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Abstract

In various phenomena such as pattern formation, neural firing in the brain and cell migration, interactions that
can affect distant objects globally in space can be observed. These interactions are referred to as nonlocal in-
teractions and are often modeled using spatial convolution with an appropriate integral kernel. Many evolution
equations incorporating nonlocal interactions have been proposed. In such equations, the behavior of the sys-
tem and the patterns it generates can be controlled by modifying the shape of the integral kernel. However, the
presence of nonlocality poses challenges for mathematical analysis. To address these difficulties, we develop
an approximation method that converts nonlocal effects into spatially local dynamics using reaction-diffusion
systems. In this paper, we present an approximation method for nonlocal interactions in evolution equations
based on a linear sum of solutions to a reaction-diffusion system in high-dimensional Euclidean space up to
three dimensions. The key aspect of this approach is identifying a class of integral kernels that can be approxi-
mated by a linear combination of specific Green functions in the case of high-dimensional spaces. This enables
us to demonstrate that any nonlocal interactions can be approximated by a linear sum of auxiliary diffusive sub-
stances. Our results establish a connection between a broad class of nonlocal interactions and diffusive chemical
reactions in dynamical systems.

Keywords: Nonlocal interaction; Reaction-diffusion system; Approximation; Nonlocal evolution equation
AMS subject classifications: 35A35, 35K57, 35R09, 92B05

1. Introduction

Various interactions plays a crucial role in phenomena such as developmental processes of multicellular
organisms, behavior of biological populations, cell migration and neuronal information processing. The evolu-
tionary dynamics of each factor involved in these phenomena depend on their interactions. These interactions
give rise to spatiotemporal patterns and complex behaviors in each system. In particular, some interactions
affect the distant objects globally in space as observed in the aforementioned phenomena. Such interactions are
often referred as to nonlocal interactions or long-range interactions. The presence of the nonlocal interactions
has been suggested by biological experiments in various contexts, including neural firing in the brain, pigment
cells in skin of zebrafish, cell migration and cell adhesion.

Kuffler experimentally demonstrated that the light response of a ganglion cell in the receptive field of the
cat brain exhibits local excitation and lateral inhibition [20]. This experimental result can be represented as a
function, as shown in Figure 1, where local excitation and lateral inhibition correspond to positive and negative
values, respectively. This function is referred to as the Mexican-hat function due to its shape, or the LALI
function (standing for the local activation and lateral inhibition ) in context of pattern formation. Nakamasu et
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al. experimentally demonstrated that the presence of local inhibition and lateral activation among the pigment
cells in the skin of the zebrafish through laser ablation control experiments [25]. Yamanaka and Kondo reported
that cell to cell contact via the cellular projections between two types of pigment cells in zebrafish generates
the local inhibition, leading to a run-and-chase behavior [33]. Hamada et al. further showed that pigment cells
in skin of zebrafish extend cellular projections longer than the previously mentioned ones to transmit survival
signals across the pigment stripe patterns [15]. These studies on pigment cell interactions and skin patterns
formation in zebrafish are comprehensively reviewed by Watanabe and Kondo [32]. Murakawa and Togashi
experimentally demonstrated that variations in the strength of cell adhesion molecules in artificially cultured
cells lead to changes in adhesion surface patterns [24]. It is also suggested that these cultured cells may sense
the surrounding cell density by extending cellular projections longer than their body size.

The nonlocal interaction is often modeled by the spatial convolution with an appropriate integral kernel
representing distance-dependent weight and a variable representing the factor or density of individual organism.
Let u = u(t,x) be the unknown variable at position x at time t ≥ 0, and we assume that K ∈ L1(Rn) is a radial
integral kernel. In this paper, we mainly treat the nonlocal interactions described by the following form:

(1.1) (K ∗u)(t,x) :=
∫
Rn

K(x− y)u(t,y)dy.

Various mathematical models have been proposed and analyzed from the aforementioned biological back-
grounds.

Amari proposed a neural field equation of nonlocal type with the convolution of the Mexican-hat kernel and
the Heaviside function, and derived the condition for the existence of traveling wave solutions [2]. Coombes et
al. derived the equation of motion for the interface dynamics of the planar neural field, and demonstrated the
numerical simulations and linear stability analysis [8]. The following model has been proposed to describe the
behavior including nonlocal dispersion when an individual organism makes a long-range jump:

(1.2) ut = d∆u+K ∗u+ f (u),

where d ≥ 0 is the diffusion coefficient and f is the reaction term. The nonlocal model for the plant dispersal
has been proposed by Alfaro et al. [1]. The existence and wave speed of the traveling wave solutions to this
type of model have been analyzed by [3, 9, 10] and [16]. In particular, Ei and Ishii have proposed equations
of motion for the interactions between pulse solutions or traveling wave solution to this type of models with
the sign changed kernels [11]. Additionally, a continuation method have been proposed that can convert the
spatially discretized models into the form of (1.2) while conserving the discreteness information by Ei et al.
[13]. From this method it has been theoretically shown that the intercellular interactions such as diffusion,
lateral inhibition on uniform and nonuniform lattice, and signal transduction through cellular projections can be
described in the form of (1.1).

Mathematical models of nonlocal saturation and nonlocal growth rate have been proposed by Berestycki et

Figure 1: Profile of a Mexican-hat function. K(x) =
√

3exp(−3(x2 + y2))− exp(−(x2 + y2)).
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al.[5] and Ninomiya et al.[26], respectively:

ut = d∆u+(1−K ∗u)u,(1.3)
ut = d∆u+(K ∗u)u+ f (u).(1.4)

The stationary solution and traveling wave solution of (1.3) have been analyzed in [5]. In [26], it has been
rigorously shown that the instability for the stationary constant solution induced by a nonlocal interaction can
be regarded as the diffusion-driven instability proposed by Turing[30] in the nonlocal evolution equations in-
cluding (1.4) through the reaction-diffusion approximation. Kondo proposed a nonlocal evolution equation that
combines the nonlocal interaction and the cut function motivated by pattern formations [18]. This model is
referred to as the KT model. In particular, this paper reported that the KT model can replicate various patterns
such as those induced by the diffusion-driven instability simply by changing the shape of the integral kernel even
though the equation has only one variable. Ei et al. proposed a methodology to extract the pattern-generating
information from an arbitrary dimensional network with spatial interactions by representing it as the shape of an
integral kernel in a convolution [12]. According to this approach, it is possible to visually interpret the pattern-
forming information within a network of interacting factors as an integral kernel. By applying this reduction
technique to the network of pigment cells in zebrafish summarized in [25], it was shown that a LALI-type inte-
gral kernel can be theoretically derived. Furthermore, this study was the first to demonstrate that a LALI-type
integral kernel can also be theoretically derived from a reaction-diffusion system of an activator and an inhibitor
with greater diffusion coefficient. Additionally, it was shown that by incorporating the extracted integral kernel
into a nonlocal evolution equation and performing numerical calculations, it is possible to reproduce patterns
similar to those generated by the original, unreduced model.

Murakawa and Togashi[24], and Carrillo et al.[6] proposed the following mathematical model for the cell
adhesion and cell sorting phenomena:

ut = ∆um −∇ · (u(1−u)∇(K ∗u)),(1.5)

where m ≥ 1 is a constant. It has been reported that the above model can replicate the cell adhesion phenomena
qualitatively and almost quantitatively by Carrillo et al. [6].

As discussed above, nonlocal interactions can directly model interactions between cells, the potentials be-
tween particles, and the intrinsic interactions in density or concentration fields that derive pattern formation by
appropriately selecting the shape of the integral kernel. These nonlocal evolution equations can reproduce the
various patterns depending on the shape of the integral kernel. However, nonlocal evolution equations present
analytical and computational challenges due to their inherent nonlocality. These difficulties include the inappli-
cability of standard analytical methods designed for spatially local operators directly and the high computational
cost of numerical simulations. One approach to overcoming these challenges is to approximate nonlocal inter-
actions using local differential equations. Ninomiya et al. demonstrated that in one-dimensional spaces, the
nonlocal evolution equations with arbitrary even kernel can be approximated by a reaction-diffusion system
with multiple auxiliary factors [26, 27]. Murakawa and Tanaka have shown that in one-dimensional bounded
domain, the nonlocal Fokker-Planck equation with an advective nonlocal interaction involving an arbitrary even
kernel can be approximated by a Keller-Segel system with multiple chemotactic factors [23]. These theories
reveal that various types of nonlocal interactions can be effectively described using multi-component systems
introducing diffusive auxiliary factors. Furthermore, in [23] and [26], it has been rigorously established that
for nonlocal evolution equations, including (1.4) and the nonlocal Fokker-Planck equation, the instability for
the stationary constant solution induced by the shape of the integral kernel closely resembles to the diffusion-
driven instability originally proposed by Turing. Despite these theoretical insights, nonlocal interactions are
frequently observed in high-dimensional spatial settings in real-world phenomena. Therefore, investigating the
relationship between nonlocal interactions and local partial differential equations in high spatial dimensions is a
significant problem. Motivated by this, in this study, we examine the connection between nonlocal interactions
and reaction-diffusion systems in high spatial dimensions using the singular limit analysis. Specifically, we
show that the solutions to nonlocal evolution equations with any radial kernel can be approximated by that to
a reaction-diffusion system in dimensions up to three. Moreover, depending on the given integral kernel, we
demonstrate that the parameters of the approximating reaction-diffusion system can be explicitly determined,
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and we provide explicit estimates for the approximation error in terms of both the limit parameter and the num-
ber of the auxiliary factors. The core idea of this result is that any radial integral kernel in L1(Rn) space can be
approximated by an appropriately weighted superposition of the Green functions corresponding to the station-
ary problem of a reaction-diffusion equation. This Green function is provided by the modified Bessel function
that is the fundamental solution to the modified Helmholtz equation. This expansion result can be proved using
the Bernstein polynomial or the Lagrange polynomial with the Chebyshev nodes.

