
Multiple Quantum Many-Body Clustering Probed by Dynamical Decoupling

Gerónimo Sequeiros1,2 , Claudia M. Sánchez1 , Lisandro Buljubasich1,2 ,

Ana K. Chattah1,2 , Horacio M. Pastawski1,2 , and Rodolfo H. Acosta1,2 ∗
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The manipulation of quantum information in large systems requires precise control of quantum
systems that are out-of-equilibrium. As the size of the system increases, its fragility in response to
external perturbations and intrinsic decoherence processes also increases. The degradation of the
system response makes accurate measurements a challenging and time-consuming task. However,
quantum information lifetime enhancement can be achieved by dynamical decoupling techniques
(DD), where an external drive with a frequency much higher than the system’s internal evolution
renders signal acquisition with decay times greater than 1000-fold. In this study, we demonstrate
that the system response during a prethermal period, subject to Floquet control, can be utilized to
probe the multiple quantum evolution of dense and highly connected spin systems. This approach
exhibits an enhanced sensitivity at a reduced experimental time. The enhanced signal-to-noise ratio
achieved enabled the use of numerical inversion strategies to model the evolution of the excited
multiple quantum coherences, which describe the number of correlated spins within a cluster. We
observed for the first time, to the best of our knowledge, that the increase in the number of correlated
spins with multiple quantum evolution is accompanied by an increase in the distribution of spin
cluster sizes, which follows a quadratic law.

The thermalization of any local excitation in a large
many-spin system is preceded by reversible spreading
with Hamiltonian dynamics, which occurs on a time scale
of T2. Thus, the information concerning the excitation
becomes encoded in many-body correlations within spin
clusters of increasing size. The description of these cor-
relations requires an exponentially growing number of
states, among which the information becomes scrambled,
as illustrated in Fig. 1. The states sketched in the central
panel are in principle not observable; however, the infor-
mation can be encoded by tailored measurement proto-
cols. The propagation velocity of this wavefront can be
characterized by the the temporal increase in the square
commutator of two local operators which initially com-
mute.. This defines an out-of-time order commutator
(OTOC) [1, 2] which is connected to various fundamen-
tal problems, ranging from superconductivity in dirty
metals[3] and spin networks[4, 5], to quantum chaos[6]
and a route to address the information paradox in black
holes[7]. A considerable effort has been invested in de-
termining the growth of OTOC that characterizes scram-
bling in specific systems. This growth depends on the
specific characteristics of the Hamiltonian, the lattice,
and the spatial distance of the observables that are both
excited and detected (i.e., the operators in the OTOC).
Experiments involve a time-reversal procedure and local
measurements, schematized in the third panel of Fig. 1,
by the shaded zones around the initial excitations..

Further control of the quantum dynamics is achieved
by the imposition of a periodic external drive that in-
terrupts and modifies the information’s natural spread-
ing. The requirement for stopping the system dynamics
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is that the driving period should be much shorter than
the system’s interaction timescale [8, 9]. This leads to a
Floquet dynamics, where the effective Hamiltonian time
scale T2 can be increased up to infinity. In this case,
the decay of the excitation depends on Σ, the small in-
teractions and environmental effects omitted from the
engineered effective Hamiltonian. This defines an irre-
versibility time scale T3, in terms of the natural pertur-
bation time scale TΣ. On the other hand, maximizing the
Hamiltonian dynamics is equivalent to a relative slowing
down of the rate 1/TΣ. Many different experiments con-
currently reach a perturbation-independent irreversibil-
ity time scale of about T3 ≈ 6T2 < TΣ [10–12]. This fact
makes evident it clear that once the information is en-
coded in to this scrambled, pre-thermalized state, it be-
comes so extremely fragile that even an infinitesimal un-
controlled process renders it irreversible. In this regard,
the study of scrambling and pre-thermalization dynamics
is of crucial importance for the foundations of physics[13],
as well as for technological development. Realistic nu-
merical simulations are immediately out of reach. All this
requires new computational strategies[14–16], statistical
estimations[17–19], and quantum simulations[16, 20, 21].

