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Abstract 

 

Time series analysis is an essential tool employed in a wide range of applications to understand the underlying 

data trends or patterns over a period of time, or even to forecast the future values. It is well suitable for non-

stationary data, including many biomedical signals such as electrocardiogram (ECG), electroencephalogram 

(EEG), which are regularly fluctuating over specific periods.  

 

To monitor biomedical signals continuously, current medical practices require patient to wear a portable recording 

device for 24 hours or longer period. The recorded data are either stored in the device or uploaded to the cloud for 

clinician to conduct off-line analysis, which is power-hungry and not efficient. Thus, there are rising needs for 

online real-time signal classification and forecasting to provide early alarm for the symptoms such as arrythmia 

or cardiac arrest, so that the necessary medical intervention can be triggered in time to improve the therapeutic 

outcome.  

 

In this project, a time-domain ECG signal analysis model is developed based on a novel dynamically-biased Long 

Short-Term Memory (DB-LSTM) neural network. This model can perform both ECG forecasting and 

classification tasks simultaneously. Better than 98% accuracy and less than 10-3 normalized mean square error in 

forecasting task have been achieved. As for classification task, it reached fast training convergence with higher 

than 97% accuracy and lower training parameters contrasted to multiple neural network structures. Optimized for 

hardware implementation, all the network weights are truncated to INT4/INT3 length with compromising the 

classification training and inference accuracy for 2%/6% respectively, while no accuracy reduction in forecasting 

application.  Comprehensive simulations with multiple ECG datasets had proven the robustness of the proposed 

model.  

 

The next step is to implement this algorithm into FPGA and CMOS integrated circuit for practical deployment 

continuous cardiac monitoring. Also, by developing a platform for AI algorithm applying on digital hardware, 

multiple types of neural networks with selectable weight quantization can be simulated conveniently. Finally, an 

online training implemented on chips will be realized to perform health care monitoring.  
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Chapter 1 
 

Introduction 
 

1.1 Motivation 

 

Artificial intelligence internet of things (AIoT) is an emerging research area that combines sensor and artificial 

intelligence to enable real-time intelligent data analysis on edge devices. Many types of data in our daily life are 

in time series format. For example, the voice signal and the human vital signs such as electrocardiogram (ECG), 

electroencephalogram (EEG), etc. Time series data have a natural temporal property. Hence, the ability to extract 

distinct signal features from the time series becomes an interesting topic and it has attracted great research efforts 

recently. 

 

Cardiovascular diseases (CVDs) such as heart failure and atrial fibrillation are the leading causes of death globally 

[1]. Electrocardiogram (ECG) is the golden standard to monitor patient’s cardiac condition, by measuring the 

strength and timing of the electrical activity in the heart. by measuring the strength and timing of the electrical 

activity in the heart [2]. Some of the cardiovascular events such as heart rate variability (HRV) and atrial 

fibrillation are rare and not predictable. Therefore, long-term continuous ECG monitoring is required to capture 

such events for cardiac risk evaluation. Current medical practices require patient to wear a portable recording 

device for 24 hours or longer period. The recorded data are either stored in the device or uploaded to the cloud for 

clinician to conduct off-line analysis. However, there are rising needs for online real-time ECG forecasting and 

classification. The purpose is to forecast and detect the onset of symptoms such as arrythmia or cardiac arrest 

timely, so that early alarm and necessary medical intervention can be triggered in time to improve the therapeutic 

outcome. 

 

ECG is time-variant signal in nature. To forecast the values of future time steps and classify a time-variant 

sequence, the algorithm needs to learn from the past data and map them to an output sequence and respective 

pattern categories. There are a few key ECG anomaly patterns illustrated in Fig. 1.1, including left/right bundle 

branch block (L/R), atrial premature (A) and premature ventricular contraction (V). Together with the normal 

mode (N), five categories are required for meaningful ECG forecasting and classification. 

 

 

 

 
Figure 1.1: ECG signal with five key types of waveform pattern. 
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1.2 Objectives 

 

An algorithm level improvement needs to be done to improve the forecasting time steps and accuracy with fixed-

point weight precision, as well as to enhance classification accuracy with shorter window size and less training 

parameters. Thereafter, AI algorithm on hardware should support multiple neural networks for different aspects 

of application. Following by implementing the AI algorithm on FPGAs or CMOS circuits for health care 

monitoring. The detailed objectives listed in order: 

 

• Design a model to improve the conventional LSTM algorithm reported as dynamically-biased LSTM 

(DB-LSTM) [3].  