This paper is organized as follows. In Section 2, we explain the mathematical settings and state our main
results. In Section 3, we prove the singular limit of the reaction diffusion system. In Section 4, we give the
proof for the result of the Green function expansion in any dimensions up to three. Thereafter, we perform the
numerical simulations of the Green function expansions in Section 5. We give some remarks and conclude this
paper in Section 6.

2. Mathematical setting and main results

Based on the motivation introduced in Section 1, we consider the following nonlocal reaction-diffusion
equation:

(NP)


∂u
∂ t

= D∆u+ f (u,K ∗u), (t > 0, x ∈ Rn),

u(0,x) = u0(x), (x ∈ Rn),

where u = u(t,x)∈R (t > 0, x ∈Rn), D is a positive constant, the function f ∈ Lip(R2;R) satisfies f (0,0) = 0,
and K(x) is a radial function in L1(Rn). Here, there exists a constant C f > 0 such that

| f (u1,v1)− f (u2,v2)| ≤C f (|u1 −u2|+ |v1 − v2|)

for all (u1,v1),(u2,v2) ∈ R2. For the case that f is the local Lipschitz as introduced in models in Section 1, we
provide Remark 2.3 below.

We first consider the existence of the solution to (NP). Denote the set of all bounded continuous functions
by BC(Rn). Introducing the heat kernel as

H(t,x;D) :=
1

(4πDt)n/2 e−|x|2/4Dt ,

we define the following map as

P[φ ](t,x) := H(t;D)∗u0 +
∫ t

0
H(t − s;D)∗ f (φ(s),(K ∗φ)(s))ds

for φ ∈ C([0,T ];BC(Rn)∩Lp(Rn)) with 1 ≤ p ≤ +∞. We say that a function u ∈ C([0,T ];BC(Rn)∩Lp(Rn))
for T > 0 is a mild solution to (NP), provided u = P[u]. Then we obtain the following existence result.

Theorem 2.1. For any T > 0 and 1 ≤ p ≤ +∞, there exists a unique mild solution u ∈ C([0,T ];BC(Rn)∩
Lp(Rn)) to (NP) with an initial datum u0 ∈ BC(Rn)∩Lp(Rn). This mild solution u belongs to C1,2((0,T ]×Rn),
that is, u is the unique classical solution to (NP). Moreover, we have

∥u(t)∥Lq ≤ eC f (1+∥K∥L1 )t∥u0∥Lq

for any p ≤ q ≤+∞ and t ∈ [0,T ].

We construct the mild solution based on the fixed point theorem for integral equations. The proof is a
standard argument and is summarized in Appendix A.
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Next, we prepare a reaction–diffusion system used for the approximation of the solution to (NP) with any
integral kernel. Introducing the auxiliary diffusive substances v j = v j(x, t), ( j = 1, . . . ,N), (N ∈N), we consider
the following reaction-diffusion system with N +1 components:

(RDδ )


∂u
∂ t

= D∆u+ f

(
u,

N

∑
j=1

α jv j

)
,

∂v j

∂ t
=

1
δ
(d j∆v j − v j +u), ( j = 1,2, . . . ,N),

(t > 0, x ∈ Rn),

where δ > 0, α j ∈R, d j > 0 for j = 1,2, . . .N. The idea using the reaction-diffusion equations for approximating
nonlocal interactions is same as that in [26] and [27]. The initial condition is imposed as

(2.6) (u,v1, . . . ,vN)(0,x) = (u0,k1 ∗u0, . . . ,kN ∗u0)(x),

where k j,( j = 1, . . . ,N) are defined as follows:

k j(x) :=
(

1
d j

)n/2

G

(
|x|√

d j

)
,(2.7)

G(|x|) :=
1

(2π)n/2

(
1
|x|

)n/2−1

Mn/2−1 (|x|) ,(2.8)

Mν(r) :=
∫ +∞

0
e−r coshs cosh(νs)ds.

Here Mν(r) is the modified Bessel function of the second kind with the order ν . For j ∈ N, k j is represented as

k j(x) =



1
2
√

d j
e−|x|/

√
d j , (n = 1),

1
2πd j

M0(|x|/
√

d j), (n = 2),

1
4πd j|x|

e−|x|/
√

d j , (n = 3).

We note that k j is the Green function of the differential operator −d j∆+1, that is, w = k j ∗u satisfies

d j∆w−w+u = 0.

Moreover, it is known that k j ∈ L1(Rn). The property we use are mentioned in Subsection 3.1.
We now show the existence of the solution to (RDδ ) with an initial condition (2.6). Define the two following

maps as

Φ[φ ](x, t) := H(t;D)∗u0 +
∫ t

0
H(t − s;D)∗ f

(
φ(s),

N

∑
j=1

α jΨ j[φ ](s)

)
ds,

Ψ j[φ ](x, t) := e−t/δ H(t;d j/δ )∗ (k j ∗u0)

+
1
δ

∫ t

0
e−(t−s)/δ H(t − s;d j/δ )∗φ(s)ds, ( j = 1,2, . . . ,N)

for φ ∈ C([0,T ];BC(Rn)∩Lp(Rn)) with 1 ≤ p ≤ +∞, respectively. We say that a function (u,v1, . . . , vN) ∈
(C([0,T ];BC(Rn)∩ Lp(Rn)))N+1 for T > 0 is a mild solution to (RDδ ), provided u = Φ[u] and v j = Ψ j[u],
respectively. By using the Banach fixed point theorem, we obtain the existence result for (RDδ ).
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Proposition 2.1. For any T > 0, δ > 0 and 1 ≤ p ≤+∞, there exists a unique mild solution (uδ ,vδ
1 , . . . ,v

δ
N) ∈

{C([0,T ];BC(Rn)∩ Lp(Rn))}N+1 to (RDδ ) with an initial condition (2.6) and u0 ∈ BC(Rn)∩ Lp(Rn). This
solution belongs to {C1,2((0,T ]×Rn)}N+1. Moreover, we have

∥uδ (t)∥Lq ≤

(
1+δC f

N

∑
j=1

|α j|

)
∥u0∥Lq exp

(
C f

(
1+

N

∑
j=1

|α j|

)
t

)
,

∥vδ
j (t)∥Lq ≤ e−t/δ∥u0∥Lq + sup

0≤s≤t
∥uδ (s)∥Lq , ( j = 1,2, . . . ,N)

for any q ∈ [p,+∞] and t ∈ [0,T ].

The proof is similar to the proof of Theorem 2.1 and its main part about the boundedness is described in
Appendix B.

For constants {α j}1≤ j≤N , and positive constants {d j}1≤ j≤N , we set the linear combination of the Green
functions as

(2.9) KN(x) :=
N

∑
j=1

α jk j(x).

For the approximation of nonlocal interactions by the reaction-diffusion system we consider the singular limit
as δ →+0 in (RDδ ) as follows.

Lemma 2.1. Let T > 0, δ > 0, 1 ≤ p ≤ +∞ and u0 ∈ BC(Rn)∩ Lp(Rn). Suppose that (uδ ,vδ
1 , . . . ,v

δ
N) ∈

{C([0,T ];BC(Rn)∩ Lp(Rn))}N+1 is the solution to (RDδ ) with an initial condition (2.6). Then, there exists
C1 =C1( f ,D,{α j}1≤ j≤N ,{d j}1≤ j≤N ,T ) such that

sup
0≤t≤T

∥uδ (t)−u0(t)∥Lp ≤ C1∥u0∥Lpδ ,

sup
0≤t≤T

∥vδ
j (t)− k j ∗u0(t)∥Lp ≤ C1∥u0∥Lpδ

hold, where u0 is the solution to (NP) with K = KN .

This lemma shows the relationship between the solutions to (RDδ ) and (NP) with KN . To approximate the
solution to (NP) with any integral kernel by that to (RDδ ), we prepare the following lemma.

Lemma 2.2. For 1 ≤ p ≤+∞, let u be the solution to (NP) with an initial datum u0 ∈ BC(Rn)∩Lp(Rn). Then,
for any T > 0, there exists C2 =C2( f ,K,T )> 0 such that

sup
0≤t≤T

∥u(t)−u0(t)∥Lp ≤C2eC f ∥K−KN∥L1 T∥K −KN∥L1∥u0∥Lp

holds, where u0 ∈C([0,T ];BC(Rn)∩L1(Rn)) is the solution to (NP) with K = KN .

This implies that the difference of the solutions to (NP) with K and KN can be bounded by the difference of
K and KN in L1(Rn) space.

Here, we introduce the following assumptions for K.

Assumption 2.1. Let K ∈ L1(Rn) be a radial function. Let us denote K(x) = J(|x|).

• When n = 1, we assume that J ∈C([0,+∞)) and that the limit lim
r→+∞

erJ(r) exists. Then, we set

h(λ ) :=
J(− logλ )

λ
,

where we define h(0) := lim
r→+∞

erJ(r);
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• When n = 2, we assume that J ∈C1([0,+∞)), and that there exists α > 1/2 such that the limit

lim
r→+∞

rα erJ′(r)

exists. Then, introducing the following function

A(r) :=−2r
π

∫ +∞

0
J′(r coshs)ds,

we set

h(λ ) :=
A(− logλ )

λ
.