In the field of nuclear magnetic resonance (NMR), par-
ticularly solid-state NMR, the periodic drive mentioned
above takes the form of radio-frequency pulses. The
rotation angles, inter-pulse spacing, and periodicity of
these pulses precisely determine the quantum dynamics
of the systems under study. Dynamical decoupling (DD),
a particular category of Floquet driving, has been widely
used to preserve states as coherent superpositions[22, 23].
Originally conceived for weakly interacting quantum sys-
tems coupled to an external bath, the DD techniques
were designed to modulate the system-bath interaction
and prevent decoherence. More recently, these sequences
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FIG. 1. Scheme of initial excitations, scrambled states,
and time reversal. The left panel exemplifies various spin
local excitations through colored dots. The central panel
shows the scrambled excitations into spin clusters of different
sizes, s. The time reversal dynamics is only partially suc-
cessful (third panel). This procedure provides OTOCs that
characterize the distribution of clusters in the central panel.

have been extended to systems where internal interac-
tions dominate over bath coupling, in particular in closed
dilute systems such as 13C nuclei in diamond where an
extension of state lifetimes proportional to the strength of
dipolar coupling has been observed [24, 25]. In this arti-
cle, we use DD as a detection block aimed to increase the
signal-to-noise ratio, thereby enabling faster and more
precise experiments. Specifically, we use an OTOC ex-
periment to characterize a highly interconnected nuclear
spin system evolving under a double-quantum Hamilto-
nian. This allows us to obtain a detailed account of how
the spreading occurs and to give a definitive assessment
of the butterfly velocity, greatly improving previous ex-
perimental estimations. Our results confirm that the size
of the largest cluster grows linearly with time [10, 12, 26].

A scheme of the DD pulse sequence used in this work
is depicted in Fig. 2a. An initial π/2 pulse aligned with
the Y -axis of the rotating frame, which drives the sys-
tem out of equilibrium, is followed by a train of N ex-
citation pulses with period τ and generic rotation an-
gle θ, all aligned with the X-axis of the rotating frame.
The evolution of the spin system during the sequence is
monitored by means of acquisition windows placed be-
tween successive θ pulses. The experiments presented in
this article were carried out in plycristalline adamantane.
Due to the rapid molecular tumbling, each adamantane
molecule can be considered as a single spin-1/2, located
in a face-centered cubic lattice, affected only by inter-
molecular dipole-dipole interactions. Therefore, the hy-
drogen nuclei in adamantane ara a good example of a
highly interconnected spin system. The secular part of
the dipolar Hamiltonian with respect to the dominant
Zeeman interaction is Hzz

d =
∑

i<j dij(3I
z
i I

z
j − Ii · Ij),

where Iαi (α = x, y, z represents the i−spin operator,
and the dipolar coupling strengths dij decrease with the
internuclear distance.
Due to the complexity of the interactions in many-

body systems, we resort to an empirical examination of
the dependence of the system’s evolution on a different
set of parameters. By changing the Floquet frequency
and the rotation angle of the periodic excitation, two ef-
fects are readily observed (see Fig. 2b); both the initial
signal intensity and the decay rates depend on τ and θ.
The signal exhibits an initial oscillatory transient char-
acteristic of periodic excitations [27], lasting up to 8 Flo-
quet cycles depending on the parameter choice (peak os-
cillation shown in the left panel of Fig. 2b). The sig-
nal response for a sweep of the parameters τ and θ is
shown in Fig. 2c. Its evolution shows a bi-exponential
decay, consisting of both a fast and a slow decaying expo-
nential, resembling prethermatization regimes and ther-
malization processes observed in weakly coupled systems
[28–31]. The left panel of 2c shows the fitted total am-
plitudes (i.e. the extrapolation of the total signal to
t = 0), while the central panel shows the fitted charac-
teristic decay time for the slowly decaying exponential,
that describes the total signal behavior. Longer decay
times correspond to shorter τ values. For θ, an oscilla-
tory behavior is observed where higher signal intensities
correspond to shorter decay times.
The optimal number of Floquet cycles to maximize the

SNR was determined empirically, as shown in the right
panel of Fig. 2c. The saturated scale in the last plot
indicates that more than four thousand transients are
needed to fully exploit the long-lasting evolution; how-
ever, heating the excitation coil in successive Floquet cy-
cles imposes an experimental limitation. In Fig. 2d we
show a reduced parameter map where the SNR is deter-
mined for up to 2048 Floquet cycles. We find that for
this given number of cycles the choice of θ = 45◦ is op-
timal, while the trend for τ suggests that shorter values
are more favorable for the spin system considered in this
work.
The performance of the DD scheme as a detection

block is evaluated in a series of experiments that involve
the correlation of a large number of nuclear spins. NMR
has long been a platform for controlling spin dynamics by
engineering pulse sequences that modulate the system in-
teractions. In particular, the Double Quantum (DQ) se-
quence was designed to obtain an effective Hamiltonian
HDQ,

