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The task of exploring and understanding important aspects of far-from-equilibrium dynamics of closed and
generic quantum many-body systems has received a thrust of attention in recent years, driven partly by re-
markable advances in ultracold experimental technologies. In this work, for the paradigmatic Ising spin chain
with transverse and longitudinal fields, we present numerical observations of several "fine-grained" features
of far-from-equilibrium dynamics from a quantum informational point of view that have hitherto escaped
notice, induced by quantum quenches across the Ising critical point between states deep inside the para- and
ferromagnetic regimes. Rather featureless dynamics is seen for ferromagnetic to paramagnetic quenches, but
paramagnetic to ferromagnetic quenches exhibit rich behaviour, including a series of sudden deaths and re-
vivals of entanglement between two spins in the system’s bulk, periodic but short-lived occurrences of approx-
imately 1−uniform states and recurrences of an approximately Page-like dynamics of entanglement entropies
of one- and two-spin subsystems, non-analytic cusps in single-copy entanglement entropy for sufficiently
big subsystems, insufficient mixedness and a series of scrambling-unscrambling of local information between
neighboring spins. Moreover, essentially indistinguishable dynamics is seen at very early times between the
integrable limit (zero longitudinal field) and non-integrable cases, with the former eventually showing signa-
tures of better mixing and faster approach to equilibration than the latter. These features are expected to hold
for quench dynamics across Ising quantum critical points in more complicated systems.

I. INTRODUCTION

The search for prominent and prevalent phenomena, and
a set of organizing principles and frameworks with which to
understand them, in the regime of far-from-equilibrium dy-
namics of quantum many-body systems continues to be an
exciting enterprise that has received an acceleration in the
last decade or so, thanks largely to breakthroughs in ultra-
cold experimental technologies, see e.g. [1–4]. Even for the
classes of quantum many-body systems whose equilibrium
properties, such as their ground state structures and phase
transitions between them, are well understood in substan-
tial detail within unified and organizing frameworks [5, 6],
probing, predicting and explaining various aspects of their
far-from-equilibrium dynamics is a substantially less ma-
ture field, especially in the non-integrable and non-critical
regimes where appropriate and widely applicable analytical
approaches are scarce.

A widely applicable and general framework, that is ag-
nostic to system-specific details in its formulation, is quan-
tum information theory [7–9]. It may be hoped that deploy-
ing various tools and notions from this framework to probe
non-equilibrium dynamics would be illuminating and may
reveal interesting new aspects, and eventually might prove
an indispensable guide in the search for deeper principled
understanding. Indeed, this has already been the case for
non-equilibrium dynamics involving quantum critical sys-
tems (see the relevant mention with references in the next
paragraph). Moreover, irrespective of the underlying physi-
cal systems and mechanisms, the dynamics of quantum infor-
mation, manifested in non-equilibrium few- or many-body
quantum systems, is in itself of great interest both theoret-
ically and experimentally, and from both fundamental and
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technological perspectives, see e.g. [10, 11].

A common way to throw a quantum system far out of
equilibrium is by suddenly quenching one of its parameters,
and this is most interesting when the initial state is very far
from the equilibrium ground state of the post-quench Hamil-
tonian [12, 13]. Naturally the system will then try to attain
equilibrium over the due course of time and several ques-
tions about the characteristics and mechanisms of its non-
equilibrium dynamics may be asked and investigated. Much
is understood at this time when the Hamiltonian driving the
dynamics is integrable [14–16] and/or critical [12, 17, 18] due
significantly to the availability of widely applicable analyti-
cal methods to deal with these regimes. In particular, main
signatures in the latter scenario include efficient scrambling
of local quantum information and operator-spreading, and
near-ballistic growth of bipartite entanglement until satura-
tion and light-cone spreading of correlations, see e.g.[12, 13,
17, 19–28], and a picture based on ballistically propagating
quasiparticles is understood as the generic underlying mech-
anism for this regime [15, 17, 18, 29, 30]. Of course, quench
dynamics of a large number of non-integrable systems falls
outside the aforementioned paradigm, owing to a variety of
factors that are too many to mention here. One prominent
factor that plays an underlying role in this article is the con-
finement of excitations, of which the mixed field Ising spin
chain is the simplest and a prime example [31–34].

In this work, we focus on the behaviour of several
quantum informational quantities under paramagnetic-to-
ferromagnetic quenching of the Ising spin chain, and will
compare this case to the case of the opposite quench. Com-
parisons between the integrable and non-integrable cases
will also be presented. The quench dynamics we study are
between parameters regimes that reside deep inside the para-
magnetic and ferromagnetic phases, hence the considered
quench protocols are quite extreme. A significant focus is
on the quantum informational behaviour of the dynamics
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of small subsystems, which is what we mean by "fine" (or
"fine-grained") features in this work. Attributes of particu-
lar concern to us are a so-called single-copy entanglement
entropy which depends only on the leading eigenvalue of a
density matrix and is therefore related to the ground state
of the so-called entanglement Hamiltonian, bipartite mixed
state entanglement as measured by the negativity of entan-
glement between constituents of small subsystems compris-
ing of a few spins, local information scrambling amongst
nearby spins as measured by tripartite mutual information,
and "mixedness" of small subsystems as quantified by the
(satisfaction or violation of) majorization relations. Another
sense in which we mean "fine" features in this work is by our
consideration of the dynamics of quantities involving a sub-
set of the entanglement spectrum (i.e., eigenvalues of reduced
density matrices) corresponding to the considered subsys-
tems, i.e. single-copy entanglement entropy and majoriza-
tion relations, which highlight the fine details of the quantum
dynamics through the behaviour of the leading members of
the entanglement spectra. Dynamical behaviour of the en-
tanglement spectra (or its leading members or of certain func-
tions of them) of subsystems have previously revealed subtle
characteristics of the approach to equilibration and thermal-
ization or lack thereof, see e.g. [35–38].

Putting to use the notion that subsystems of any closed
quantum many-body system are by definition open quan-
tum systems interacting with environments which are the
remainder of the whole system, and by employing ele-
mentary notions from the theory of open quantum sys-
tems, exemplified with the mixed field Ising spin chain, it
was recently demonstrated in [39] that the dynamics of
sufficiently small subsystems in the case of paramagnetic-
to-ferromagnetic quench was strongly non-Markovian (not
memory-less), while the opposite quench exhibited essen-
tially Markovian subsystem dynamics. Moreover, with in-
creasing level of non-integrability and/or increasing subsys-
tem sizes, the dynamics of a certain function quantifying
a measure of distance between subsystem density matrices’
eigenvalues showed remarkably systematic behaviour. This
work reveals additional subtle characteristics of the dynam-
ics of subsystems of the mixed field Ising model.