 

• Implement the DB-LSTM model on ECG signal forecasting and classification applications with MIT-

BIH ECG datasets [4]. 

 

• Develop DigiNet which a simulation platform for neural networks on digital hardware.  

 

• Integrate the AI algorithms on FPGA for testing and CMOS for tapeout. 

 

• Tapeout a chip that supports online training for healthcare monitoring. 

 

 

1.3 Organization 

 

This report is organized as follows:  

 

• Chapter 2: A literature review for recurrent algorithms and their applications on Bio-signal.  

 

• Chapter 3: Introduces the proposed model and training procedure, as well as fixed-point weight 

truncation. 

 

• Chapter 4: Perform the results for ECG forecasting and classification. 

 

• Chapter 5: Compares this model to other similar inventions. 

 

• Chapter 6: Make conclusion and explain future works. 
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Chapter 2 

 

Literature Review 
 

2.1 Introduction 

 

This chapter consists of two parts of literature review, Recurrent algorithms and ECG applications. Two widely 

used recurrent algorithms are reviewed and their applications on edge devices are also discussed. On the other 

hand, many state-of-the-art methods on forecasting and classifying ECG signals are discussed here, where 

forecasting ability as well as classification latency and accuracy are the evaluation criteria. Moreover, to embed 

ECG forecasting and classification tasks on edge devices, weight quantization is necessary and important. Thus, 

the algorithms should be modified and fit into the limit hardware resources of edge device with acceptable 

accuracy degradations.  

 

2.2 Literature Review for Recurrent Algorithms 

 

2.2.1 Long Short-Term Memory Algorithm 

 

The Long Short-Term Memory (LSTM) illustrated in Fig 2.1 is a widely used approach in Recurrent Neural 

Network (RNN). It can solve the problems of gradient disappearance and explosion during long sequence training. 

 
Figure 2.1: Conventional LSTM cell structure. 

TABLE I  LSTM CELL STRUCTURE PARAMETERS 

𝑋𝑡 Current input vector 

𝑐𝑡 Current cell state 

ℎ𝑡 Current cell output (hidden state) 

𝑐𝑡−1 Previous cell state 

ℎ𝑡−1 Previous cell output (hidden state) 

𝑓𝑡 , 𝑔𝑡 , 𝑖𝑡 , 𝑜𝑡  Current Forget, Generate, Input, Output statues 

𝑊𝑓,𝑔,𝑖,𝑜  Input weights for f, g, i, o 

𝑅𝑓,𝑔,𝑖,𝑜 Recurrent weights for f, g, i, o 

𝑏𝑓,𝑔,𝑖,𝑜 Bias for f, g, i, o 
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[5] demonstrated backward pass training to counteract linearly growth in forward pass to allow one dimensional 

(1-D) long sequence data to fit in the LSTM. Thereafter, a hierarchical multi-dimensional RNN is innovated which 

extended from unsegmented sequence data labelling [6].  

 

The four statuses of conventional LSTM can be expressed by (1) – (4): 

 

𝑓𝑡 = 𝜎(𝑋𝑡𝑊𝑓
𝑇 + ℎ𝑡−1𝑅𝑓

𝑇 + 𝑏𝑓) (1) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑊𝑔
𝑇 + ℎ𝑡−1𝑅𝑔

𝑇 + 𝑏𝑔) (2) 

𝑖𝑡 = 𝜎(𝑋𝑡𝑊𝑖
𝑇 + ℎ𝑡−1𝑅𝑖

𝑇 + 𝑏𝑖) (3) 
𝑜𝑡 = 𝜎(𝑋𝑡𝑊𝑜

𝑇 + ℎ𝑡−1𝑅𝑜
𝑇 + 𝑏𝑜) (4) 

 

where 𝜎 and tanh stands for sigmoid and hyperbolic tangent active function given in (5) and (6), respectively. 