HDQ = − 1
2

∑
i<j

dij(I
+
i I+j + I−i I−j ) (1)

which is the zeroth order of the Magnus expansion in
the Average Hamiltonian Theory [32]. Evolution under
this Hamiltonian enables pairs of spins with the same ori-
entation to flip, leading the system to develop coherent
states involving an increasing number of spins [33, 34].
These coherent states, characterized by even orders of
coherence, form clusters of spins that grow over time.
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FIG. 2. Dynamical Decoupling sequence optimization: a) Pulse sequence diagram. A π/2 rotation on the Y axis of the
rotating frame is followed by a train of N rotations (θ) with frequency 1/τ . The system evolution is probed at the center of
the excitation cycles. b) Signal evolution for different parameter settings showing variations of initial transitory oscillation,
amplitude, and decay times. Red dots indicate the first data point used for fittings after the initial oscillating transient. c)
Combined exponential amplitudes, characteristic decay times, and optimal number of cycles as a function of τ and θ. d)
Reduced parameter map showing optimal number of Floquet cycles and respective SNR with an increased N = 20480 cycles.

The size of these clusters can be probed in a Multiple
Quantum Coherence (MQC) experiment, which involves
the measurement of different time-reversed projections
of DQ evolved states. A diagram of the MQC exper-
iment is depicted in Fig. 3a. In this experiment, the
system starts from a thermal equilibrium state ρ(0) ∝ Iz

(here Iz =
∑

i I
z
i ), and evolves under the effective Hamil-

tonian HDQ by applying n blocks of DQF (see Fig.
3b), for a total evolution time of tn = nτDQ. Next, n
blocks of DQB are applied to reverse the initial evolution
with a phase difference, evolving the system under the
effective Hamiltonian (−HDQ)ϕ = e−iϕIz

(−HDQ)e
iϕIz

for the same duration tn. The propagator accounting
for the total evolution-reversion period is Uϕ(2tn) =
e−iϕIzeitnHDQeiϕIze−itnHDQ and the resulting system’s

density matrix is given by ρϕ(2tn) = Uϕ(2tn)ρ(0)U
†
ϕ(2tn).

Finally, a Free Induction Decay (FID) signal is acquired
with a readout pulse after a filter period of free evo-
lution, included to allow any spurious transverse mag-
netization to average out. The signal measured for a
given reversion phase ϕ and number of DQ blocks n,
Sn,ϕ ∝ Tr {Izρϕ(2tn)}, represents a generalized echo
[35, 36].

Many-body systems are sensitive to decoherence, and

experimental imperfections hinder perfect evolution re-
versal. These imperfections can be quantified by the
Loschmidt Echo (LE) Sn,0 which is the resulting signal
after forward and backward evolution with no phase dif-
ference ϕ = 0, and represents the ability to recover the
initial state of the system [10]. As the evolution time tn
increases, the size of the cluster of correlated spins grows
and the system becomes more sensitive to perturbations
and imperfections during the DQ evolution. This leads
to a degradation of the final state, making it harder to
extract information from these experiments. The DD se-
quence as a detection block is aimed to improve the SNR
in the acquisition of highly deteriorated states, and is im-
plemented as shown in Fig. 3c. The signal degradation,
measured through the LE, is shown in Fig. 3d, where the
decrease in signal for large correlated spin clusters is evi-
dent. Improving the acquisition for long evolution times
tn enables better probing of the evolution of coherence
clusters in the system. The signal Sn,ϕ can be expressed
in terms of the coherence orders of the density matrix
that develop during the first period of DQ evolution:

Sn,ϕ =
∑
k

e−iϕk
∑
r

|ρr,r+k(tn)|2 =
∑
k

e−iϕkS̃n,k (2)