Here h(0) := lim
r→+∞

erA(r) = 0;

• When n = 3, we assume that J ∈C((0,+∞)) and that both limits lim
r→+0

rJ(r) and lim
r→+∞

rerJ(r) exist. Then,
we set

h(λ ) :=−(logλ )
J(− logλ )

λ
,

where we define h(0) := lim
r→+∞

rerJ(r) and h(1) := lim
r→+0

rJ(r).

The following error estimate of an expansion by the Green function k j is one of our main results.

Theorem 2.2. Let n ∈ {1,2,3} and d j = j−2 for j ∈ N. Let Assumption 2.1 be enforced. Then, for any N ∈ N
and constants {α j}1≤ j≤N+1,

∥K −KN+1∥L1 ≤
2πn/2

Γ(n/2)
max

λ∈[0,1]
|h(λ )−PN(λ )|

holds, where PN(λ ) is the polynomial defined as

PN(λ ) :=
N

∑
j=0

α j+1c j,nλ
j, c j,n :=



j+1
2

, (n = 1),

( j+1)2

2π
, (n = 2),

( j+1)2

4π
, (n = 3).

This theorem shows that the approximation error between K and KN+1 is evaluated in terms of the absolute
error between the function h determined from the integral kernel and the polynomial PN . This allows us to
examine how to determine {α j}1≤ j≤N+1 based on polynomial approximation theory. Since the properties of the
Green function depend on spatial dimensions, we need Assumption 2.1 for the approximation by KN+1. In the
cases that n = 1 or n = 3, k j satisfies this assumption for all 0 < d j ≤ 1. On the other hand, when n = 2, k j does
not satisfy the assumption for any d j > 0. In this sense, the case that n = 2 is a technical assumption. The proof
is given in Section 4.

We provide examples of how to choose the coefficients {α j}1≤ j≤N+1. Before stating the result, we prepare
some notions. Let h ∈C([0,1]). We define the modulus of continuity of h on [0,1] as

ω(h,η) := sup{|h(λ1)−h(λ2)| ; λ1,λ2 ∈ [0,1], |λ1 −λ2| ≤ η} .

For N ∈ N, let us define constants β j,N [h] (0 ≤ j ≤ N) as

(2.10) β j,N [h] :=
j

∑
ν=0

(−1) j−ν h
(

ν

N

)(N
j

)(
j
ν

)
, ( j = 0,1, . . . ,N),
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where
(·
·
)

is the binomial coefficient. The constant β j,N [h] plays the role to determine the coefficients of the
Bernstein polynomial below. Furthermore, we set the following constant

l j,N [h] :=
1

22N+1

N

∑
ν=0

ζν ,N(h)τ
(N+1)
j,ν , ( j = 0,1, . . . ,N),

where ζν ,N(h) and τ
(N+1)
j,ν are defined in Subsection 4.3. The constant l j,N [h] plays the role to determine the

coefficients of the Lagrange polynomial with the Chebyshev nodes below. Using these coefficients of the
polynomials, we obtain the following explicit estimates.

Corollary 2.1. Let n ∈ {1,2,3} and d j = j−2 for j ∈ N. Let Assumption 2.1 be enforced.

• When α j = β j−1,N [h]/c j−1,n, for m ∈ {0,1}, there exists a constant E(m)> 0 independent of K such that
if h ∈Cm([0,1]) holds, then

∥K −KN+1∥L1 ≤
2E(m)πn/2

Γ(n/2)
N−m/2

ω(h(m),N−1/2).

• When α j = l j−1,N [h]/c j−1,n, for h ∈ Lip([0,1]), it holds that

∥K −KN+1∥L1 ≤
2πn/2

Γ(n/2)

(
2+

2
π

logN
)

ω(h,N−1).

Remark 2.1. As in Lemma 4.7, for h ∈Cm[0,1] with m ∈N in the case of α j = l j−1,N [h]/c j−1,n, the convergence
order becomes O(N−m).

We have described our results on the approximation of integral kernels for n ∈ {1,2,3}. While this result is
sufficient to deal with actual phenomena, the case that n ≥ 4 remains as a mathematical problem. The case is
left as a future work. The proof of Corollary 2.1 is in Section 4.

Under the above mentioned settings, we obtain the main approximation result to the nonlocal problems (NP)
by using the reaction-diffusion system (RDδ ) as follows.

Theorem 2.3. Let n ∈ {1,2,3} and d j = j−2 for j ∈ N. For any integral kernel K satisfying Assumption
2.1, ε > 0, δ > 0 and T > 0, there exist N = N(K,n,ε) ∈ N, a reaction diffusion system (RDδ ) with N + 1
components, and positive constants

C1 =C1( f ,D,{α j}1≤ j≤N ,{d j}1≤ j≤N ,T ), C3 =C3( f ,K,T ),

such that

sup
0≤t≤T

∥uδ (t)−u(t)∥Lp ≤ (C1δ +C3ε)∥u0∥Lp ,

sup
0≤t≤T

∥vδ
j (t)− (k j ∗u)(t)∥Lp < (C1δ +C3ε)∥u0∥Lp , ( j = 1,2, . . . ,N),

where u is the solution to (NP) with u0 ∈ BC(Rn)∩Lp(Rn), and (uδ ,vδ
1 , . . . ,v

δ
N) is the solution to (RDδ ) with

(2.6).

Remark 2.2. We can take the limit of δ → +0 in (RDδ ) since the constants C1 and C3 are independent of δ .
Furthermore, after this limit, we can take the limit of ε → 0 in (RD0) since the constant C3 is independent of
N. If Lemma 4.3 in Subsection 4.2 or Lemma 4.6 in Subsection 4.3 is applied, Theorem 2.3 also shows the
convergence rate with respect to δ and N.
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Remark 2.3. The global Lipschitz condition on f (u,v) can be removed if the boundedness of the solutions can
be guaranteed. When f (u,v) is a locally Lipschitz continuous function on R2 and u0 ∈ BC(Rn)∩Lp(Rn) for
1 ≤ p ≤+∞, the same assertion as Theorem 2.3 follows by choosing a sufficiently large C f > 0 if

sup
0≤t≤T

(∥u(t)∥L∞ +∥u0(t)∥L∞ +∥uδ (t)∥L∞)<+∞

is obtained a priori for some T > 0 and δ > 0. Here, u0 is a solution to (NP) with K = KN .

Remark 2.4. When p = +∞ and u0 ∈ BC(Rn) is a periodic function, the solution is also a spatially periodic
function with the same period. Therefore, the approximation in Theorem 2.3 can be used to evaluate solutions
with periodic boundary conditions.

The necessary lemmas for proof of Theorem 2.3 is given in Section 3 and the proof of Theorem 2.3 is given
in Section 5.

3. Error estimates

3.1. Properties of the Green function

Here we describe some properties of the Green function that we use. Some properties are also described in
[17], but we summarize those necessary properties for the ease of the reader.

The Fourier transform of G(|x|) defined by (2.8) is represented by

Ĝ(ξ ) = Fn[G](ξ ) :=
∫
Rn

e−ix·ξ G(|x|)dx

= (2π)n/2
(

1
|ξ |

)n/2−1 ∫ +∞

0
rn/2Jn/2−1(|ξ |r)G(r)dr

=

(
1
|ξ |

)n/2−1 ∫ +∞

0
rJn/2−1(|ξ |r)Mn/2−1 (r)dr

for |ξ |> 0, where Jν(r) is the Bessel function of the first kind with the order ν . Using formula

∫ +∞

0
rJn/2−1(|ξ |r)Mn/2−1 (r)dr = |ξ |n/2−1

2F1

(n
2
,1;

n
2

;−|ξ |2
)
=

|ξ |n/2−1

1+ |ξ |2

from §13.45 in [31], we obtain Ĝ(ξ ) =
1

1+ |ξ |2
. Here, 2F1(a,b;c;z) is the hypergeometric function.

It is obvious that G(|x|) is positive for |x|> 0. Moreover, we find that

∫
Rn

G(|x|)dx =
2πn/2

Γ(n/2)

∫ +∞

0
rn−1G(r)dr

=
1

2n/2−1Γ(n/2)

∫ +∞

0
rn/2Mn/2−1(r)dr = 1

by using the integral formula∫ +∞

0
rµ−1Mν(r)dr = 2µ−2

Γ

(
µ −ν

2

)
Γ

(
µ +ν

2

)
with |Re(ν)|< Re(µ) from §13.21 in [31].

In summary, k j defined in (2.7) has the following properties:

Lemma 3.1. For j ∈ N, we have
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(i) k j ∈C(Rn\{0})∩L1(Rn) and

Fn[k j](s) =
1

1+d j|ξ |2
;

(ii) k j(x)> 0 (x ̸= 0) and ∥k j∥L1 = 1.

In Section 4, we use the asymptotic properties of Mν . From [28], it is known the asymptotic properties

Mν(r)≃
√

π

2r
e−r, (r →+∞)(3.11)

and

Mν(r)≃


Γ(ν)

2

( r
2

)−ν

, (ν > 0),

− logr, (ν = 0),
(r →+0)

for any ν > 0, where f (r)≃ g(r) (r → a) means

lim
r→a

f (r)
g(r)

= 1.

3.2. Error estimates for reaction-diffusion approximation

In this subsection, we consider the singular limit problem for solutions to (RDδ ) with an initial condition
(2.6).