We will see that for the case of paramagnetic-to-
ferromagnetic quench, the entanglement negativity shows
sudden deaths and subsequent revivals of entanglement be-
tween two spins, almost-periodic albeit short-lived occur-
rences of 1−uniform states (or nearly so), periodic occur-
rences of Page-like dynamics of entanglement entropies of
one- and two-spin subsystems, tripartite mutual informa-
tion shows strongly oscillatory behaviour indicating not just
scrambling but also unscrambling of local information oc-
curring periodically, existence of non-analytic cusps in the
single-copy entanglement entropy, and finally the lack of sat-
isfaction of majorization relations across all times amongst
the eigenvalues of subsystem density matrices, potentially
providing another evidence of subsystems’ dynamics being
non-Markovian. Since all of these features show up only in
paramagnetic-to-ferromagnetic quenches, we consider them

to be features that (likely necessarily) accompany subsystem
non-Markovianity. On the other hand, the opposite quench
will be seen to be featureless with regards to these quanti-
ties. In addition, comparisons with the integrable case reveal
that the dynamical differences in these attributes between in-
tegrable and non-integrable cases is negligible in the very
early times, but subsequently the former shows better mixed-
ness in the dynamics of subsystems and an apparently faster
approach to eventual equilibration by exhibiting for e.g. an
earlier escape from the persistently oscillatory behaviour of
entanglement quantifiers within our simulation times.

Our method of choice for simulating the non-equilibrium
quench dynamics is the second-order time-evolving block
decimation (TEBD2) approach within the framework of ma-
trix product states (MPS) [40–43]. The advantages of the MPS
methods are well known - they allow access to large sys-
tem sizes (beyond the capacities of exact diagonalization or
contemporary quantum algorithms) while being quasi-exact
in precision, and are not afflicted by issues of Monte Carlo
methods such as the complex-phase problem due to real-time
evolution. The chief limitation of MPS methods come from
their inability to quasi-exactly represent sufficiently highly
entangled states [44], however given the oscillatory dynam-
ics of entanglement that will be seen in the paramagnetic-to-
ferromagnetic quench, this limitation will not be of relevance
to us in this work.

This work focuses mostly on the dynamics of small sub-
systems of a few spins. This is motivated by at least three fac-
tors. Firstly, as already mentioned previously, one of the aims
of this study is to obtain a "fine-grained" picture of the dy-
namics (of quantum entanglement and information) at the lo-
calized level of a few spins. Secondly, in contemporary quan-
tum experiments, site-resolved control and measurement of
quantum states is in practice and less resource-demanding,
see e.g. [10, 11], which provides an experimental motivation
for theoretically probing the features of quantum many-body
dynamics reduced to the level of a few spins. Thirdly, a prac-
tical reason is that constructing reduced density matrices of
subsystems scales exponentially with their size, but with the
former two factors in mind we are content with restricting
ourselves to small subsystems.

This article is organized as follows. In Section.II we give a
very brief overview of the requisite notions from quantum in-
formation theory employed in this work, Section.III discusses
the results for the case of Ising spin chain with transverse and
longitudinal fields, and Section.IV summarizes and concludes
this article.

II. OVERVIEW OF QUANTUM INFORMATION NOTIONS

In this section, we set our conventions and briefly review
the requisite notions and tools from the large subject of quan-
tum information theory, more exhaustive coverage and dis-
cussions can be found in several books and references therein
[7–9, 45, 46]. Quantum states live in the Hilbert space ,



3

which for quantum spin systems on𝑁 sites has a tensor prod-
uct structure (ℂ𝑑)⊗𝑁 over the 𝑁 local Hilbert spaces each of
dimension 𝑑 (e.g. 𝑑 = 2 for 𝑆 = 1/2 spins), thus dim() = 𝑑𝑁 .
A fundamental object of interest is the density matrix oper-
ator 𝜌 with the properties that it is Hermitian and positive
semi-definite with unit trace (tr(𝜌) = 1), which means that
its eigenvalues {𝑝𝑖} can be regarded as providing a classical
probability distribution. A state represented by 𝜌 is called a
pure state if tr(𝜌2)=1, and mixed if tr(𝜌2) < 1. Alternatively
but equivalently, for a pure state one has 𝜌= |𝜓⟩⟨𝜓|, whereas
a mixed state is a probabilistic mixture of several pure states,
𝜌 =∑𝑖 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|, where the number of terms in this summa-
tion is called the rank of the density matrix. We denote by
() the set of density matrices over . It is a convex set,
meaning that any linear combination of density matrices is
also a density matrix.

A quantum operation Λ on the space of density matrix
operators is called positive if it maps density matrices to den-
sity matrices, i.e., Λ ∶() →(). When however 𝕀 ⊗ Λ

is positive, where the identity operation 𝕀 acts on entities
that are ancillary or complementary to the support of Λ, it
is said to be completely-positive. Completely-positive trace-
preserving (CPTP) operations/maps are popularly known as
quantum channels. Partial tracing is a CPTP operation that
is relevant for this work, while for e.g. partial transposition
is only positive trace-preserving (PTP) but not CPTP. Such
PTP operations are not physical in the sense that they can
not be implemented in the laboratory, as they do not gener-
ally map density matrices to density matrices when applied
to a part of the system, while CPTP maps are experimentally
implementable.

Given a quantum many-body system whose Hilbert space
takes the tensor product structure over its constituents, for
any bipartitioning of the whole system into two subsystems
𝐴 and its complement 𝐴𝑐 , we have  = 𝐴 ⊗ 𝐴𝑐 . One
defines a reduced density matrix (RDM) of the subsystem 𝐴

by tracing over the degrees of freedom in its complement,
i.e., 𝜌𝐴 = tr𝐴𝑐 (𝜌). For a pure state of the total system, it
is said to be separable with respect to such a bipartition if
𝜌 = 𝜌𝐴 ⊗ 𝜌𝐴𝑐 (more generally, for a mixed state of the total
system, 𝜌=∑𝑖 𝑟𝑖𝜌

(𝑖)

𝐴 ⊗ 𝜌
(𝑖)

𝐴𝑐
, if the states of the subsystems are

not known with certainty and form a set of possibilities in-
dexed by {𝑖} with probabilities 𝑟𝑖), and entangled otherwise.
The set of bipartite separable states will be denoted as ().
There are several measures for quantifying bipartite separa-
bility and bipartite entanglement of pure states [47, 48], all
of which are known to be equivalent to the von Neumann
entropy of entanglement (of the subsystem 𝐴 with the rest
of the system), 𝑆𝐴 = − tr 𝜌𝐴 ln(𝜌𝐴) = −∑𝑖 𝑝𝑖 ln 𝑝𝑖. The sec-
ond equality thus relates the von Neumann entanglement
entropy (vNEE) to the classical Shannon entropy of the dis-
tribution {𝑝𝑖} of the eigenvalues of 𝜌𝐴. We shall also be in-
terested in the second Rényi entanglement entropy (R2EE)
defined as 𝑆2=− ln tr(𝜌𝐴)

2, which is an experimentally mea-
surable quantity as opposed to vNEE, due to the logarithm
of the density matrix in the latter which is an experimentally
ill-defined operation [49].