𝜎(𝑥) =
1

1 + 𝑒(−𝑥)
(5) 

tanh(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
(6) 

 

After which, the updating of cell state and selection of hidden state is shown in (7) – (8): 

 

𝑐𝑡 = 𝑓𝑡  ⨀ 𝑐𝑡−1 + 𝑖𝑡  ⨀ 𝑔𝑡 (7) 
ℎ𝑡 = 𝑜𝑡  ⊙ tanh 𝑐𝑡 (8) 

 

2.2.2 Gated Recurrent Unit Algorithm 

 

Recently, [7] utilized multi-dimensional LSTM and achieved good results in multivariate feature applications. 

However, more researchers are seeking to modify LSTM to enhance its ability in handling complicated sequence 

data. Thus, Gated Recurrent Unit (GRU) shown in Fig 2.2 and empirical evaluation were established and reported 

in [8]. Both GRU and LSTM were proven to adapt in different multivariate time series problems based on their 

performance in [9, 10]. 

 

GRU is a compressed model based on LSTM, and its workflow is shown in (9) – (12) 

 

𝑧𝑡 = 𝜎(𝑊𝑧 × [ℎ𝑡−1, 𝑋𝑡]) (9) 
𝑟𝑡 = 𝜎(𝑊𝑟 × [ℎ𝑡−1, 𝑋𝑡]) (10) 

𝑔𝑡 = tanh(𝑊𝑔 × [𝑟𝑡 ⊙ℎ𝑡−1, 𝑋𝑡]) (11) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙𝑔𝑡  (12) 
 

 
Figure 2.2: Conventional GRU cell structure. 
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2.2.3  Recurrent Algorithm on Edge Devices 

 

On the other hand, edge device has limited hardware resources including computation capacity, memory size and 

battery lifetime. It remains a great challenge to implement the artificial intelligence algorithm on edge devices. 

LSTM has been implemented in hardware platforms such as FPGA [11, 12] and memristor crossbar arrays [13] 

shown in Fig 2.3. Hence, it is vital and necessary to design a novel cell structure for LSTM with both floating and 

fixed-point weight design, that can enhance the neural network performance on software level and also be applied 

and operated on edge devices. 

 

2.3 Literature Review for Bio-signal Applications 

 

There are many prior works on applying various machine learning algorithms to analyse ECG data for cardiac 

risk predication and classification [14-24].  

 

 

 
Figure 2.3: Memristor crossbar array on LSTM algorithm. 

 

Figure 2.4: ECG prediction model with VMD+NN. [Taken from Z. Sun, Y. Lei, J. Wang, Q. Liu and Q. Tan, ICEIEC 2017] 
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2.3.1  Forecasting of Bio-signal 

 

The recurrent neural network can by applied on many 11-dimentional time-series forecasting on bio signals, such 

as the ECG, Electroencephalogram (EEG) and surface electromyography (sEMG). Signal processing involving 

Fourier transform (FT) combined with multi-layer perceptron neural network [16, 17] provided a hybrid system 

for ECG forecasting. A TS fuzzy control system involving Gaussian membership function to do single time step 

forecasting is illustrated in [18]. Although they all yielded low Root Mean Square Error (RMSE), multiple FT 

process and Gaussian operations enlarge the time complexity and only one time step forecasting can be realized. 

Variational Mode Decomposition combined with Neural Network (VMD+NN) model [16], shown in Fig 2.4, 

provides a hybrid system for ECG prediction, from which VMD is to decompose the ECG original signal into 

nine sub signals based on frequency domain and then send to the three-layer BPNN consisting of 180 learnable 

parameters. Nine segments of 2160 samples are trained and resulted 0.0233 RMSE and 98.8% accuracy. A similar 

model [17] that combined phase space reconstruction and NN including 14 input neurons, 20 hidden neurons and 

single output neuron is applied to the same dataset, which performed 0.0423 RMSE and 97.3% accuracy. [18] 

illustrated a non-neuron method to do single time step forecasting for ECG signal. A fuzzy control system with 

3600 samples is used to obtain the TS fuzzy model involving Gaussian membership function. This model gave a 

high performance of 0.0146 RMSE, but multiple Gaussian operations enlarge the time complexity and only one 

time step forecasting can be realized. 