Proof of Lemma 2.1. Let w(t) = uδ (t)−u0(t) and z j(t) = vδ
j (t)− (k j ∗u0)(t). Then, we have

δ
∂ z j

∂ t
= d j∆z j − z j +w−δk j ∗

∂u0

∂ t
.

This implies that

z j(t) =
1
δ

∫ t

0
e−(t−s)/δ H(t − s;d j/δ )∗

[
w(s)−δ

(
k j ∗

∂u0

∂ t

)
(s)
]

ds

holds for any j = 1,2, . . . ,N. Notice that

k j ∗
∂u0

∂ t
(t) = [k j ∗ (D∆u0 + f (u0,KN ∗u0))](t)

=
D
d j

u0(t)+
D
d j

(k j ∗u0)(t)+ [k j ∗ f (u0,KN ∗u0))](t),

and then, we find that

(3.12)
∥∥∥∥(k j ∗

∂u0

∂ t

)
(t)
∥∥∥∥

Lp
≤
[

2D
d j

+C f (1+∥KN∥L1)

]
∥u0(t)∥Lp

for any t ∈ (0,T ] from the Young inequality and Lemma 3.1.
Let t ∈ (0,T ]. Then, we obtain that

(3.13) ∥z j(t)∥Lp ≤ 1
δ

∫ t

0
e−(t−s)/δ

[
∥w(s)∥Lp +δ

∥∥∥∥(k j ∗
∂u0

∂ t

)
(s)
∥∥∥∥

Lp

]
ds.

10



Moreover, we have

∥w(t)∥Lp ≤ C f

∫ t

0

[
∥w(s)∥Lp +

N

∑
j=1

|α j|∥z j(s)∥Lp

]
ds

≤ C f

∫ t

0
∥w(s)∥Lpds

+
C f

δ

N

∑
j=1

|α j|
∫ t

0

∫ s

0
e−(s−η)/δ

[
∥w(η)∥Lp +δ

∥∥∥∥(k j ∗
∂u0

∂ t

)
(η)

∥∥∥∥
Lp

]
dηds

≤ C f

∫ t

0
∥w(s)∥Lpds

+C f

N

∑
j=1

|α j|
∫ t

0
(1− e−(t−s)/δ )

[
∥w(s)∥Lp +δ

∥∥∥∥(k j ∗
∂u0

∂ t

)
(s)
∥∥∥∥

Lp

]
ds

≤ C f

(
1+

N

∑
j=1

|α j|

)∫ t

0
∥w(s)∥Lpds+δC f

N

∑
j=1

|α j|
∫ t

0

∥∥∥∥(k j ∗
∂u0

∂ t

)
(s)
∥∥∥∥

Lp
ds.

By using the Gronwall inequality, we deduce

∥w(t)∥Lp ≤ δC f

(
N

∑
j=1

|α j|
∫ t

0

∥∥∥∥(k j ∗
∂u0

∂ t

)
(s)
∥∥∥∥

Lp
ds

)
exp

(
C f

(
1+

N

∑
j=1

|α j|

)
t

)
.

From (3.12) and Theorem 2.1, there exists

C11 =C11( f ,D,{α j}1≤ j≤N ,{d j}1≤ j≤N ,T )> 0

such that

∥w(t)∥Lp ≤C11∥u0∥Lpδ

holds. From the similar argument for w and (3.13), there exists a positive constant C12 =C12( f ,D,{α j}1≤ j≤N ,{d j}1≤ j≤N ,T )
such that

∥z j(t)∥Lp ≤C12∥u0∥Lpδ

holds. Thus, we obtain the desired assertion.
Next, we evaluate the continuity of the solution to (NP) with respect to the integral kernel in Lemma 2.2.

Proof of Lemma 2.2. Let 1 ≤ p ≤+∞ and t ∈ (0,T ]. Let uerr(t) := u(t)−u0(t) and Kerr(x) := K(x)−KN(x).
Then, we have

|uerr(t)| ≤ C f

∫ t

0
H(t − s;D)∗ (|uerr(s)|+ |(K ∗u)(s)− (KN ∗u0)(s)|ds

≤ C f

∫ t

0
H(t − s;D)∗ (|uerr(s)|+ |(KN ∗uerr)(s)|+ |(Kerr ∗u)(s)|)ds.

From the Young inequality, we deduce

∥uerr(t)∥Lp ≤ C f

∫ t

0
[(1+∥KN∥L1)∥uerr(s)∥Lp +∥Kerr∥L1∥u(s)∥Lp ]ds.

11



Using the Gronwall inequality and Theorem 2.1 yields that

∥uerr(t)∥Lp ≤ C f

(∫ t

0
∥u(s)∥Lpds

)
eC f (1+∥KN∥L1 )t∥Kerr∥L1

≤ C f

(∫ t

0
eC f (1+∥K∥L1 )tds

)
eC f (1+∥KN∥L1 )t∥Kerr∥L1∥u0∥Lp

≤ 1
1+∥K∥L1

eC f (2+∥K∥L1+∥KN∥L1 )t∥Kerr∥L1∥u0∥Lp

≤ 1
1+∥K∥L1

eC f (2+2∥K∥L1+∥Kerr∥L1 )t∥Kerr∥L1∥u0∥Lp .

Thus, we obtain the desired assertion.

4. Approximation of a kernel by the Green function in L1(Rn)

Throughout of this section, we set d j = j−2 for j ∈ N. For simplicity, we use the notation KN defined in
(2.9).

4.1. Error estimate for integral kernels

For the result of L1(R) convergence stated in Theorem 2.2, we can obtain the one in W 1,1(R). Although this
result is not used for the reaction-diffusion approximation of nonlocal interactions, we provide the following
result on derivative approximation for Theorem 2.2.

Theorem 4.1. Let n ∈ {1,2,3} and d j = j−2 for j ∈N. We assume the following conditions in each dimension:

• When n = 1, we assume that J ∈C1([0,+∞)) and that the limits lim
r→+∞

e2rJ(r) and lim
r→+∞

e2rJ′(r) exist.

• When n = 2, we assume that J ∈C2([0,+∞)) and lim
r→+0

J′(r)+ rJ′′(r) = 0, that the limit lim
r→+0

r−1(J′(r)+

rJ′′(r)) exists, and that there exists α > 1/2 such that the limits

lim
r→+∞

rα e2rJ′(r), lim
r→+∞

rα e2rJ′′(r)

exist.

• When n= 3, we assume that J ∈C1((0,+∞)) and that the limits lim
r→+0

rJ(r), lim
r→+0

(J(r)+rJ′(r)), lim
r→+∞

re2rJ(r),

and lim
r→+∞

re2rJ′(r) exist.

Let the same notation of h in Assumption 2.1 be enforced. Then, for any N ∈ N and constants {α j}1≤ j≤N+1,

∥K −KN+1∥W 1,1 ≤
2(n+1)πn/2

Γ(n/2)
max

λ∈[0,1]
|h(λ )−PN(λ )|

+
2nπn/2

2nΓ(n/2)
max

λ∈[0,1]
|h′(λ )−P′

N(λ )|

holds, where PN is the polynomial defined in Theorem 2.2.

We provide the proofs of Theorem 2.2 and Theorem 4.1 in the successive sub-subsections, respectively.
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4.1.1. One-dimensional case
We first give the proof of Theorem 2.2 when n = 1. Note that in this case k j is represented as

k j(x) =
j
2

e− j|x|.

Proof of Theorem 2.2. Let Assumption 2.1 for n = 1 be enforced. Then, we obtain

∥K −KN+1∥L1 = 2
∫ +∞

0

∣∣∣∣∣J(r)−N+1

∑
j=1

jα j

2
e− jr

∣∣∣∣∣dr

≤ 2
(∫ +∞

0
e−rdr

)
sup
r≥0

∣∣∣∣∣erJ(r)−
N

∑
j=0

α j+1c j,ne− jr

∣∣∣∣∣
= 2 max

λ∈[0,1]
|h(λ )−PN(λ )|

from the definition of {α j}1≤ j≤N+1.
From this proof, we obtain a point-wise absolute error as follows.

Corollary 4.1. Let n = 1 and d j = j−2 for j ∈ N. Let Assumption 2.1 be enforced. Then, we have

|K(x)−KN+1(x)| ≤ e−|x| max
λ∈[0,1]

|h(λ )−PN(λ )|

for any x ∈ R.

Proof of Theorem 4.1. We note that

h′(λ ) =−J′(− logλ )+ J(− logλ )

λ 2 =−e2r(J′(r)+ J(r)), (− logλ = r)

and we define h′(0) := lim
r→+∞

−e2r(J(r)+ J′(r)). Then, we compute that

∥∥∥∥ ∂

∂x
(K −KN+1)

∥∥∥∥
L1

= 2
∫ +∞

0

∣∣∣∣∣J′(r)+N+1

∑
j=1

j2α j

2
e− jr

∣∣∣∣∣dr

≤ 2
∫ +∞

0
e−2r

∣∣∣∣∣e2r(J′(r)+ J(r))+
N

∑
j=0

jα j+1c j,ne−( j−1)r

∣∣∣∣∣dr+∥K −KN+1∥L1

≤ 2
(∫ +∞

0
e−2rdr

)
max

λ∈[0,1]

∣∣h′(λ )−P′
N(λ )

∣∣+∥K −KN+1∥L1

= max
λ∈[0,1]

∣∣h′(λ )−P′
N(λ )

∣∣+2 max
λ∈[0,1]

|h(λ )−PN(λ )| ,

Thus, the proof in one-dimensional case is complete.