Let us briefly mention here that an operational meaning
of vNEE is that it quantifies the number of maximally entan-
gled spin singlet pairs that can be "distilled" from a given sys-
tem in the asymptotic limit of many copies of the said system
via classically communicated local operations [47, 48, 50].
However, this theoretical limit can not be afforded by an ob-
server in the laboratory, where one has access to only a sin-
gle copy (or at most a few copies of) of the system. An op-
erationally well-defined entropy of entanglement valid for a
single copy of the system was introduced in [51] and is given
by 𝑆1𝐴 =− ln 𝑝𝑚𝑎𝑥 where 𝑝𝑚𝑎𝑥 is the largest eigenvalue of 𝜌𝐴
(this quantity has a particular significance in quantum criti-
cal systems [52–54], and has also recently been implicated in
Page curve dynamics [55–57]).

Mixed state bipartite entanglement refers to entangle-
ment between two subsystems of a total system which itself is
in a mixed state. This can happen when the total system is an
ensemble of pure states (such as a thermal state), or when it
itself is a reduction (i.e., partial trace) from a bigger pure state.
We shall be concerned with the latter scenario, as our focus in
this work is on quantum systems at zero temperature. Most
mixed state entanglement measures require convex optimiza-
tions [47, 48, 50] and are thus generally hard to compute in
closed forms even for small systems of a few qubits. We shall
therefore primarily consider a measure which is computable
in closed form without requiring any optimization strategies,
making it therefore the most popular measure for mixed state
entanglement.

A. Entanglement Negativity and Concurrence

An important measure of bipartite entanglement applica-
ble to both pure and mixed states is negativity. It is based on
a quantum operation called partial transposition, defined as
follows. Suppose we have a quantum state 𝜌𝐴𝐵 on a Hilbert
space 𝐴⊗𝐵 defined on subsystems 𝐴 and 𝐵 (note that we
are not assuming 𝐴𝐵 to be the whole system, i.e., 𝜌𝐴𝐵 need
not be pure). Explicitly, 𝜌𝐴𝐵 =∑𝑖𝑗𝑘𝑙 𝑝𝑖𝑗𝑘𝑙 |𝑖⟩⟨𝑗 | ⊗ |𝑘⟩⟨𝑙| in some
chosen basis. A partial transposition with respect to 𝐵 is,

𝜌
𝑇𝐵
𝐴𝐵 = ∑

𝑖𝑗𝑘𝑙

𝑝𝑖𝑗𝑘𝑙 |𝑖⟩⟨𝑗 | ⊗ |𝑙⟩⟨𝑘| = ∑

𝑖𝑗𝑘𝑙

𝑝𝑖𝑗 𝑙𝑘 |𝑖⟩⟨𝑗 | ⊗ |𝑘⟩⟨𝑙| . (1)

The positive partial transpose (PPT) criterion then asserts
that if the state 𝜌𝐴𝐵 is separable then 𝜌𝑇𝐵𝐴𝐵 is also a density ma-
trix, i.e., 𝜌𝑇𝐵𝐴𝐵 ∈ () [58, 59]. Consequently, if 𝜌𝑇𝐵𝐴𝐵 has any
negative eigenvalues then it does not represent any physical
state, i.e., 𝜌𝑇𝐵𝐴𝐵 ∉ (). We remark here that the PPT crite-
rion is generally only a necessary condition for separability,
but for systems with 𝑑𝑎 × 𝑑𝑏 = 2 × 2 and 2 × 3 (a qubit-qubit
or a qubit-qutrit system) it is also sufficient [59], where 𝑑𝑎(𝑏)=
dim(𝐴(𝐵)). However, 𝜌𝑇𝐵𝐴𝐵 having any negative eigenvalue is
a guarantee that the system 𝐴𝐵 is entangled with respect to
partial transposition.

Based on the PPT criterion, a measure of entanglement
called the negativity of entanglement is defined in terms of
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the eigenvalues {𝑝𝑗 } of 𝜌𝑇𝐵𝐴𝐵 as [60],

 (𝜌) =
1

2
∑

𝑗

(|𝑝𝑗 | − 𝑝𝑗) . (2)

Thus, negativity essentially enumerates the contribution of
the negative eigenvalues of the partially transposed den-
sity matrix to its trace (= 1, because partial transposition
nonetheless preserves the trace). Note that owing to the
closed-form expression above and the relative ease with
which the partial transposition may be performed for any
given system, the negativity is a readily computable measure.

Note that the partial transposition operation defined
above may be written as Λ𝑃𝑇 = 𝕀𝐴 ⊗ 𝕋𝐵, where 𝕋𝐵 is trans-
position of the chosen basis in 𝐵. Thus, Λ𝑃𝑇 is in general
not a CPTP map but only a PTP map, and so is not in gen-
eral a physically implementable operation in the laboratory.
One then might ask if measures based on this operation are
experimentally measurable. We remark on this in passing
that with this same concern, Ref.[61] proposed a CPTP oper-
ation that approximates any PTP operation such as the partial
transposition. This so-called structural physical approxima-
tion (SPA) of Λ𝑃𝑇 has eventually been realized in experiments
[62, 63], and a counterpart to negativity for the SPA of the
partial transposition map has also been defined recently [64].

We make another remark in passing that the partial trans-
position Λ𝑃𝑇 has a physical interpretation as a time-reversal
operation on 𝐵 [65, 66] or equivalently, for a bosonic system,
as a mirror reflection in the phase space [67] (for fermions,
the issue is more subtle [68, 69]). The PPT criterion in this
language asserts that time-reversal on one subsystem of a
separable state does not alter separability despite obviously
altering the state of the said subsystem, and negativity then
measures the violation of this picture whereby subsystem
time-reversal yields an unphysical result no longer repre-
sentable by a density matrix, thereby detecting and quantify-
ing bipartite entanglement in a non-trivial manner.

We shall also make use of another common measure of
bipartite entanglement, called as concurrence, which in par-
ticular for a mixed state of two qubits takes an easily com-
putable closed form [70]. Given a density matrix 𝜌 describ-
ing a mixed state of two qubits, one constructs its spin-flipped
version,

𝜌̄ = (𝜎𝑦 ⊗ 𝜎𝑦)𝜌
∗
(𝜎𝑦 ⊗ 𝜎𝑦) , (3)

where 𝜌∗ denotes complex conjugation (in 𝜎𝑧 basis). The con-
currence is then defined as [70],

(𝜌) = max(0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4) , (4)

where 𝜆𝑖(𝑖 = 1, 2, 3, 4) are the eigenvalues in descending or-
der of the Hermitian matrix Λ=

√√
𝜌𝜌̄

√
𝜌. It is known that

the negativity is upper bounded by the concurrence [71].