Here S̃n,k represents the distribution of coherences of or-
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FIG. 3. Multiple Quantum Coherences: a) Diagram of a MQC experiment. The first DQF sequence is composed of n
consecutive DQ blocks, acting over the system as the effective Hamiltonian HDQ, then the DQB sequence reverts this evolution
with an effective Hamiltonian (−HDQ)ϕ. After transverse relaxation, a readout π/2 pulse is used to acquire an FID. b) Diagram
of the DQ pulse sequence utilized. Each block consists of 8 pulses separated by the free evolution periods indicated in the figure
(∆1 = 3 µs and ∆2 = 8 µs), accounting for a total evolution period of τDQ = 60 µs. c) Implementation of the DD sequence to
probe the MQC experiment. d) Loschmidt Echo amplitude for increasing DQ evolution obtained from DD sequence with fixed

parameters. e) Distributions S̃n,k of excited even coherence orders obtained by FID (solid circles) and DD (hollow circles)
acquisitions corresponding to n = 6 and n = 9 blocks of DQ excitation.

der k (even values only) developed during the forward
evolution (DQF ), and is the inverse Fourier Transform
of the measured signals Sn,ϕ. The MQC experiment re-
quires a full rotation on the ϕ dimension, with the step
size determining the maximum even order of coherences
to be probed. Since these dimensions are related by a
Fourier Transform, exploring higher orders of coherence
requires incrementing ϕ at smaller angular steps, thus
involving more experimental time. The distributions of
coherences S̃n,k of Fig. 3e show data acquired using both
FID and DD acquisition schemes for two different block
numbers, n = 6 and n = 9. The results show that the ac-
quisition with DD reproduces the behavior from the orig-
inal experiment for these number of DQ blocks. These
distributions of coherences contain information about s,
the sizes of the spin clusters that have developed at the
evolution times. The number of correlated spins corre-
sponds to the second moment of the distribution of co-
herences, and can be expressed as an OTOC [2, 35, 36]:

s ∝ Tr
{[

Îz, Îz(tn)
] [

Îz, Îz(tn)
]}

, where Iz(tn) is used

to represent the operator Iz following the evolution of
the system for a period of time tn.

One conventional way to compensating for low SNR
is to average multiple experimental realizations (scans).
This is where the DD sequence acquisition shows its po-
tential, as it allows for more defined results and signifi-
cantly reduces the number of scans NS compared to the
case of FID acquisition. Fig 4a shows a comparison of
the coherence distribution obtained through both FID
and DD acquisition for n = 12 blocks of DQF evolution,
t12 = 720 µs. For this very weak signal, the optimization
shown in Fig. 2 fails because the signal evolution rapidly

reaches the noise level, as observed in the LE experiment
of Fig. 3d . In this particular case, the SNR was max-
imized by reducing the number of Floquet cycles to 256
as well as the pulse separation to τ = 10 µs. Data ac-
quired with the DD sequence is sharper and gives a well-
defined distribution with NS = 8, and is still sharper
than the distribution obtained with NS = 16 using an
FID acquisition (see Fig. 4a). We estimate that ∼ 22
times more scans are needed for the FID to achieve the
same SNR obtained with the DD sequence. The most
accepted model for determining the distribution of co-
herences was proposed by Baum et al. [33, 34], where
a Gaussian function is used to describe the data, and
the number of correlated spins is determined from the
width of this Gaussian. However the Gaussian function
often fails to represent the data correctly for long evolu-
tion times. Different strategies have been implemented
[5], such as introducing a stretched exponential [37] or
describing the spin clustering as two separate clusters of
different sizes [38, 39]. Here we describe S̃n,k for each
value of n, as a weighted distribution of Gaussian func-
tions with varying widths:

S̃n,k =
∑
j

exp

(
−k2

sj

)
fn(sj) + ϵn,k, (3)

where ϵn,k is a vector representing the noise for each
MQC distribution, the exponential term corresponds to
the Gaussian kernel, and fn(s) is the probability of find-
ing a cluster of size s at a given time tDQ. Finding fn(s)

given S̃n,k is an ill-posed problem that can be solved nu-
merically. Provencher [40] implemented parsimony using



5

a) n=12

0
0.

5
1

-24 -16 -8 0 8 16 24
(coherence order)

0
0.