4.1.2. Two-dimensional case
We show the case that n = 2 in Theorem 2.2. Remark that k j is expressed as

k j(x) =
j2

2π
M0( j|x|) = j2

2π

∫ +∞

0
e− j|x|coshsds.

Let Assumption 2.1 for n = 2 be enforced. We prepare a lemma for A(r). The integral transformation A(r) of
J(r) is defined as inspired by the Abel transformation [4]. Based on the theory, it follows
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Lemma 4.1. A is well-defined on [0,+∞) and satisfies A(0) = 0, A ∈C([0,+∞)) and

lim
r→+∞

erA(r) = 0.

Moreover, J is represented by

J(r) =
∫ +∞

0
A(r coshs)ds.

Proof. From Assumption 2.1, there exists a constant CJ > 0 such that

|J′(r)| ≤CJ min{1,r−α}e−r (r > 0).

The continuity of A is obtained by the Lebesgue dominated theorem. For r > 0, we obtain that

|A(r)| ≤ 2r
π

∫ +∞

0
|J′(r coshs)|ds

≤ 2CJr
π

∫ +∞

0
min{1,(r coshs)−α}e−r coshsds

≤ 2CJ

π
min{r,r1−α}M0(r).

This implies that

lim
r→+∞

erA(r) = 0

from (3.11). Taking a limit as r →+0 yields A(0) = 0. Finally, we have∫ +∞

0
A(r coshs)ds =

∫ +∞

r

A(s)√
s2 − r2

ds

=− 2
π

∫ +∞

r

∫ +∞

s

sJ′(η)
√

s2 − r2
√

η2 − s2
dηds

=− 2
π

∫ +∞

r

∫
η

r

s
√

s2 − r2
√

η2 − s2
dsJ′(η)dη

=−
∫ +∞

r
J′(η)dη = J(r).

Thus, we get the desired assertion.

Proof of Theorem 2.2. From the definitions of h and {α j}1≤ j≤N+1, we have

∥K −KN+1∥L1 = 2π

∫ +∞

0
r

∣∣∣∣∣J(r)−N+1

∑
j=1

j2α j

2π
M0( jr)

∣∣∣∣∣dr

≤ 2π

∫ +∞

0

∫ +∞

0
r

∣∣∣∣∣A(r coshs)−
N+1

∑
j=1

α jc j−1,ne− jr coshs

∣∣∣∣∣dsdr

≤ 2π

(∫ +∞

0

∫ +∞

0
re−r coshsdsdr

)
sup
r≥0

∣∣∣∣∣erA(r)−
N

∑
j=0

α j+1c j,ne− jr

∣∣∣∣∣
= 2π max

λ∈[0,1]
|h(λ )−PN(λ )| .

Similarly, we get a point-wise absolute error.
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Corollary 4.2. Let n = 2 and d j = j−2 for j ∈ N. Let Assumption 2.1 be enforced. Then, we have

|K(x)−KN+1(x)| ≤ M0(|x|) max
λ∈[0,1]

|h(λ )−PN(λ )|

for all x ∈ R2\{0}.

Proof of Theorem 4.1. First we show the following properties.

Lemma 4.2. A′ is well-defined on [0,+∞), A ∈C1([0,+∞)), A′(0) = 0 and lim
r→+∞

e2rA′(r) = 0. Moreover, J′ is

represented by

J′(r) =
∫ +∞

0
A′(r coshs)coshsds.

Proof of Lemma 4.2. From the assumptions of Theorem 4.1, there exists a constant CJ such that

|J′(r)+ rJ′′(r)| ≤CJ min{r,r−α}e−2r

for r ∈ [0,∞). Using this boundedness, we obtain that

|A′(r)| ≤ 2CJ

π

∫
∞

0
(r coshs)e−2r coshsds

=
2CJ

π

(∫ √
r2+1

r
te−2t dt√

t2 − r2
+
∫

∞

√
r2+1

te−2t dt√
t2 − r2

)
≤ 2CJ

π

5
4

for r ≥ 0. For any rn ∈ [0,+∞), we set Jn(s) := J′(rn coshs)+ rn(coshs)J′′(rn coshs) for s ∈ [0,+∞). Then,
for any rn → r,(n → +∞), we have lim

n→+∞
Jn(s) = J′(r coshs) + r(coshs)J′′(r coshs) for a fixed s from the

continuity of J′ and J′′. Thus, using the dominated convergence theorem, we see that A′ is continuous for r ≥ 0.
Moreover, for any rn →+0,(n → ∞), we have

lim
n→+∞

A′(rn) = lim
n→+∞

− 2
π

∫
∞

0
Jn(s)ds =− 2

π

∫
∞

0
lim

n→+∞
Jn(s)ds = 0.

Similarly to the proof of Lemma 4.1, we can compute that

|A′(r)| ≤ 2CJr
π

min{1,r−1−α}M1(2r).

This yields that lim
r→+∞

e2rA′(r) = 0. Finally, we see that

∫ +∞

0
A′(r coshs)coshsds =− 2

πr

∫
∞

r

∫
η

r

s(J′(η)+ηJ′′(η))
√

s2 − r2
√

η2 − s2
dsdη = J′(r).

From this lemma, we define h′(0) = lim
r→+∞

−e2r(A(r)+A′(r)). Then, we see that

h′(λ ) =−A′(− logλ )+A(− logλ )

λ 2 =−e2r(A′(r)+A(r)), (− logλ = r).
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Now, we can estimate that

2

∑
j=1

∥∥∥∥ ∂

∂x j
(K −KN+1)

∥∥∥∥
L1

= 8
∫ +∞

0
r

∣∣∣∣∣J′(r)+N+1

∑
j=1

j3α j

2π
M1( jr)

∣∣∣∣∣dr

≤ 8
∫ +∞

0

∫ +∞

0
r coshse−2r coshs

×

∣∣∣∣∣A′(r coshs)e2r coshs +
N+1

∑
j=1

jα jc j−1,ne−( j−2)r coshs

∣∣∣∣∣dsdr

≤ 8
(∫ +∞

0

∫ +∞

0
r coshse−2r coshsdsdr

)
×max

R≥0

∣∣∣∣∣e2R(A′(R)+A(R))+
N

∑
j=0

jα j+1c j,ne−( j−1)R

∣∣∣∣∣
+8
(∫ +∞

0

∫ +∞

0
r coshse−r coshsdsdr

)
max
R≥0

∣∣∣∣∣eRA(R)−
N

∑
j=0

α j+1c j,ne− jR

∣∣∣∣∣
= π max

λ∈[0,1]
|h′(λ )−P′

N(λ )|+4π max
λ∈[0,1]

|h(λ )−PN(λ )|, (λ = e−R).

Thus, we obtain the desired assertion in two-dimensional case.
Here, we introduce some examples of A.

Example 4.1. Let K(x) = J(|x|) = (a+ b|x|)e−c|x| with a,b ∈ R and c > 1. Then, K satisfies Assumption 2.1,
and A is represented by

A(r) = −2r
π

∫ +∞

0
{(b−ac)−bcr coshs}e−cr coshsds

=
2r
π
{(ac−b)M0(cr)+bcrM1(cr)}.

Example 4.2. Let K(x) = J(|x|) = e−a|x|2 with a > 0. It is easy to see that K satisfies Assumption 2.1. Then, A
is computed as

A(r) =
4ar2

π

∫ +∞

0
e−ar2 cosh2 s coshsds

=
2ar2

π

∫ +∞

0

e−ar2(s+1)
√

s
ds

=
2ar2

π
e−ar2

√
π

ar2 = 2
√

a
π

re−ar2
.

4.1.3. Three-dimensional case
Finally, we prove Theorem 2.2 for the case that n = 3. It should be noted that in this case, k j is represented

as

k j(x) =
j2

4π|x|
e− j|x|.

16



Proof of Theorem 2.2. Let Assumption 2.1 for n = 3 be enforced. Then, we obtain

∥K −KN+1∥L1 = 4π

∫ +∞

0
r2

∣∣∣∣∣J(r)−N+1

∑
j=1

j2α j

4πr
e− jr

∣∣∣∣∣dr

= 4π

∫ +∞

0
re−r

∣∣∣∣∣rerJ(r)−
N

∑
j=0

α j+1c j,ne− jr

∣∣∣∣∣dr

≤ 4π max
λ∈[0,1]

|h(λ )−PN(λ )|

from the definition of {α j}1≤ j≤N+1. The desired assertion in three-dimensional case is obtained.
By a quite similar argument, we have a point-wise absolute error.

Corollary 4.3. Let n = 3 and d j = j−2 for j ∈ N. Let Assumption 2.1 be enforced. Then, we have

|K(x)−KN+1(x)| ≤
e−|x|

|x|
max

λ∈[0,1]
|h(λ )−PN(λ )|

for all x ∈ R3\{0}.

Proof of Theorem 4.1. We note that

h′(λ ) =−J(− logλ )− (logλ )J′(− logλ )− (logλ )J(− logλ )

λ 2

=−e2r(J(r)+ rJ′(r)+ rJ(r)), (− logλ = r).

We can define h′(0) = lim
r→+∞

−e2r(J(r)+ rJ′(r)+ rJ(r)) and h′(1) = lim
r→+0

−e2r(J(r)+ rJ′(r)+ rJ(r)). Using

Corollary 4.3, we obtain that

∥(K −KN+1)/| · |∥L1 ≤ 4π

(∫ +∞

0
re−rdr

)
max

λ∈[0,1]
|h(λ )−PN(λ )|

= 4π max
λ∈[0,1]

|h(λ )−PN(λ )| .