B. Majorization relations

The notion of majorization in the mathematical theory of
inequalities is one of the pillars in quantum information the-

ory. Consider two pure states Ψ and Φ of a bipartite system
𝐴∪𝐵, with corresponding pure density matrices 𝜌 and 𝜎, and
reduced density matrices of subsystem𝐴 likewise denoted 𝜌𝐴
and 𝜎𝐴 with respective vector of eigenvalues arranged in de-
scending order being 𝑝↓ and 𝑞↓. Recall that by Schmidt de-
composition, one has Ψ=∑

𝑛
𝑖=1

√
𝑝𝑖|𝑎𝑖⟩ ⊗ |𝑏𝑖⟩ and similarly for

Φ, in some chosen basis {|𝑎𝑖⟩} and {|𝑏𝑖⟩} for the subsystems
𝐴 and 𝐵. And similarly one has 𝜌𝐴 =∑

𝑛
𝑖=1 𝑝𝑖|𝑎𝑖⟩⟨𝑎𝑖| and like-

wise for 𝜎𝐴. We say 𝑝↓ majorizes 𝑞↓, or equivalently that 𝜌𝐴
majorizes 𝜎𝐴, denoted as 𝜌𝐴 ≻ 𝜎𝐴, if for each 𝑀 ∈ {1, 2, .., 𝑛},

𝑀

∑

𝑖=1

𝑝
↓
𝑖 ≥

𝑀

∑

𝑖=1

𝑞
↓
𝑖 , (5)

with equality necessarily at 𝑀 = 𝑛.

Now, an important theorem due to [72, 73] links majoriza-
tion with bipartite entanglement by asserting that 𝜌𝐴 ma-
jorizes 𝜎𝐴 if and only if the state Φ contains as much or more
entanglement amongst its subsystems 𝐴, 𝐵 than the state Ψ.
Equivalently, 𝜎𝐴 is more mixed than 𝜌𝐴 [73]. This imposes a
one-way partial-order among quantum states and is thus an
entanglement monotone [74]. This partial order is based on
generic protocols for conversion of one state to another by
with local operations (such as measurements, unitaries and
any other completely-positive operations) that are classically
communicated between observers carrying out the said op-
erations (see for e.g. [8, 46]. Because the operations are lo-
cal, they can not increase entanglement between the states
held by the observers, and thus any legitimate measure of
entanglement needs to be a non-increasing monotone under
local operations and classical communications (LOCC). Ma-
jorization relations are one such family of monotones, and
thus the state Ψ can be converted to Φ but not vice-versa.
Besides, unlike pure state bipartite entanglement quantifiers
such as the von Neumann entropy which quantify LOCC con-
vertibility between asymptotically large number of copies of
the two states and thereby quantify distillation of maximally-
entangled singlets from a higher entangled state resulting in
a lower entangled state in this asymptotic limit, giving a sin-
gle inequality governing this situation, majorization relations
are a stronger and more detailed set of criteria in the sense of
providing providing several inequalities governing this prob-
lem [73].

C. Quantum mutual information

Given a quantum system 𝐴𝐵 composed of subsystems 𝐴
and 𝐵, the quantum bipartite mutual information (BMI) be-
tween them is defined in terms of von Neumann entropies
as,

2(𝐴∶𝐵) = 𝑆𝐴 + 𝑆𝐵 − 𝑆𝐴𝐵 . (6)

It is always non-negative, quantifies classical as well as quan-
tum correlations between 𝐴 and 𝐵, or in other words it quan-
tifies in a sense the total information that 𝐴 has about 𝐵 and
vice-versa [75], and upper-bounds connected two-point cor-
relation functions of local observables in the ground states of
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quantum many-body systems [76]. It vanishes if and only if
the state 𝜌𝐴𝐵 factorizes as 𝜌𝐴 ⊗ 𝜌𝐵.

One can also formally define mutual information between
more than two systems. Of particular interest is the quan-
tum tripartite mutual information (TMI) defined for a system
𝐴𝐵𝐶,

3(𝐴∶𝐵∶𝐶) = 2(𝐴∶𝐵) + 2(𝐴∶𝐶) − 2(𝐴∶𝐵𝐶). (7)

It measures the difference of (mutual) information about the
subsystem 𝐴 that subsystems 𝐵 and 𝐶 have individually and
what they together (𝐵𝐶) know about 𝐴. Speaking in terms of
correlations, the TMI quantifies the correlations that 𝐵𝐶 has
with 𝐴 which is not present in the cumulative correlations
with 𝐴 that 𝐵 and 𝐶 have individually. An intriguing fact is
that the TMI can be negative, which is interpreted in such
cases as the subsystem 𝐵𝐶 having more information about
𝐴 than 𝐵 and 𝐶 have individually. In the context of non-
equilibrium dynamics, this is often interpreted as (a signature
of) scrambling of localized information (about 𝐴, now imag-
ined as a reference system) in 𝐵 and 𝐶 to a more non-local
sharing of that information into 𝐵𝐶. Thus the negativity of
TMI has been proposed as a measure of quantum information
scrambling [77] and it has received some attention in non-
equilibrium quantum dynamics literature [78–88]. It is worth
mentioning that TMI is also directly related to topological en-
tanglement entropy [89, 90] of topologically-ordered phases
of quantum matter and has also been proposed as a measure
of tripartite entanglement in a four-partite quantum system
[77].

III. RESULTS FOR THE MIXED-FIELD ISING SPIN CHAIN

We demonstrate a bulk of our results for the paradigmatic
Ising spin chain in the presence of both transverse and lon-
gitudinal fields, given by the Hamiltonian,

𝐼 = −𝐽

𝑁−1

∑

𝑗=1

𝜎
𝑧
𝑗 𝜎

𝑧
𝑗+1 − ℎ𝑥

𝑁

∑

𝑗=1

𝜎
𝑥
𝑗 − ℎ𝑧

𝑁

∑

𝑗=1

𝜎
𝑧
𝑗 . (8)

The model is integrable when ℎ𝑧 = 0, with the Ising critical
point at 𝐽 = ℎ𝑥 separating the symmetry-broken ferromag-
netic/antiferromagnetic phases from the paramagnetic phase
[91]. It is non-integrable when ℎ𝑧 ≠0, and the kink-antikink
excitations in the symmetry-broken phases (ferromagnetic or
anti-ferromagnetic) are confined [31–34] and consequently
exhibits anomalously slow thermalizing dynamics and other
associated features after a quench to this non-integrable
regime [92–102]. In Ref.[39], we presented numerical evi-
dence of information backflow and non-Markovianity of the
dynamics of small subsystems when quenched from a para-
magnetic ground state to the ferromagnetic side, whereas the
reversed quench showed practically Markovian dynamics.
This section deals with dynamical behaviour of the quantum
informational quantities introduced earlier, which for the
case of paramagnetic-to-ferromagnetic quench will be seen

to have distinctive dynamical features (that can be considered
to accompany subsystem non-Markovianity), whereas rather
featureless dynamical behaviour will be seen in the reversed
quench.

We used the matrix product states framework for our
simulations, implemented with the ITensors library in Julia
[103]. Results in this article were obtained with time-steps
𝜏 =0.01 seconds for our TEBD2 simulations (thus, numerical
errors were (10−4)), and we verified that the results were
unchanged with time-steps of 𝜏 = 0.002 seconds. The total
number of spins was fixed at 𝑁 =200, and results were veri-
fied to be independent of the other system sizes. The cutoffs
for MPS truncations were fixed at 10−9, and maximum bond-
dimensions were fixed at 50. The ground state wavefunctions
in MPS form were obtained with the density matrix renor-
malization group (DMRG) algorithm [41], also implemented
with the same parameters as mentioned above.