5
1

NS=16

DD

FID

(a
rb

. u
ni

ts
)

NS=8

b)

2
4

6
8
10 1000

10012 101

97%

(correlated spins)

c)

 (ms)

1 3 5 7 9 11 13

1
10

10
0

10
00

0 0.2 0.4 0.6 0.8

(c
or

re
la

te
d 

sp
in

s)

 (ms)

d)

(d
is

pe
rs

io
n)

FIG. 4. a) Comparison of the distribution of coherences obtained by FID and DD for n = 12 DQ blocks. Solid lines are guides
to the eye. Here the improvement through DD acquisition becomes evident as it gives much more defined distributions. b)
Distribution of cluster sizes f(s) for different number of cycles in the DQ evolution. c) Evolution of the distinct populations
of f(s). Maximums of the distributions are depicted in circles and their respective FWHM encloses the background areas for
each population. The 97% cumulative values (arrow in f(s)) for each distribution are represented by horizontal bars, which
align with the solid curve representing cubic growth. d) Dispersion (∆s) of the correlated spin cluster size corresponding to
the FWHM of the larger population on c). We observe that ∆s grows quadratically ∝ t2n as represented by the solid curve.

a regularization method known Tikhonov regularization
[41], which stabilizes the fitting by smoothing the solu-
tions. In this work, we use a one-dimensional algorithm
introduced by Teal and Eccles [42]. Figure 4b shows the
cluster size distributions obtained as a function of the
number of DQ blocks (cycles) applied. Initially, a single
distribution with a population (maximum) of few corre-
lated spins is observed, which decays very rapidly over
time. Bi-modal distributions, with a second population
of large clusters, emerge for n = 3, whose maximum and
width increase with time. The number of correlated spins
increases systematically until, for a large number of cy-
cles, the experimental procedure renders the Loschmidt
Echo signal, Fig.3d, undetectable. The maxima of the
bi-modal distributions are represented by the solid cir-
cles in Fig. 4c. For small n values (short times) the
double quantum dynamics produces a collection of small
clusters of similar size. Clusters of increasing size are
observed to become more dispersed over time, where the
width of the distributions is represented by shadows. Ad-
ditionally, the propagation of the fastest cluster can be
determined from the distributions of Fig. 4b. As a ref-
erence value we use 97% of the individual cumulative
values (arrow in f(s)) for each distribution. The prop-
agation front is represented as horizontal lines in Fig.
4c, which are observed to grow as t3, in accordance with
the ballistic dynamics previously observed for the double
quantum Hamiltonian in a uniform 3D network such as
adamantane[12].

Finally we focus our attention on the width of the dis-
tributions, considering for short evolution times only the

one that represents the group of larger clusters. We must
keep in mind that the evolution under the forward and
backward multiple quantum Hamiltonians not only cre-
ates spin clusters of correlated spins that grow in size, but
it also keeps on connecting spins corresponding to small
cluster sizes. The distribution of cluster sizes, which is
represented in the central panel of Fig. 1, could not be
determined so far with the usual fitting methods. The
use of the numerical inversion used in this work enabled
us to observe this phenomena for the first time, which has
a quadratic dependence on the evolution time as shown
in Fig. 4d. Even though we do not yet have a model to
describe the underlying spin dynamics that account for
this observation, we believe that the empirical observa-
tion itself can be useful to the large community devoted
to the study of many body systems.
In summary, we have designed a detection toolbox

for the acquisition of signals describing the dynamics
of many-body systems out-of-equilibrium. The dynami-
cal decoupling evolution under successive Floquet cycles
for strongly interacting spin systems renders the addi-
tion of thousands of transients that boost the sensitivity,
enabling rapid detection of large spin clusters involving
hundreds of coupled spins whose signal is degraded by
the Loschmidt echo. The improved signal-to-noise ratio
achieved is sufficient to apply numerical inversion meth-
ods, which are extremely noise sensitive, to model de dis-
tribution of connected spins forming clusters of different
sizes through the evolution of MQ coherences. The ob-
servation of new dynamics is a subject of ongoing studies
for which we yet lack a model to describe.
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tum information scrambling under decoherence effects
measured via active spin clusters, Physical Review A
104, 062406 (2021).

[18] T. Schuster and N. Y. Yao, Operator growth in open
quantum systems, Phys. Rev. Lett. 131, 160402 (2023).

[19] T. Zhou and B. Swingle, Operator growth from global
out-of-time-order correlators, Nature Communications
14, 3411 (2023).

[20] B. Yan and N. A. Sinitsyn, Recovery of damaged informa-
tion and the out-of-time-ordered correlators, Phys. Rev.
Lett. 125, 040605 (2020).

[21] A. M. Green, A. Elben, C. H. Alderete, L. K. Joshi, N. H.
Nguyen, T. V. Zache, Y. Zhu, B. Sundar, and N. M.
Linke, Experimental measurement of out-of-time-ordered
correlators at finite temperature, Phys. Rev. Lett. 128,
140601 (2022).
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