Additionally, using the notation JN(r) := KN(|x|) = ∑
N
j=1 a jk j(|x|), r = |x|, we see that

J′N+1(r) =−
N

∑
j=0

jα j+1k j+1(r)− JN+1(r)−
1
r

JN+1(r).

Then, we can estimate that

3

∑
j=1

∥∥∥∥ ∂

∂x j
(K −KN+1)

∥∥∥∥
L1

= 6π

∫ +∞

0
r2 ∣∣J′(r)− J′N+1(r)

∣∣dr

≤ 6π

∫ +∞

0
r2
∣∣∣∣J(r)+ J′(r)+

1
r

J(r)− JN+1(r)− J′N+1(r)−
1
r

JN+1(r)
∣∣∣∣dr

+
3
2
∥K −KN+1∥L1 +

3
2
∥(K −KN+1)/| · |∥L1

≤ 6π

(∫ +∞

0
re−2rdr

)
max

λ∈[0,1]
|h′(λ )−P′

N(λ )|+12π max
λ∈[0,1]

|h(λ )−PN(λ )|

=
3π

2
max

λ∈[0,1]
|h′(λ )−P′

N(λ )|+12π max
λ∈[0,1]

|h(λ )−PN(λ )|.

Thus, we obtain the desired assertion in three-dimensional case.
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4.2. Bernstein Polynomial
We discuss the approximation of integral kernels using polynomial approximations. Here, we review a

polynomial approximation by the Bernstein polynomial.
Let h : [0,1]→ R and N ∈ N. We denote the Bernstein polynomial of degree N to the function h by

BN [h](λ ) :=
N

∑
ν=0

h
(

ν

N

)
bν ,N(λ ), bν ,N(λ ) :=

(
N
ν

)
λ

ν(1−λ )N−ν , (ν = 0,1, . . . ,N).

We now proceed to polynomial expansion of BN [h]. Since we find

bν ,N(λ ) =

(
N
ν

)N−ν

∑
j=0

(−1) j
(

N −ν

j

)
λ

j+ν =

(
N
ν

) N

∑
j=ν

(−1) j−ν

(
N −ν

j−ν

)
λ

j

=
N

∑
j=ν

(−1) j−ν

(
N
j

)(
j
ν

)
λ

j, (ν = 0,1, . . . ,N),

we get

BN [h](λ ) =
N

∑
ν=0

N

∑
j=ν

(−1) j−ν h
(

ν

N

)(N
j

)(
j
ν

)
λ

j

=
N

∑
j=0

(
j

∑
ν=0

(−1) j−ν h
(

ν

N

)(N
j

)(
j
ν

))
λ

j =
N

∑
j=0

β j,N [h]λ j,

where {β j,N [h]}0≤ j≤N is defined by (2.10). The following theorem of polynomial approximation is known.

Lemma 4.3 ([21]). For m ∈ {0,1}, there exists a constant E(m)> 0 such that if h ∈Cm([0,1]), then we have

max
λ∈[0,1]

|h(λ )−BN [h](λ )| ≤ E(m)N−m/2
ω(h(m),N−1/2).

Remark 4.1. It is known that we can choose E(0) = 5/4 and E(1) = 3/4 from [21]. Moreover, it is also known
that the convergence order becomes faster with the smoothness of h.

Convergence of derivatives has also been reported in [14] and [21]. Especially, the following result is known
with respect to the order of convergence:

Lemma 4.4 ([14]). If h ∈Cm+2([0,1]) for some m ≥ 0, then

max
λ∈[0,1]

∣∣∣∣ dm

dλ m

[
h(λ )−BN [h](λ )

]∣∣∣∣
≤ 1

2N

(
m(m+1) max

λ∈[0,1]
|h(m)(λ )|+m max

λ∈[0,1]
|h(m+1)(λ )|+ 1

4
max

λ∈[0,1]
|h(m+2)(λ )|

)
.

4.3. Lagrange Polynomial
In this subsection we introduce another candidate for the polynomial PN by using the Lagrange interpolation

polynomial with the Chebyshev nodes. We utilize the result of the coefficient determination of the Lagrange
polynomial in the case on [0,1] by [23]. We firstly prepare the notations. We set

Ck,N := (−1)k2N−2k−1 N
N − k

(
N − k

k

)
, (k = 0,1, . . . ,

[N
2

]
), N ∈ N,

where [·] is the Gauss symbol. Using this notation to the Chebyshev polynomial, we obtain the expression
TN(x) = ∑

[N/2]
k=0 Ck,NxN−2k. Next, we prepare the following constants:

µ
(N)
k, j := (−1) j2N−2k− j

(
N −2k

j

)
Ck,N ,N ∈ N,

18



ξk,N :=


[N/2]−[(k+1)/2]

∑
ν=0

µ
(N)
ν ,N−2ν−k, if N is even,

[N/2]−[k/2]

∑
ν=0

µ
(N)
ν ,N−2ν−k, otherwise.

Utilizing these coefficients, with respect to the shifted Chebyshev polynomial we have TN(2x−1)=∑
N
k=0 ξk,Nxk, x∈

[0,1]. This proof is written in [23].
Let us denote the Chebyshev nodes by

r j,N :=
1
2
+

1
2

cos
2 j+1

2N
π, ( j = 0,1, . . . ,N −1).

For the function h defined in Assumption 2.1, setting

ζ j,N [h] :=
h(r j,N+1)

∏
N
k=0,k ̸= j(r j,N+1 − rk,N+1)

, ( j = 0,1, . . . ,N), N ∈ N,

we define the Lagrange polynomial as

LN(λ ) :=
N

∑
j=0

ζ j,N

N

∏
k=0,k ̸= j

(λ − rk,N+1).

Regarding the determination of the coefficients of the Lagrange polynomial given interpolation points using
Chebyshev nodes, the following lemma holds.

Lemma 4.5 ([23]). For N ∈ N, we set the coefficients as

τ
(N)
j,ν :=

N−1

∑
k= j

(rν ,N)
k− j

ξk+1,N , ( j = 0,1, . . . ,N −1), (ν = 0,1, . . . ,N −1),

l j,N [h] :=
1

22N+1

N

∑
ν=0

ζν ,N [h]τ
(N+1)
j,ν , ( j = 0,1, . . . ,N).

Then, it holds

LN(λ ) =
N

∑
j=0

l j,N [h]λ j, λ ∈ [0,1].

Using the properties of the Lagrange and Chebyshev polynomial as in Section 6.5 of [22] and Section 1.3
of [29], we obtain the following estimates.

Lemma 4.6. For h ∈ Lip([0,1]), it holds that

max
λ∈[0,1]

|h(λ )−LN(λ )| ≤ (1+µN)ω(h,N−1),

where µN = (2/π) logN +1 that comes from the Lebesgue constant.

Furthermore, for the smooth functions, the following estimate is known.

Lemma 4.7 ([7], Section 6). For h ∈Cm([0,1]) with m ∈ N, it holds that

max
λ∈[0,1]

|h(λ )−LN(λ )| ≤
1
2

(
π

2

)m
∥h(m)∥C([0,1])(N −m+2)−m, N ≥ m.
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Figure 2: Graphs of K and KN+1 with N = 30 (top panels), the distributions of {α j}1≤ j≤N+1 (bottom panels) by using the
Bernstein polynomial. The graph of K and KN+1 are shown by the red line and the blue dashed line, respectively. The
numerical examples correspond to the results with n = 1 (left), n = 2 (middle), and n = 3 (right), respectively.
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Figure 3: Graphs of K and KN+1 with N = 10 (top panels), the distributions of {α j}1≤ j≤N+1 (bottom panels) by using the
Lagrange polynomial with the Chebyshev nodes. The graph of K and KN+1 are shown by the red line and the blue dashed
line, respectively. The numerical examples correspond to the results with n = 1 (left), n = 2 (middle), and n = 3 (right),
respectively.

4.4. Polynomial approximation and numerical examples

We first provide the proof of Corollary 2.1.

Proof of Corollary 2.1 Setting α j = β j−1,N [h]/c j−1,n for j = 1,2, . . . ,N and using Theorem 2.2 and Lemma
4.3, we obtain the first assertion. Similarly, setting α j = l j−1,N [h]/c j−1,n for j = 1,2, . . . ,N and using Theorem
2.2 and Lemma 4.6, we obtain the second assertion.

Now, we present numerical examples of the approximation of a kernel. We treat the case that the kernel is
given by

K(x) = e−|x|2 .

Note that K satisfies Assumption 2.1 for all n ∈ {1,2,3}.
The graphs of K and KN+1 using the Bernstein polynomial are shown in Fig. 2. It can be visually confirmed

that the graphs of K and KN+1 are similar in the case that N = 30. When n = 3, the graphs are a bit separated
near the origin, which is expected due to the singularity of the Green function there. The values in the middle
of {α j} are large, on the order of 104 or more. Since {α j} are defined by using (2.10), increasing j is thought
to cause it by increasing the value of the binomial coefficient.

Figure 3 shows the numerical results by using the Lagrange polynomial with Chebyshev nodes. It is ob-
served that the graphs of K and KN+1 are similar in the case that N = 10.
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5. Reaction-diffusion approximation of nonlocal interactions

Now we explain the proof of the main results.