 

2.3.2 Classification of ECG Signal 

 

Convolutional neural network (CNN), both in one dimensional (1D) [19-23] and two-dimensional (2D) [24] 

formats have been applied in ECG classification analysis. [19] and [20] identified the position of peaks within 

ECG signal, which built the foundation of heartbeat classification. [22] proposed a hierarchy system which first 

classify heartbeats into normal or abnormal, and further classify abnormal into four different categories, whose 

TNSS structure is shown in Fig 2.5. The complex system achieved satisfied accuracy and energy efficiency at a 

certain level, but the drawback is that it required huge number of weight parameters, which resulted in large 

memory size if implemented on hardware devices.Pure 1D-CNN consumed less training parameters [21, 23], but 

required more layers and longer window size to trade off the classification results. Fig 2.6 shows the model 

 
Figure 2.6: 1-D CNN for ECG classification and its performance. [Taken from X. Li, et al, ICECS 2021] 

 
Figure 2.5: TSNN structure for ECG classification. [Taken from N. Wang, J. Zhou, G. Dai, J. Huang and Y. Xie, TBioCAS 

2019] 
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architecture as well as its training performance of [23]. Its training tendency converged fast within 100 epochs but 

not stable eventually, which would cause uncertainty for applying this algorithm on edge devices. In 2D-CNN, 

ECG signal is converted to image and then perform image processing [24, 25]. To achieve satisfactory results, 

large-scale deep CNN is required. For example, the CNN model in [24] contains more than 10 million weight 

parameters and requires huge computation power, therefore it is very challenging to implement such kind of 

algorithm in resource constraint portable devices. On the other hand, Long Short-Term Memory (LSTM) [26], 

which is a kind of recurrent neural network, has demonstrated superior forecasting and classification accuracy in 

time series analysis. Although LSTM can achieve similar performance with smaller network size compared to 

CNN, deeper networks such as bidirectional LSTM are required for practical ECG applications [27], which is still 

a huge computation burden for edge devices.  

 

In addition, the conventional LSTM and CNN performance will degrade significantly when the weights are 

truncated to lower resolution for hardware implementation. Longer or even nonconvergence of training processes 

may occur, resulting in stability issue when on-line training is necessary to build personalized ECG prediction 

and classification model. 
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Chapter 3 

 

Methodology 
 

The proposed dynamically biased LSTM cell structure is illustrated in Fig. 3.1, and its corresponding notations of 

parameters are listed in Table II. In the following sub sections, the feedforward propagation, backpropagation and 

fix-point weight training for both forecasting and classification applications are discussed to describe the entire 

properties of DB-LSTM cell structure. 

 

 

 

 
Figure 3.1: Dynamically biased LSTM cell structure. 

TABLE II  DB-LSTM CELL STRUCTURE PARAMETERS 

𝑋𝑡 Current input vector 

𝑏 Bias 

𝑐𝑡 Current cell state 

ℎ𝑡 Current cell output (hidden state) 

𝑐𝑡−1 Previous cell state 

ℎ𝑡−1 Previous cell output (hidden state) 

ℎ𝑒𝑛𝑑  Cell ouput (hidden state) at last time step 

𝑓𝑡 , 𝑔𝑡 , 𝑖𝑡 , 𝑜𝑡 Current Forget, Generate, Input, Output statues 

𝑊𝑓,𝑔,𝑖,𝑜 Input weights for f, g, i, o 

𝑅𝑓,𝑔,𝑖,𝑜 Recurrent weights for f, g, i, o 

𝐶𝑓,𝑔,𝑖,𝑜  Cell weights for f, g, i, o 

𝑊𝑜ℎ  Weights for fully connected layer 

𝑂𝑢𝑡 Output value 

𝑃𝑟𝑜𝑏 Probability of each class in classification model 
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3.1 Feedforward Propagation (FP) 

 

3.1.1 FP for Forecasting Model 

 

The feedforward propagation of forecasting model is a three-layer neural network shown in the upper branch of 

Fig. 3.2, including a pre-processing and input layer which normalize and denoise the ECG signals, a DB-LSTM 

layer to perform forecasting for next heartbeat cycle and send to the output layer. Through 0.04 threshold for 

filtering of Discrete Wavelet Transform, the original ECG wave is denoised and smoothed, which can reduce the 

oscillation effect to the learning system. Since most types of ECG signal shown in Fig. 1.1 consist of extreme R 

peak value, z-score normalization can maintain useful information about outliers and make the algorithm less 

sensitive to them in contrast to min-max scaling.  