Paramagnetic to ferromagnetic quench— We first show re-
sults for the case of quenching from the paramagnetic ground
state at (𝐽 , ℎ𝑥 , ℎ𝑧) = (−0.2, −1, 0) to the ferromagnetic side
(𝐽 , ℎ𝑥 , ℎ𝑧) = (−1, −0.1, −0.5). In Fig.1 we show the dynamical
behaviour of pure state bipartite entanglement entropies for
half-chain as well as small subsystems of up to four spins, as
measured by von Neumann and Renyi-2 entanglement en-
tropy as well as single-copy entanglement entropies. The
highly (and seemingly persistent) oscillatory behaviour of
(von Neumann and Renyi) entanglement entropies in this
quench, attributed to the slow growth of entanglement due
to confinement in the non-integrable ferromagnetic side, is
known from the literature and is being shown here for com-
pleteness. It is worth noting that the maxima and minima
of entanglement entropies of the various considered subsys-
tems occur at almost the same instants of time, approximately
irrespective of the size of the subsystem, and there exists a
time-scale of ∼ 1.55 seconds between consecutive minima
(or maxima), and ∼ 0.78 seconds between a pair of consec-
utive minimum and maximum. We also take notice of the
non-analytic cusps in the dynamics of single-copy entangle-
ment entropies of half-chains and subsystems of three and
four spins (but not of one and two spins). These cusps are
due to avoided crossings (or approximately so) between the
largest two eigenvalues of the corresponding reduced density
matrices, and the first avoided crossing can overlap with the
first point (in time) of a dynamical quantum phase transition
in this same paramagnetic-to-ferromagnetic quench [104].
See also [55, 56] in which cusps in the same quantity appear
in the Page curve of Hamiltonian dynamics, but only in the
thermodynamic limit unlike the present case, which indicates
the point of maximal pure state bipartite entanglement af-
ter which the system starts "cooling" off and is considered to
signify a first-order-like phase transition in the Page curve.
Moreover, given that the largest eigenvalue of a density ma-
trix corresponds to the ground state of the corresponding
entanglement Hamiltonian [105], which in a sense is an ef-
fectively reduced Hamiltonian corresponding to the mixed
state denoted by the said density matrix, non-analyticities in
the logarithm of the largest eigenvalue corresponds to non-
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FIG. 1. Dynamical behaviour of bipartite pure state entanglement entropies (y-axes) for the quench protocol (𝐽 , ℎ𝑥 , ℎ𝑧) = (−0.2, −1, 0) → (−1, −0.1, −0.5).
(Left) Half-chain von Neumann, Renyi-2 and single-copy entanglement entropies, denoted respectively as vNEE, R2EE, EE-single in the figure ; (center) von
Neumann entanglement entropies of small subsystems of up to four-spins, where for e.g. EE1p refers to the one-spin subsystem and likewise for the others;
(right) Single-copy entanglement entropies of small subsystems of up to four spins, where for e.g. SEE1p refers to the one-spin subsystem and likewise for
the others. Highly oscillatory behaviour is seen in all these quantities, with a time-scale of ∼ 1.55 seconds between consecutive minima (or maxima), and
∼ 0.78 seconds between a pair of consecutive minimum and maximum. Note the appearance of non-analytic cusps in single-copy entanglement entropies.

analytic changes (such as phase transitions) in the ground
state space of the corresponding entanglement Hamiltonian
[55].

In Fig.2 we show the behaviour of entanglement nega-
tivity (Eq.2) between two spins (Fig.2, left) at separations de-
noted by 𝑑, between two contiguous spins and a third spin
(Fig.2, center) at separations denoted by 𝑑, and between the
first (𝑛 − 1) spins and the last spin of a contiguous block of 𝑛
spins (Fig.2, right) with 𝑛 = {2, 3, 4, 5}. Remarkably, a sudden
"death of entanglement" effect [refs], occurs already for two-
spins adjacent (𝑑 = 0) and next-nearest-neighbor (𝑑 = 1) to
each other at regular time intervals in this quench dynamics,
although the entanglement in the latter case is already quite
small. This is also seen for the case of negativity between two
contiguous spins with a third spin at separation 𝑑 = 1, albeit
again the entanglement here too is small. However, no such
phenomena is seen for the entanglement between contigu-
ous blocks of (𝑛 − 1) spins with the 𝑛𝑡ℎ−spin for 𝑛= {3, 4, 5}.
This series of sudden deaths and revivals of entanglement
between two adjacent spins is an interesting phenomenon of
paramagnetic-to-ferromagnetic quench dynamics, and to the
best of our knowledge, has not been uncovered in the litera-
ture of non-equilibrium dynamics of closed quantum many-
body systems (see however [106–108]). To ensure that this
is not an artifact of employing negativity as the measure of
mixed state entanglement, we show the behaviour of concur-
rence for the mixed state entanglement of two adjacent spins
in Fig.3, where also this series of sudden deaths and revivals
of entanglement is observed.

Recall from our discussion in section II A that zero neg-
ativity (i.e., satisfying the PPT criteria) is sufficient for sepa-
rability of a two-spin state, but this is not the case for other
higher dimensional subsystems such as the three-spin sub-
system with a separation 𝑑 = 1 between the first two spins
and the third spins, which shows zero negativity at certain
time intervals (center, Fig.2), but despite of this there may
still be entanglement between them. This form of entan-
glement with zero negativity is called bound entanglement
or PPT-entanglement, thus named because maximally entan-

gled singlets can not be distilled from such states via LOCC
in a quantum informational experiment/protocol, and under-
standing them continues to be a perplexing problem (more-
over, bound-entangled states can also have non-zero negativ-
ity) [109]. Thus, we shall refrain at this time from claiming
that the zeros of negativity in the latter case above signify
separability at these time intervals, but only that they indi-
cate undistillability via LOCC protocols. It should be worth-
while to systematically probe the occurrence of such states
in generic quantum many-body systems and their dynamics
in future (it is possible that certain thermalized systems can
host such bound-entangled states [110, 111]).