Proof of Theorem 2.3. Let the assumption of Theorem 2.3 be enforced. As in Corollary 2.1, for any ε > 0, there
exist N ∈N and {α j}1≤ j≤N such that ∥K−KN∥L1 ≤ ε . Then, from Lemma 2.2 there exists C3 =C3( f ,K,T )> 0
such that

∥u(t)−u0(t)∥Lp ≤C3∥u0∥Lp∥K −KN∥L1 ≤C3∥u0∥Lpε

holds for any t ∈ (0,T ]. Moreover, there exists a positive constant C1 = C1( f ,D,{α j}1≤ j≤N ,{d j}1≤ j≤N ,T )
such that

∥uδ (t)−u0(t)∥Lp ≤ C1∥u0∥Lpδ ,

∥vδ
j (t)− (k j ∗u0)(t)∥Lp ≤ C1∥u0∥Lpδ

hold for any t ∈ (0,T ] from Lemma 2.1. Thus, for any t ∈ (0,T ], we have

∥u(t)−uδ (t)∥Lp ≤ ∥uδ (t)−u0(t)∥Lp +∥u(t)−u0(t)∥Lp

≤ (C1δ +C3ε)∥u0∥Lp

and

∥vε(t)− (k j ∗u)(t)∥Lp ≤ ∥(k j ∗u0
app)(t)− (k j ∗u)(t)∥Lp +∥vε(t)− (k j ∗u0)(t)∥Lp

≤ (C1δ +C3ε)∥u0∥Lp

from the Young inequality. Therefore, the proof is complete.

6. Concluding remarks

In this paper, we have demonstrated that in any Euclidean space up to three dimensions, the solution of
the nonlocal evolution equation with any radial integral kernel, subject to dimension-depend conditions, can
be approximated by that of a reaction-diffusion system with auxiliary factors. We showed that the reaction-
diffusion system coupled with auxiliary activators and inhibitors can approximate the time evolution governed
by arbitrary nonlocal interactions over any finite time interval. This is achieved by considering the quasi-steady
state of the auxiliary factors. In this framework, the parameters of the reaction-diffusion system can be explicitly
determined based on the shape of the integral kernel. Consequently, nonlocal problems can be reformulated
within the framework of reaction-diffusion systems, and vice versa. For instance, the theoretical framework
of the n-component reaction-diffusion system can be applied to analyze the nonlocal problems. Conversely,
insights from nonlocal problems can also be leveraged to study multi-component reaction-diffusion systems.

By employing this reaction-diffusion approximation, approximate solutions to nonlocal evolution equations
can be obtained through numerical simulations of the corresponding reaction-diffusion systems. Since this ap-
proach requires solving only the reaction-diffusion system for the auxiliary factors rather than directly handling
the nonlocal interactions, it is expected to significantly reduce computational costs and improve the efficiency
of solving nonlocal evolution equations.

The essentially important aspect in this reaction-diffusion approximation is the approximation result to any
radial kernel by a linear sum of the Green function k j in L1(Rn) space. The error reduces to a form of the
polynomial approximation generally. We employed the Bernstein and Lagrange polynomials to obtain the
convergence. The other polynomials that have good properties for the approximation can be candidates for L1

convergence. Regarding this convergence result, we remark that the result of the expansion by k j in the case of
Hm(Rn) space with arbitrary n ∈ N and m ∈ N∪{0} is obtained by Ishii and Tanaka [17]. As in Remark 2.1, if
h ∈Cm([0,1]) for m ∈N, the error ε converges to 0 in the order O(N−m). Thus, it is possible to obtain numerical
solutions at low cost and quickly, especially for nonlocal evolution equations with smooth integral kernels by
applying this approximation method to the numerical simulations.

For the equations with advective nonlocal interactions such as cell adhesion model (1.5) and the nonlocal
Fokker-Planck equation, the expansion result by the Green function in W 1,1(Rn) is necessary for this type of
the PDE approximation. Therefore, Theorem 4.1 can also be useful in the context of such study.
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Appendix A. Existence of a global solution to (NP)

We first consider the existence of the mild solution to (NP). The case that p =+∞ is simpler than the case
that 1 ≤ p <+∞, thus the discussion is omitted here. For T > 0 and 1 ≤ p <+∞, we define the Banach space
X(T, p) :=C([0,T ];BC(Rn)∩Lp(Rn)) and the norm

∥φ∥X(T,p) := sup
0≤t≤T

∥φ(t)∥L∞ + sup
0≤t≤T

∥φ(t)∥Lp .

We first check the property of P[φ ].

Lemma A.1. P : X(T, p)→ X(T, p) is well-defined. Moreover, for any u0 ∈ BC(Rn)∩Lp(Rn), we have

lim
t→+0

∥P[φ ](t)−u0∥Lp = 0

and

lim
t→+0

P[φ ](t,x) = u0(x)

for any x ∈ Rn.

Proof. Let φ ∈ X(T, p) and t ∈ (0,T ]. Then, we obtain that

∥P[φ ](t)∥Lp ≤ ∥u0∥Lp +C f (1+∥K∥L1)
∫ t

0
∥φ(s)∥Lpds

≤ ∥u0∥Lp +C f T (1+∥K∥L1)∥φ∥X(T,p)

from the Young inequality. A similar argument yields that

∥P[φ ](t)∥L∞ ≤ ∥u0∥L∞ +C f T (1+∥K∥L1)∥φ∥X(T,p).

Moreover, since φ(t), (K ∗ φ)(t) and H(t,D) ∗ u0 belong to BC(Rn), we have P[φ ](t) ∈ BC(Rn). Thus, the
desired assertion is verified if the convergence of the initial datum is obtained. Since u0 is a bounded continuous
function in Lp(Rn), it is known that

lim
t→+0

∥H(t;D)∗u0 −u0∥Lp = 0

and

lim
t→+0

(H(t;D)∗u0)(x) = u0(x)

hold for any x ∈ Rn. Therefore, we obtain

∥P[φ ](t)−u0∥Lp ≤ ∥H(t;D)∗u0 −u0∥Lp +C f (1+∥K∥L1)
∫ t

0
∥φ(s)∥Lpds

≤ ∥H(t;D)∗u0 −u0∥Lp +C f t(1+∥K∥L1)∥φ∥X(T,p)

→ 0 (t →+0).

Similarly, for any x ∈ Rn, we have

|P[φ ](t,x)−u0(x)| ≤ |(H(t;D)∗u0)(x)−u0(x)|+C f t(1+∥K∥L1)∥φ∥X(T,p)

→ 0 (t →+0).

The proof is complete.

Next, we show the existence of the mild solution to (NP).
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Proposition A.1. There exists a unique mild solution u ∈ C([0,T ];BC(Rn)∩Lp(Rn)) to (NP) with an initial
datum u0 ∈ BC(Rn)∩Lp(Rn).

Proof. For ρ > 0, we introduce the norm

∥φ∥ρ := sup
0≤t≤T

e−ρt∥φ(t)∥L∞ + sup
0≤t≤T

e−ρt∥φ(t)∥Lp .

We note that it is an equivalent norm to ∥ · ∥X(T,p).
Fix ρ >C f (1+∥K∥L1) and t ∈ (0,T ]. For φ1,φ2 ∈ X(T, p), we have

|P[φ1](t)−P[φ2](t)|

≤C f

∫ t

0
H(t − s;D)∗ (|φ1(s)−φ2(s)|+ |(K ∗φ1)(s)− (K ∗φ2)(s))|)ds.

Thus, we deduce

e−ρt∥P[φ1](t)−P[φ2](t)∥Lp

≤C f

∫ t

0
e−ρt (∥φ1(s)−φ2(s)∥Lp +∥(K ∗φ1)(s)− (K ∗φ2)(s))∥Lp)ds

≤C f (1+∥K∥L1)
∫ t

0
e−ρ(t−s)e−ρs∥φ1(s)−φ2(s)∥Lpds

=
C f (1+∥K∥L1)

ρ
sup

0≤t≤T
e−ρt∥φ1(t)−φ2(t)∥Lp

from the Young inequality. A similar argument yields

∥P[φ1](t)−P[φ2](t)∥L∞ ≤
C f (1+∥K∥L1)

ρ
sup

0≤t≤T
∥φ1(t)−φ2(t)∥L∞ .

Therefore, we conclude

∥P[φ1]−P[φ2]∥ρ ≤
C f (1+∥K∥L1)

ρ
∥φ1 −φ2∥ρ .

Since P : (X(T, p),∥ · ∥ρ) → (X(T, p),∥ · ∥ρ) is a contraction map, there is a unique fixed point u ∈ X(T, p)
from the Banach fixed point theorem.

Fix 1 ≤ p ≤+∞ and T > 0. Let u ∈C([0,T ];BC(Rn)∩Lp(Rn)) be the mild solution to (NP) with an initial
datum u0 ∈ BC(Rn)∩Lp(Rn). Next, we estimate the bound of the Lq norm of the solution.

Lemma A.2. For any q ∈ [p,+∞] and T > 0,

∥u(t)∥Lq ≤ eC f (1+∥K∥L1 )t∥u0∥Lq

holds for any t ∈ [0,T ].

Proof. Let q ∈ [p,+∞] and t ∈ [0,T ]. Then, we have

∥u(t)∥Lq ≤ ∥u0∥Lq +
∫ t

0
∥ f (u(s),(K ∗u)(s))∥Lqds

≤ ∥u0∥Lq +C f (1+∥K∥L1)
∫ t

0
∥u(s)∥Lqds

from the Young inequality. The Gronwall inequality yields

∥u(t)∥Lq ≤ eC f (1+∥K∥L1 )t∥u0∥Lq .

