10Ω or V0 = 5Ω satisfies the
condition V0 ≫ Ω in a qualitative sense, however, the
kinetically constrained model Hamiltonian does not cap-
ture the same dynamical behavior.
We now turn on a non-zero staggered detuning

(∆ ̸= 0) and ask if the anomalous revivals from the
|Z2⟩ and |vac⟩ state observed for the 2-leg square ladder
geometry [24], has any analogue in the 2D square lattice
scenario.

From Fig. 27 we can see that in 2D the PXP+Z
approximation given by Eq. (E7) does not fully capture
the features of the full long-range interacting system
accurately for V0 = 2Ω, 5Ω and 10Ω. The disagreement
is more severe for the Rydberg vacuum initial state,
as the PXP+Z predicts persistent oscillations lasting
several cycles while the full long-range interacting system
predicts this state does not have any noticeable revivals.
This again leads us to conclude that for geometries in
which the second nearest-neighbor distance is

√
2 (in
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FIG. 27. Comparison of the return probability F =
|⟨ψ(0)|ψ(t)⟩|2 as function of time t starting from (top panel)
the Néel state |Z2⟩ and (bottom panel) the Rydberg vacuum
state |vac⟩ in the 2D geometry for a 4×4 square lattice, com-
puted with (i) full long-range interacting system (solid curves)
with different vdW interaction strengths V0 = 10Ω (orange),
V0 = 5Ω (red), V0 = 2Ω (green) and (ii) the idealized 2D
PXP approximation given by Eq. (E7) (black dashed line) for
∆/Ω = 1 (see text for details). In all cases the states have
been evolved via a discrete time-step integration scheme.

lattice separation units), the idealized strong Rydberg
blockaded models do not faithfully capture the dynamics
in these systems.

We end this section by noting that, realizing such ge-
ometric blockades, could in principle be made easier to
achieve by leveraging anisotropic interactions as shown to
exist for more complex Rydberg excited electronic states
[42]. However, such systems exhibit completely differ-
ent kinds of effective spin interactions and the associated
dynamics will exhibit vastly different phenomena.

Appendix F: Scaling of the norm of rescaled,
regularized Adiabatic Gauge Potential (AGP)

The adiabatic gauge potential (AGP) is defined as the
generator of adiabatic evolution of the eigenstates of the
Hamiltonian, when some parameters of the Hamiltonian
are varied. As in the rest of this paper, we are concerned
with the behavior of the model (1), when Ω = 1, and ∆

is varied, here we shall focus on the AGP Â∆ defined as

Â∆ |Eµ(∆)⟩ = i∂∆ |Eµ(∆)⟩ (F1)

Where Ĥ(∆) |Eµ(∆)⟩ = Eµ(∆) |Eµ(∆)⟩ to understand
whether the model given by Eq. (1) is chaotic for finite

values of ∆ at times which are exponentially large in
system size. The regularized AGP norm then reads [30]

||Â∆||2 =
1

DH

∑
ν

∑
µ̸=ν

ω2
µν

(ω2
µν + ζ2)2

|⟨Eµ|∂∆Ĥ|Eν⟩|2

(F2)
In the above equation, the sum on µ, ν runs over the

Hilbert space (which may or may not be symmetry-
reduced) and ζ ∝ N log(N) is a cutoff introduced to
regularize singularities arising due to degeneracies in
the spectrum and ωµν ≡ Eµ − Eν . The advantage of
introducing this ultraviolet regulator ζ, ensures that
even if the symmetries of the Hamiltonian are not
completely resolved, the regularized AGP norm gives a
meaningful answer. In contrast almost all alternative
measures of spectral statistics which are readily used
as probes of the onset of quantum chaos (see Ref. [55])
where the knowledge and resolution of all symmetries of
the Hamiltonian is essential. We note that the spectral
form factor is an important exception, but necessarily
relies on the introduction of disorder in the system to
extract a clean signature for the onset of quantum chaos
(the dip-ramp-plateau structure [56]).
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FIG. 28. Behavior of the rescaled, regularized AGP norm
for a range of values of ∆/Ω for system sizes N =

8, 12, 16, 20, 24, 28. In all cases ||Â∆||2/N increases in an ex-
ponential fashion as larger system sizes are accessed, which
indicates that the Hamiltonian (1) is as a whole, quantum
chaotic, even if ergodicity breaking features of various forms
exist for specific states and finite-size systems.

In Fig. 28 we show the rescaled norm of the regular-
ized AGP i.e. ||Â∆||2/N , for a range of system sizes

N = 8 − 28. This figure illustrates that ||Â∆||2/N
grows with N in an exponential fashion for all regimes of
∆. This exponential growth becomes noticeable only for
larger system sizes when we are in the regime of emer-
gent approximate conservation laws (∆ ≫ Ω) as seen by
the data for ∆ = 5Ω (blue open circles) and ∆ = 50Ω
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(red open circles). In contrast for lower values of ∆/Ω
such as ∆ = 2Ω (green open circles), ∆ = Ω (brown open
circles), ∆ = 0.5Ω (magenta open circles) and ∆ = 0.1Ω

(black open circles) the exponential growth seems notice-
able even for small system sizes.
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V. Vuletić, and M. D. Lukin, Quantum phases of matter
on a 256-atom programmable quantum simulator, Nature
595, 227 (2021).

[7] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang,
S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara,
H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin,
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T. Macr̀ı, T. Lahaye, and A. Browaeys, Tunable two-
dimensional arrays of single rydberg atoms for realizing
quantum ising models, Nature 534, 667 (2016).

[9] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose,
A. Gambassi, and M. Dalmonte, Lattice gauge theories
and string dynamics in rydberg atom quantum simula-
tors, Phys. Rev. X 10, 021041 (2020).

[10] S. K. Kanungo, J. D. Whalen, Y. Lu, M. Yuan, S. Das-
gupta, F. B. Dunning, K. R. A. Hazzard, and T. C. Kil-
lian, Realizing topological edge states with rydberg-atom
synthetic dimensions, Nature Communications 13, 972
(2022).

[11] J. C. Halimeh and P. Hauke, Stabilizing gauge the-
ories in quantum simulators: A brief review (2022),
arXiv:2204.13709 [cond-mat.quant-gas].

[12] V. Crescimanna, J. Taylor, A. Z. Goldberg, and K. Hes-
hami, Quantum control of rydberg atoms for mesoscopic
quantum state and circuit preparation, Phys. Rev. Appl.
20, 034019 (2023).

[13] P. Scholl, A. L. Shaw, R. B.-S. Tsai, R. Finkelstein,
J. Choi, and M. Endres, Erasure conversion in a high-
fidelity rydberg quantum simulator, Nature 622, 273
(2023).

[14] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum systems,
Nature 452, 854 (2008).

[15] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[16] M. Srednicki, The approach to thermal equilibrium in
quantized chaotic systems, Journal of Physics A: Math-
ematical and General 32, 1163 (1999).

[17] J. M. Deutsch, Eigenstate thermalization hypothesis, Re-
ports on Progress in Physics 81, 082001 (2018).

[18] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
and Z. Papić, Weak ergodicity breaking from quantum
many-body scars, Nature Physics 14, 745 (2018).

[19] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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