 

The input layer receives the pre-processed ECG signal with m features and window size of k to be trained. It 

embeds a shareable random number as dynamic bias, which is split into four different biases due to the Wf,g,i,o 

adjustment throughout the training. Thus, the bias can be fine-tuned, providing two-fold advantages, for the gate 

output to be more accurate, and also to smooth the back-propagation loss gradient. Thereafter, the processed input 

vector is sent to the DB-LSTM layer that is made up of single DB-LSTM cell consisting of four statuses, that 

discards non useful message, update memory, and control the output, respectively. At time step t, the input vector 

is [𝑋𝑡   𝑏] with dimension (𝑚 + 1) × 1, and its corresponding Wf,g,i,o has the size 𝑛 × (𝑚 + 1). If the sequence 

length is set to k, the total training steps within one epoch is k. When the current time step t is less than k, the 

output of the DB-LSTM cell will be redirected to the recurrent input in the next time step. Otherwise, the hidden 

state ℎ𝑡 is sent to the output layer, whose dimension is 𝑛 × 1. As a result, the input and output matrices of the 

neural network are  (𝑚 + 1) × 𝑘 and 𝑛 × 𝑘, respectively. 

 

The inner feedforward processing of DB-LSTM cell can be expressed as (13) – (16). The cell state and Cf,g,i,o are 

the showcases for advanced processing in this model. Different from the conventional LSTM structure, f, g, i, o 

statuses have one additional parameter, that is, the cell state. f, g and i gates consider both ℎ𝑡−1 and 𝑐𝑡−1, while o 

gate counts in the current cell state 𝑐𝑡 instead of 𝑐𝑡−1. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 × [𝑋𝑡   𝑏] + 𝑅𝑓 × ℎ𝑡−1 + 𝐶𝑓 × 𝑐𝑡−1) (13) 

𝑔𝑡 = tanh(𝑊𝑔 × [𝑋𝑡   𝑏] + 𝑅𝑔 × ℎ𝑡−1 + 𝐶𝑔 × 𝑐𝑡−1) (14) 

𝑖𝑡 = 𝜎(𝑊𝑖 × [𝑋𝑡   𝑏] + 𝑅𝑖 × ℎ𝑡−1 + 𝐶𝑖 × 𝑐𝑡−1) (15) 

𝑜𝑡 = 𝜎(𝑊𝑜 × [𝑋𝑡   𝑏] + 𝑅𝑜 × ℎ𝑡−1 + 𝐶𝑜 × 𝑐𝑡)   (16) 

 

Figure 3.2: Block diagram of the proposed ECG monitoring algorithm architecture. 
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where σ is the sigmoid function, and × stands for vector matrix multiplication. 

 

Since the hidden state ℎ𝑡 is a selected and scaled result from the cell state 𝑐𝑡, it may cause a huge difference upon 

final decision. As a result, f and i gates will analyse current input, previous cell state and the output to yield a 

moderated identification on the level of old messages and the latest information that the LSTM cell should discard 

or remember in. Similarly, the output gate o also monitors the current cell state to determine what needs to be sent 

to the hidden output. The difference between the selection of 𝑐𝑡 and 𝑐𝑡−1 is that o is the gating machine working 

on the process from the current cell state to the hidden state, while f and i are deciding on how the old data can 

affect the current c. The Generation Status g prepares a group of preliminary information that is to be added into 

the cell state, thus, tanh is selected as the active function. According to the LSTM flow chart shown in Fig. 3.1, 

the cell state is updated firstly by the forget status followed by the input status. 

 

Also, a single directional LSTM can only gain the learnable features from its previous information and cannot be 

influenced by the later key words. This is resolved by using bi-directional LSTM [27]. However, bi-directional 

LSTM doubles the size of all types of weight in its cell structure, which will require more memory space in 

hardware implementation. Therefore, in this model, to prevent the forget gate to accidentally abandon some useful 

data that possibly can have a strong connection with the later information, the add-on 𝑐𝑡−1 in g will cause the 

update process to re-consider some data stores in the previous cell state, so that it can recover those data and 

decline initial information loss during the first epoch training. Moreover, the back-up data sent to g is filtered by 

its weight 𝐶𝑔, and the recovered message is determined by the input data and gating signal i. The update of cell 

state is given by (17) 

 

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑔𝑡 ⊙ 𝑖𝑡 (17) 
 

where ⨀ is the Hadamard product that states every entry in the old cell state and needs to be updated to attain the 

new cell state. (18) is the last step in feed forward pass to compute the hidden output. 