A rather remarkable observation can be made in Fig.3,
which shows a comparison of the pure state and mixed state
bipartite entanglement for a two-spin subsystem, as mea-
sured by the von Neumann entropy in the former, and neg-
ativity and concurrence in the latter. It is seen that it is pre-
cisely within the time intervals in which mixed state entan-
glement is zero (i.e., the two-spin pair is separable) that the
pure state entanglement attains its maxima. Moreover, the
maxima of one-spin and two-spin entanglement entropy (de-
noted by EE1p and EE2p in Fig.3, respectively) is attained at
values close to their theoretical maximum of ln(2)∼0.693 and
ln(4) ∼ 1.386 respectively (recall that the von Neumann en-
tropy of a density matrix of dimension 𝐷 is upper bounded
by ln(𝐷); for a system of 𝑛 spin-1/2 spins, 𝐷 = 2𝑛). This
theoretical maximum is attained when the density matrix is
maximally mixed (and therefore diagonal), i.e., all its eigen-
values 𝑝𝑖 = 𝕀/𝐷, ∀𝑖. Naturally, a two-spin (reduced) density
matrix that is diagonal has trivial partial transpose, and thus
its negativity is zero and consequently the pair is unentan-
gled. This is what is being seen with the overlap of vanish-
ing negativity (and concurrence) with the almost maximal
EE2p in Fig.3. The maximum (or nearly so) bipartite pure
state entanglement of a spin and a spin-spin pair with the
rest of the system happens when the former is unentangled
with its neighboring spin and the constituent spins in the lat-
ter pair are unentangled with each other. Furthermore, EE1p
and EE2p attain (values close to) their theoretical maximum
(of ln(2) and ln(4) respectively) repeatedly, but that is not the
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FIG. 2. Dynamics of entanglement negativity (y-axes) for the quench protocol (𝐽 , ℎ𝑥 , ℎ𝑧)=(−0.2, −1, 0) → (−1, −0.1, −0.5). (Left) For spin-spin pair, (center)
two-spin with a third spin (center), and (right) contiguous blocks of (𝑛 − 1)−spins with the 𝑛𝑡ℎ−spin. In the last figure, for e.g. 2 − 1 refers to the case 𝑛=3.

case with von Neumann entropies of three or more spin sub-
systems, whose maxima are well below their respective the-
oretical maximum, as seen in Fig.1 (center). This attainment
of nearly maximal value of EE1p and EE2p and the subse-
quent declines to much lower valued minima is reminiscent
of Page curve dynamics of bipartite quantum entanglement
[112], with the extra feature here that this happens repeat-
edly in an almost-periodic manner and only for one- and two-
spin subsystems (it is also intriguing to make a connection
here with a result in [39] that one- and two-spin subsystems
showed the strongest signatures of backflows of information
and non-Markovianity). Page curve dynamics of entangle-
ment has recently received much interest in non-equilibrium
dynamics of quantum many-body systems, both closed [55–
57] and open [113–119] (Ref.[113] also suggested a connec-
tion between Page curve and non-Markovianity in a different
context), and it would be very interesting to study the emer-
gence of the recurrent Page-like dynamics seen in this work
in other contexts. Moreover, the one-spin subsystem stays at
or near its maximally mixed state for a slightly extended pe-
riod of time (hence the plateaus in EE1p) each time it reaches
this maximal state. Thus, in this dynamics, a periodic albeit
short-lived attainment of approximately 1−uniform state oc-
curs (a 𝑘−uniform state of ,say, spins is a state in which all
𝑘-spin reduced density matrices are maximally mixed, and
for 𝑘 > 1 has powerful implications for autonomous quan-
tum error correction [120]). All of these features are retained
and somewhat strengthened deeper into the non-integrable
regime (higher values of ℎ𝑧). A microscopic analytical de-
scription of these features valid in the deeply non-integrable
regimes would be very useful to investigate in future.

FIG. 3. Comparison of pure state and mixed state bipartite entanglement for
a two-spin subsystem, for the quench protocol (𝐽 , ℎ𝑥 , ℎ𝑧) = (−0.2, −1, 0) →

(−1, −0.1, −0.5).

Next we turn to the dynamics of majorization relations
discussed in section II B, shown in Fig.4 for two-spin and
three-spin subsystems (larger subsystems show similar be-
haviour). In the figure, by "level-k" we mean the sum of
the first 𝑘 eigenvalues (arranged in descending order) of the
reduced density matrix corresponding to the subsystem in
question. The oscillatory behaviour seen in Fig.4 for both
subsystems is perhaps unsurprising at this point, given the
same behaviour seen in the entanglement entropies (in par-
ticular the single-copy entanglement entropies (Fig.1, right)
which directly manifests the oscillatory behaviour of the
largest eigenvalue, shown in blue in Fig.4). This highly non-
monotonic dynamics of the eigenvalue-sums shows that the
majorization inequalities (Eq.5) are not satisfied at all times
but only between pairs of consecutive maxima and a min-
ima. Thus, the "mixedness" of the subsystems’ reduced den-
sity matrices is non-monotonic, and this is a signature of the
slowly relaxing and non-thermalizing (or inefficiently ther-
malizing) nature of this non-integrable quench dynamics, be-
cause a fast and efficient thermalization dynamics results in
any and all subsystems becoming increasingly mixed suffi-
ciently quickly so that ultimately the system as a whole may
be described by a Gibbs thermal ensemble (note that this does
not mean that all subsystems would eventually be "maxi-
mally" mixed at thermalization, which is a special case possi-
ble only at infinite temperature). This is also evident in Fig.4
(bottom) for three-spin subsystems, where only the first three
largest eigenvalues matter and already from the fourth on-
ward the level-k sums (𝑘 ≥ 4) equal practically 1 (i.e., fifth,
sixth and seventh eigenvalues are negligible all across the
simulation times), which is a signature of insufficient mixed-
ness of this subsystem. Moreover, again a time-scale of∼ 1.55

seconds between consecutive minima or consecutive max-
ima, and ∼ 0.78 seconds between a pair of consecutive mini-
mum and maximum can be identified. Thinking also in terms
of this quench dynamics as a platform for quantum informa-
tional experiments, this means that only between two con-
secutive extrema are the instantaneous states of the whole
system convertible via LOCC operations (see the discussion
in section II B, below Eq.5 and also [121]). However, the
direction of this convertibility reverses after each extrema.
For example, between the initial time and the first minimum
in either of the subsystems in Fig.4, the level-(1, 2, 3) sums
are decreasing with time, implying LOCC convertibility from
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FIG. 4. Dynamics of majorization relations for two-spin (upper) and three-
spin (lower) subsystems, for the quench protocol (𝐽 , ℎ𝑥 , ℎ𝑧)=(−0.2, −1, 0) →

(−1, −0.1, −0.5). The level-𝑘, plotted in the y-axes, refer to the sums of first 𝑘
eigenvalues of subsystems’ reduced density matrices, arranged in descend-
ing order. These show a non-monotonic and highly oscillatory behaviour,
and a time-scale of ∼ 1.55 seconds between consecutive minima or consec-
utive maxima, and ∼ 0.78 seconds between a pair of consecutive minimum
and maximum.

Ψ(𝑡)→Ψ(𝑡 − 𝜏) at each time-step, where Ψ(𝑡) is the full sys-
tem state at time 𝑡. However, this direction of convertibility
reverses between the first minimum and the first maximum,
which allows LOCC convertibility from Ψ(𝑡)→Ψ(𝑡 + 𝜏). This
is consistent with first an increase and then decrease of pure
state bipartite entanglement in Fig.1. We

Moreover, it may be expected that under the action of any
Markovian process, a quantum system should show a mono-
tonic non-increasing behaviour of level-𝑘 sums, and there-
fore majorization relations should be respected at all steps
of the said Markovian process (we are not aware of a gen-
eral proof of this valid for any Markov process, see how-
ever [122, 123] (for majorization along RG flows, which are
Markov processes by definition), [124] (for Markovian open
quantum systems) and [125] (for Markovian thermal pro-
cesses) for related discussions in different contexts). We con-
jecture that the highly non-monotonic behaviour of these
quantities are also signatures of the subsystems’ dynamics
being non-Markovian, adding to the discussion presented in
[39]. It would be worthwhile in future to investigate in de-
tail the direction of implication between Markovianity and
majorization in general.