Thus, we obtain the desired assertion.
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Let us consider the regularity of the mild solution. From the general theory to the heat equation, we know
that

H(·;D)∗u0 ∈C∞((0,+∞)×Rn).

Thus, we consider the regularity of the Duhamel term

I(t,x) :=
∫ t

0
H(t − s;D)∗ f (u(s),(K ∗u)(s))ds

=
∫ t

0

∫
Rn

H(t − s,x− y;D)∗ f (u(s,y),(K ∗u)(s,y))dyds.

For sake of simplicity, we set

g(t,x) := f (u(t,x),(K ∗u)(t,x)).

It is easy to see that g ∈C([0,T ];BC(Rn)).

Lemma A.3. It holds that I(t) ∈ BC1(Rn) for all t ∈ (0,T ]. Moreover, I(·,x) ∈ Cα([τ,T ]) holds for any α ∈
(0,1), τ ∈ (0,T ) and x ∈ Rn.

Proof. We first consider the spatial derivative. Fix j = 1,2, . . . ,n arbitrary. Since there is a constant CH1 > 0
independent of j such that ∥∥∥∥∂H

∂x j
(t;D)

∥∥∥∥
L1

≤ CH1√
t

holds for any t > 0, we have∣∣∣∣ ∂ I
∂x j

(t,x)
∣∣∣∣ ≤

∫ t

0

∫
Rn

∣∣∣∣∂H
∂x j

(t − s,x− y;D)∗g(s,y)
∣∣∣∣dyds

≤
(∫ t

0

∥∥∥∥∂H
∂x j

(t − s;D)

∥∥∥∥
L1

ds
)

sup
0≤t≤T

∥g(t)∥L∞

= 2CH1
√

t sup
0≤t≤T

∥g(t)∥L∞

for any t > 0 and x ∈ Rn from differentiating under the integral sign and the Young inequality. Thus, for all

t ∈ (0,T ], we obtain
∂ I
∂x j

(t) ∈ BC(Rn) and thus conclude I(t) ∈ BC1(Rn).

Next, we fix α ∈ (0,1), τ ∈ (0,T ) and x ∈ Rn. Let t1, t2 ∈ [τ,T ] with t2 > t1. Since we know that there is a
constant CH2 > 0 such that

∥∆H(t;D)∥L1 ≤
CH2

t
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holds for any t > 0, we find

|I(t2,x)− I(t1,x)| ≤
∫ t1

0
|H(t2 − s;D)−H(t1 − s;D)| ∗ |g(s)|ds

+
∫ t2

t1
H(t2 − s;D)∗ |g(s)|ds

≤
(∫ t1

0

∫ t2

t1

∥∥∥∥∂H
∂ t

(η − s;D)

∥∥∥∥
L1

dηds
)

sup
0≤t≤T

∥g(t)∥L∞

+(t2 − t1) sup
0≤t≤T

∥g(t)∥L∞

=

(∫ t1

0

∫ t2

t1
∥∆H(η − s;D)∥L1 dηds

)
sup

0≤t≤T
∥g(t)∥L∞

+(t2 − t1) sup
0≤t≤T

∥g(t)∥L∞

≤ CH2 (t2 log t2 − t1 log t1 − (t2 − t1) log(t2 − t1)) sup
0≤t≤T

∥g(t)∥L∞

+(t2 − t1) sup
0≤t≤T

∥g(t)∥L∞ .

Thus, we conclude I(·,x) ∈Cα([τ,T ]).

In addition, the following lemma is provided for Hölder estimate for the solution.

Lemma A.4. Let γ ∈ (0,1). Then, there exists a positive constant C =C(γ) such that[
∂H(t)

∂x j
∗φ

]
γ

≤Ct−(1+γ)/2∥φ∥L∞

for any t > 0, j = 1,2, . . . ,n and φ ∈ L∞(Rn), where [φ ]γ is Hölder seminorm.

Proof. Let φ ∈ L∞(Rn). Fix t > 0 and j = 1,2, . . . ,n arbitrary. For all x,z ∈ Rn, we find∣∣∣∣(∂H
∂x j

∗φ

)
(t,x)−

(
∂H
∂x j

∗φ

)
(t,z)

∣∣∣∣
≤ ∥φ∥L∞

∫
Rn

∣∣∣∣∂H
∂x j

(t,x− y)− ∂H
∂x j

(t,z− y)
∣∣∣∣dy

= t−1/2∥φ∥L∞

∫
Rn

∣∣∣∣∂H
∂x j

(1, t−1/2(x− z)− y)− ∂H
∂x j

(1,y)
∣∣∣∣dy

=: t−1/2∥φ∥L∞S(t−1/2(x− z)).

Since S(x) is a non-negative bounded continuous function on Rn and satisfies

S(x)≤ |x|
∫
Rn

∣∣∣∣ ∂

∂y j
∇H(1,y)

∣∣∣∣dy

from the mean value theorem, there exists a constant C =C(γ) such that

0 ≤ S(x)
|x|γ

≤ sup
|x|<1

S(x)
|x|γ

+ sup
|x|≥1

S(x)≤C.

Thus, we obtain ∣∣∣∣(∂H
∂x j

∗φ

)
(t,x)−

(
∂H
∂x j

∗φ

)
(t,z)

∣∣∣∣≤Ct−(1+γ)/2∥φ∥L∞ |x− z|γ .

The proof is complete.
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Fix t ∈ (0,T ] arbitrary. From Lemma A.3, we obtain u(t) ∈ BC1(Rn). Moreover, since f (u,v) is differen-
tiable almost everywhere for any open set of R2, we have

∥∇g(t)∥L∞ <+∞.

Hence, same argument as in the proof of Lemma A.3 can be applied, leading to u(t) ∈ BC2(Rn). By using
Lemma A.4, we conclude u(t) ∈C2+γ(Rn) for any γ ∈ (0,1).

We utilize the result of the Schauder estimate, Theorem 9.1.2 by Krylov [19]. Let τ ∈ (0,T ) and γ ∈ (0,1).
Since u(τ) ∈ C2+γ(Rn) and g ∈ Cγ/2,γ([τ,T ]×Rn), we obtain that the mild solution satisfies (RDδ ) with u ∈
C1+γ/2,2+γ([τ,T ]×Rn). As τ is arbitrary, it follows that u ∈ C1,2((0,T ]×Rn). Therefore, the mild solution u
becomes the unique classical solution to (RDδ ).

Appendix B. Existence of a global solution to (RDδ )

Here, we describe the proof of Proposition 2.1. Let us consider the existence of a mild solution to (RDδ )
with an initial condition (2.6).

Proposition B.1. For any T > 0, δ > 0 and 1 ≤ p ≤+∞, there exists a unique mild solution (uδ ,vδ
1 , . . . ,v

δ
N) ∈

{C([0,T ];BC(Rn)∩Lp(Rn))}N+1 to (RDδ ) with an initial condition (2.6), where u0 ∈ BC(Rn)∩Lp(Rn). This
solution belongs to {C1,2((0,T ]×Rn)}N+1.

This proof is almost same as the argument in Appendix A. It should be noted that the following result for
the boundedness of the solution is obtained.

Lemma B.1. For any q ∈ [p,+∞],

∥uδ (t)∥Lq ≤

(
1+δC f

N

∑
j=1

|α j|

)
∥u0∥Lq exp

(
C f

(
1+

N

∑
j=1

|α j|

)
t

)
,

∥vδ
j (t)∥Lq ≤ e−t/δ∥u0∥Lq + sup

0≤s≤t
∥uδ (s)∥Lq , ( j = 1,2, . . . ,N)

hold for all t ∈ [0,T ].

Proof. Let q ∈ [p,+∞]. For any t ∈ [0,T ] and j = 1,2, . . . ,N, we obtain that

∥vδ
j (t)∥Lq ≤ e−t/δ∥u0∥Lq +

1
δ

∫ t

0
e−(t−s)/δ∥uδ (s)∥Lqds

from the Young inequality. Moreover, we have

∥uδ (t)∥Lq ≤ ∥u0∥Lq +
∫ t

0

∥∥∥∥∥ f

(
uδ (s),

N

∑
j=1

α jvδ
j (s)

)∥∥∥∥∥
Lq

ds

≤ ∥u0∥Lq +C f

(∫ t

0
∥uδ (s)∥Lqds+

∫ t

0

N

∑
j=1

|α j|∥vδ
j (s)∥Lqds

)

≤ ∥u0∥Lq +C f

∫ t

0
∥uδ (s)∥Lqds

+C f

(
N

∑
j=1

|α j|

)(∫ t

0
e−s/δ∥u0∥Lqds+

1
δ

∫ t

0

∫ s

0
e−(s−η)/δ∥uδ (η)∥Lqdηds

)

≤

(
1+δC f

N

∑
j=1

|α j|

)
∥u0∥Lq +C f

(
1+

N

∑
j=1

|α j|

)∫ t

0
∥uδ (s)∥Lqds.
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The Gronwall inequality yields that

∥uδ (t)∥Lq ≤

(
1+δC f

N

∑
j=1

|α j|

)
∥u0∥Lq exp

(
C f

(
1+

N

∑
j=1

|α j|

)
t

)

for all t ∈ [0,T ]. Finally, we find

∥vδ
j (t)∥Lq ≤ e−t/δ∥u0∥Lq +

1
δ

sup
0≤s≤t

∥uδ (s)∥Lq

∫ t

0
e−(t−s)/δ ds

≤ e−t/δ∥u0∥Lq + sup
0≤s≤t

∥uδ (s)∥Lq

for any t ∈ [0,T ].
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