 

ℎ𝑡 = tanh(𝑐𝑡) ⊙ 𝑜𝑡 (18) 
 

In summary, the input parameters decrease due to the injection dynamic bias, which provides a better adjustment 

to the statuses’ operations. The cell state enables the gating selection to be more accurate and also resilient to 

random events. And the cell state parameter in 𝑔𝑡 allows LSTM to hold a larger memory and reduce the effect of 

single direction LSTM’s deficiency. In forward pass, (13) – (15) are parallel operations, while (16) – (18) are 

series operations. Thus, the current process gains the memory with more than one step as compared to the previous 

since 𝑐𝑡−1 is computed in advance of ℎ𝑡−1. The detailed schematic diagram can be found in Fig 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Block diagram of the proposed DB-LSTM forecasting algorithm model. 
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3.1.2 FP for Classification Model 

 

The difference between forecasting and classification model is that classification model embeds a fully connected 

layer after DB-LSTM layer to classify the hidden features into target classes shown in the lower branch of Fig. 

3.2, whose equation is shown in (19). For multi-class classification task, more than single hidden neuron need to 

be used to ensure high qualified feature extraction, and the influence on accuracy based on various hidden number 

will be discussed in Chapter 4. Moreover, when the current time step t is less than k, the output of the DB-LSTM 

cell, 𝑐𝑡 and ℎ𝑡 with dimension of 𝑛 × 1, will be redirected to the recurrent input in the next time step, as shown in 

the shaded block in Fig.3.4. Otherwise, the final hidden state ℎ𝑒𝑛𝑑 is sent to the fully connected layer with n 

neurons to concentrate these n hidden neurons into five output neurons, whose weight WOh has size 5 × 𝑛. The 

output layer will perform SoftMax function to the five output neurons and generate five categories. As a result, 

the input and output matrices of the neural network are  (𝑚 + 1) × 𝑘 and 5 × 1, respectively.  
 

𝑂𝑢𝑡 = 𝑊𝑂ℎ × ℎ𝑒𝑛𝑑 (19) 
 

The final probability of a piece of ECG signal into five classes can be obtained by send the output of FC layer 

through a SoftMax function as shown in (20) 

 

𝑃𝑟𝑜𝑏 =
𝑒𝑂𝑢𝑡

∑𝑒𝑂𝑢𝑡
(20) 

 

3.2 Backpropagation Algorithm (BP) 

 

The back propagation (BP) algorithm is used to adjust all the weights. The inputs for BP are the output error and 

the established cell structure that contains all the setup parameters. 

 

3.2.1 BP for Forecasting Model 

 

In forecasting model, the output error at current time step t is the mean square error between current output and 

target value shown in (21) 

 

𝐸 =
1

2
(𝑦𝑡 − 𝑂𝑢𝑡𝑡)

2 (21) 

 

where 𝑦𝑡  and 𝑂𝑢𝑡𝑡 are the target and output value respectively. The BP workflow diagram is proposed in Fig. 3.5, 

where three-time steps represented as green blocks are required to illustrate one BP procedure. 

 

Starting from right to left, that is the reverse direction of time flow in DB-LSTM, the gradient of next cell state 

(
𝜕𝐸

𝜕𝐶𝑛𝑒𝑥𝑡
), current and next hidden state (

𝜕𝐸

𝜕ℎ𝑡
 𝑎𝑛𝑑 

𝜕𝐸

𝜕ℎ𝑛𝑒𝑥𝑡
) are inputted into the BP process at time step t. Since the 

output value 𝑂𝑢𝑡𝑡 is set the same as hidden state ℎ𝑡, the gradient of current hidden state can be expressed as 

 
𝜕𝐸

𝜕ℎ𝑡
=

𝜕𝐸

𝜕𝑂𝑢𝑡𝑡
= 𝑦𝑡 − 𝑂𝑢𝑡𝑡  (22) 

 

Figure 3.4:  Block diagram of the proposed DB-LSTM classification algorithm model. 
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and the overall gradient to be propagated is 

 
𝜕𝐸

𝜕ℎ𝑡
= 

𝜕𝐸

𝜕ℎ𝑡
+

𝜕𝐸

𝜕ℎ𝑛𝑒𝑥𝑡
(23) 

 

Next, (24) and (25) worked out the gradient with respect to output gate 𝑜𝑡  and output sum 𝑜𝑠  by partial 

differentiation. 