Next we turn to the behaviour of bipartite mutual in-
formation and tripartite mutual information (TMI) between
constituents of up to three-spin subsystems, shown in Fig.5.
The oscillatory behaviour of the former has previously been
noted in [104], and is being shown here again for complete-
ness in left and middle figures in Fig.5. However, we point out
an interesting feature here. Note that, the maxima of MI(𝑎 ∶

𝑎 + 1, 𝑎 + 2) and odd-numbered minima (first, third,...) of
MI(𝑎 ∶ 𝑎+1, 𝑎+3) occur at approximately the same points of
time, whereas the minima of the former and even-numbered
minima of the latter approximately occur together. The lat-
ter minima also coincide with the maximum values (∼ 0) of
the TMI (right, Fig.5), as well as the minima of entanglement
entropies in Fig.1 and maxima of level−𝑘 sums in Fig.4. At
these points of time, the subsystems in questions transiently
become rather trivial in the sense of having low or negligi-
ble entanglement as well as correlations amongst each other.
Additionally more interesting here is the implication of the
oscillatory behaviour of TMI (Fig.5, right). Considering the
discussion in section II C regarding TMI (Eq.7) and its inter-
pretation as an indicator of scrambling of local information, it
is evident that a series of scrambling and then unscrambling
take place very noticeably between three neighboring spins,
and again a time scale of ∼ 1.55 − 1.56 seconds exists be-
tween consecutive minima or maxima. The unscrambling be-
haviour attests to the slow relaxation/thermalization of the
paramagnetic-to-ferromagnetic quench dynamics. Between
a pair of consecutive maximum and minimum, an increas-
ingly negative TMI between spins (ABC) implies, by argu-
ments of [77], increasing difference of (bipartite) mutual in-
formation that spins (BC) together have about spin (A) com-
pared to what spin (B) and spin(C) separately have about spin
(A), and then between a pair of consecutive minimum and
maximum, this gets reversed and TMI reaches almost zero
after every such cycle. This reversal indicates a recovery of
mutual information about spin (A) that (B) and (C) separately
have from the composite (BC), and it would be interesting
in future to find out if this dynamics may be modeled suf-
ficiently accurately using the framework of recovery maps
in quantum information theory and consequent implications
for using this quench dynamics as a platform for quantum
informational experiments.

We next show the dependence of these attributes on the
level of non-integrability of the quenching Hamiltonian. All
of these features are retained, and in fact strengthened, with
increasing non-integrability (higher ℎ𝑧) whereas the inte-
grable point (ℎ𝑧 = 0) quickly loses these features and ap-
proaches faster towards its equilibrium state (describable by a
generalized Gibbs ensemble). A selection of these are shown
in Figs.6,7,8,9. Several remarkable aspects are revealed here
: (a) In all considered quantities, the integrable and non-
integrable cases show nearly overlapping behaviour for the
first ∼ 2 − 2.5 seconds, and it is only after this initial pe-
riod that features characteristically distinguishing between
the integrable and non-integrable cases begin to show up ;
(b) As evident from Fig.6 (left), the integrable case (ℎ𝑧 = 0)
shows a stronger buildup of von Neumann entanglement en-
tropy, with its envelope increasing linearly with time, albeit
with accompanying oscillations the strength of which how-
ever become milder with time. In contrast, the integrable
cases (ℎ𝑧 = {0.5, 1}) show persistently strong oscillations for
a long time and overlapping with each other ; (c) A promi-
nence of non-analytic cusps in single-copy entanglement en-
tropies (Fig.6, right) is evident in the integrable case, signify-
ing a series of phase transitions in the (ground state space of
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FIG. 5. Dynamical behaviour of bipartite mutual information between
two spins (top), between a spin and another pair of spins (middle), and
tripartite mutual information between three spins (bottom), in the quench
protocol (𝐽 , ℎ𝑥 , ℎ𝑧) = (−0.2, −1, 0) → (−1, −0.1, −0.5). 𝑎 denotes the center
of the spin chain, but the results are not dependent on this choice as long
as we are away from the boundaries of the spin chain due to translational
invariance. Note in the middle figure that the maxima of MI(𝑎 ∶ 𝑎 + 1, 𝑎 + 2)
and odd-numbered minima (first, third,...) of MI(𝑎 ∶ 𝑎 + 1, 𝑎 + 3) occur at
approximately the same points of time, whereas the minima of the former
and even-numbered minima of the latter approximately occur together. A
timescale of∼ 1.55−1.56 seconds appears again between consecutive minima
or consecutive maxima in MI(𝑎 ∶ 𝑎 + 1, 𝑎 + 2) and TMI(𝑎 ∶ 𝑎 + 1, 𝑎 + 2),
and half of that (∼ 0.77 − 0.78 seconds) between the consecutive minima or
consecutive maxima of MI(𝑎 ∶ 𝑎 + 1, 𝑎 + 3).

the) corresponding entanglement Hamiltonian. On the other
hand, amongst the two non-integrable cases, the dynamics
with ℎ𝑧 = 1 shows more number of these cusps compared to
that with ℎ𝑧 = 0.5. The underlying reason for this set of fea-
tures is not clear to us at this time but we hope to be able to
provide an explanation in future ; (d) The negativity in both
the situations shown in Fig.7 shows qualitatively similar be-
haviour for both the non-integrable cases but it has a decay-
ing behaviour for the integrable case. Thus, while the inte-
grable quench creates more bipartite pure state entanglement
over time (Fig.6, the opposite is the case with mixed state
entanglement between constituents of small subsystems of
two or three adjoining spins ; (e) For a three spin subsys-
tem (other subsystems have shown similar behaviour), the
corresponding reduced density matrix shows higher mixed-
ness with time as indicated by the dynamics of level-3 and

level-4 sums in Fig.8, where the envelope of these sums de-
cay with time, thus beckoning more participation from the
next largest eigenvalue(s) so that the total sum of all eigen-
values remains = 1. In contrast, the level-4 sums in both
the non-integrable cases hovers around the value 1, mean-
ing only the first three largest eigenvalues show any no-
ticeable dynamics ; (f ) Likewise, the tripartite mutual in-
formation (TMI) in Fig.9 shows gradually diminishing and
less oscillatory behaviour for the integrable case (likely ap-
proaching near-zero at very long times) whereas both the
non-integrable cases nearly overlap with each other and ex-
hibit persistently oscillatory behaviour. Thus, as far as scram-
bling locally amongst three neighboring spins is concerned,
the non-integrable cases show scrambling-unscrambling be-
haviour, which likely continues for long times.

FIG. 6. Half-chain von Neumann (left) and single-copy (right) entangle-
ment entropy at various ℎ𝑧 values.

FIG. 7. Negativity of an adjacent spin-spin pair (left) and two-spin with
an adjoining third spin (right) at various ℎ𝑧 values.

FIG. 8. Level−3 (left) and level−4 (right) eigenvalue sums of a three-spin
subsystem at various ℎ𝑧 values.

Ferromagnetic to paramagnetic quench— We now compare
with the results for the opposite quench from a ferromagnetic
ground state at (𝐽 , ℎ𝑥 , ℎ𝑧) = (−1, −0.1, −0.5) to paramagnetic
side (𝐽 , ℎ𝑥 , ℎ𝑧) = (−0.2, −1, 0). We show a selection of results
in Fig.10. This quench shows rather featureless dynamics of
the quantum informational entities dealt with in this work,
and shows a quick buildup of entanglement and approach
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FIG. 9. Tripartite mutual information between three neighboring spins at
various ℎ𝑧 values.

to equilibration to a putative generalized Gibbs state (since
the paramagnetic quench parameters are in the integrable
regime), and the picture of entanglement spreading based on
freely propagating quasiparticles ([15, 17, 18, 29]) approxi-
mately holds, as for instance evidenced by the almost lin-
early increasing bipartite pure state entanglement entropies
(Fig.10, upper row, left). Dynamical behaviour of spin-spin
mixed state entanglement as measured by concurrence and
negativity (Fig.10, upper row, right) and spin-spin mutual in-
formation (Fig.10, bottom row, center) are also quite unre-
markable, with an initial increase and then a gradual decay
with weak oscillatory fluctuations, and tripartite mutual in-
formation amongst three spins (Fig.10, bottom row, right) is
also featureless and in fact hovers close to zero at all simula-
tion times, showing a rather weak local (at the level of these
three spins) scrambling of mutual information. The level−𝑘
sums of three-spin subsystems (Fig.10) also show nearly-
monotonically decreasing behaviour (other subsystems also
showed similar behaviour), signifying Markovianity of the
dynamics of these subsystems (assuming the putative con-
nection between monotonicity of majorization relations and
Markovianity indicated previously), in agreement with the
discussion in [39], and moreover, more number of three spin
subsystem’s RDM eigenvalues visibly participate in the dy-
namics of these level−𝑘 sums as time progresses, indicating
increasing levels of mixedness of these subsystems over time.

IV. CONCLUSION

In this work, we have numerically uncovered several
fine features of the dynamics of certain quantifiers of quan-
tum entanglement and information for "extreme" quenches
across the Ising critical point in one dimension. Contrasting
behaviour is seen between paramagnetic-to-ferromagnetic
quench and its reverse, with several notable salient fea-
tures already summarized in the introduction Sec.I. More-
over, comparisons between the integrable regime (zero lon-
gitudinal field) and deep into the non-integrable regime (in-
creasingly strong longitudinal field), where the latter case is
known to result in slow thermalization dynamics owing to
the confinement of excitations, reveals a remarkable over-
lapping of these dynamical features in the very early times,
with subsequently the integrable case exhibiting signatures
of better mixedness of subsystems’ attributes and a quicker
approach to equilibration, whereas stronger levels of non-

integrability exhibit more resilience in the oscillatory be-
haviour of entanglement and mutual information quanti-
fiers. That the paramagnetic-to-ferromagnetic quench dy-
namics, even before considering the longitudinal fields re-
sulting in the confinement of excitations, should be "slow" is
also expected by recalling that the initial paramagnetic state
is rather structureless and essentially unentangled whereas
the target (ferro)magnetic state is structured and highly en-
tangled that takes the form of a generalized 𝑁−body Green-
berger–Horne–Zeilinger (GHZ) state. A dynamics starting
from the former and targeted to the latter requires sub-
stantial rearrangement within the system so that it can ap-
proach and eventually settle into the latter state, and this
is apparently quite difficult a task for the system to estab-
lish quickly and efficiently, leading to slow equilibration dy-
namics in the far-from-equilibrium regime. Confinement of
kink-antikink excitations in the case of non-zero longitudi-
nal field adds another independent factor to the slow dy-
namics, with the sign of the longitudinal field breaking the
up-down 𝑍2 symmetry of the generalized GHZ state, which
now requires the system to rearrange itself to go from prod-
uct state of |+⟩ = (| ↑⟩ + | ↓⟩)/

√
2 at each site to that of ei-

ther | ↑⟩ or | ↓⟩ at each site, depending on the sign of the
longitudinal field. However, when a non-zero longitudinal
field is present, the difficulty of rearrangement of the global
state appears to be a secondary reason for slow dynamics,
because if that were the primary reason, ferromagnetic-to-
paramagnetic (with the former state at non-zero longitudinal
field) quench would also have shown slow dynamics. Thus,
while the far-from-equilibrium slowness of dynamics in the
integrable case can be physically reasoned by the state rear-
rangement argument above, in the non-integrable case the
extra slow dynamics must be primarily caused by confine-
ment of excitations which prohibits propagation of excita-
tions across the systems (emanating from one subsystem and
propagating to another subsystem far away), leading to an in-
efficient and slow rearrangement of the global Hilbert space.

We expect these results to qualitatively hold for quenches
across the Ising (and Ising-type) quantum critical points in
other more complicated systems including two dimensional
systems. As already mentioned in the main text, it would be
worthwhile to (i) investigate the occurrence of and the role
played by bound-entangled states in generic quantum many-
body dynamics, (ii) analytically study the phenomenon of un-
scrambling of local information in terms of recovery maps, as
indicated by the periodic revivals of tripartite mutual infor-
mation amongst three spins, (iii) elaborate on the physical
significance and perhaps obtain an analytical description of
the non-analytic cusps in single-copy entanglement entropy
and consequent phase transitions in corresponding entangle-
ment Hamiltonians, (iv) investigate the putative general con-
nection between satisfaction or violation of majorization re-
lations and (non-)Markovianity of non-equilibrium dynam-
ics, (v) explore the occurrences of 𝑘−uniform states for 𝑘 > 1

for finite periods of time and the consequent intrinsic po-
tential of dynamical quantum error correcting capabilities of
generic quantum many-body systems, and (vi) analyze the
recurrent Page-like dynamics of the entanglement entropies,
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FIG. 10. A selection of features of ferromagnetic to paramagnetic quench (𝐽 , ℎ𝑥 , ℎ𝑧) = (−1, −0.1, −0.5) → (−0.2, −1, 0). Half-chain entanglement entropies
(upper row, left), single-copy entanglement entropies of small subsystems of up to five neighboring spins (upper row, center), mixed state entanglement
of a spin-spin pair as measured by negativity and concurrence (upper row, right), level−𝑘 sums corresponding to three spin subsystems (lower row, left),
bipartite mutual information between a pair of spins, with 𝑎 denoting the central spin in the spin chain, but this choice is unimportant by translational
invariance (lower row, center), and tripartite mutual information amongst three spins (lower row, right).

potential connections with (non-)Markovianity of dynam-
ics, and other signatures of this phenomenon on general
quantum information dynamics. Investigating the effects on
these features of making weak and projective measurements
on one or more subsystems will be worthwhile as well, as
well as the dynamics of other important quantum informa-
tional attributes such as multipartite entanglement and dis-

cord, among others. We hope to report on some of these di-
rections in future.
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