 
𝜕𝐸

𝜕𝑜𝑡
= 

𝜕𝐸

𝜕ℎ𝑡
∙
𝜕ℎ𝑡
𝜕𝑜𝑡

=
𝜕𝐸

𝜕ℎ𝑡
⊙ tanh (𝑐𝑡) (24) 

𝜕𝐸

𝜕𝑜𝑠
= 
𝜕𝐸

𝜕𝑜𝑡
∙
𝜕𝑜𝑡
𝜕𝑜𝑠

=
𝜕𝐸

𝜕ℎ𝑡
⊙ tanh (𝑐𝑡) ⊙

𝑑𝜎(𝑜𝑠)

𝑑𝑜𝑠
(25) 

 

where 
𝑑𝜎(𝑜𝑠)

𝑑𝑜𝑠
 is the derivative of sigmoid function regarding to 𝑜𝑠, whose general equation is shown in (26) 

 
𝑑𝜎(𝑥)

𝑑𝑥
= 𝑥 ⊙ (1 − 𝑥) (26) 

 

Referring to Fig. 3.5, the gradient of current cell state 
𝜕𝐸

𝜕𝐶𝑡
 is contributed by three directions including the gradient 

of next cell state, current hidden state and current output gate, (27) – (31) explained the detailed computation. 

 

𝜕𝐸

𝜕𝑐𝑡
= 

𝜕𝐸

𝜕ℎ𝑡
∙
𝜕ℎ𝑡
𝜕𝑐𝑡

 (27) 

𝜕ℎ𝑡
𝜕𝑐𝑡

=
𝑑 tanh(𝑐𝑡)

𝑑𝑐𝑡
⊙ 𝑜𝑡 + tanh(𝑐𝑡) ⊙

𝜕𝑜𝑡
𝜕𝑐𝑡

(28) 

𝜕𝑜𝑡
𝜕𝑐𝑡

=
𝜕𝑜𝑡
𝜕𝑜𝑠

∙
𝜕𝑜𝑠
𝜕𝑐𝑡

= 𝑐𝑜
𝑇 ×

𝑑𝜎(𝑜𝑠)

𝑑𝑜𝑠
 (29) 

 

where 
𝑑 tanh(𝑐𝑡)

𝑑𝑐𝑡
 in (28) is the derivative of hyperbolic tangent function regarding to 𝑐𝑡, whose general expression 

is shown in (30) 

 

𝑑 tanh(𝑥)

𝑑𝑥
= 1 − (tanh 𝑥 ⊙ tanh 𝑥) (30) 

 

and the overall gradient of 𝑐𝑡 is 

 

Figure 3.5:  BP algorithm for forecasting model. 
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𝜕𝐸

𝜕𝑐𝑡
= 
𝜕𝐸

𝜕𝑐𝑡
+

𝜕𝐸

𝜕𝑐𝑛𝑒𝑥𝑡
(31) 

 

With the result of gradient of 𝑐𝑡, the gradient of forget, generate, and input gate can be derived by (32) – (34), 

 

𝜕𝐸

𝜕𝑓𝑡
=
𝜕𝐸

𝜕𝑐𝑡
∙
𝜕𝑐𝑡
𝜕𝑓𝑡

=
𝜕𝐸

𝜕𝑐𝑡
⊙ 𝑐𝑡−1 (32) 

𝜕𝐸

𝜕𝑔𝑡
=
𝜕𝐸

𝜕𝑐𝑡
∙
𝜕𝑐𝑡
𝜕𝑔𝑡

=
𝜕𝐸

𝜕𝑐𝑡
⊙ 𝑖𝑡      (33) 

𝜕𝐸

𝜕𝑖𝑡
=
𝜕𝐸

𝜕𝑐𝑡
∙
𝜕𝑐𝑡
𝜕𝑖𝑡

=
𝜕𝐸

𝜕𝑐𝑡
⊙𝑔𝑡      (34) 

 

and their gate sum can be further attained by (35) – (37). 

 

𝜕𝐸

𝜕𝑓𝑠
=
𝜕𝐸

𝜕𝑓𝑡
∙
𝜕𝑓𝑡
𝜕𝑓𝑠

=
𝜕𝐸

𝜕𝑐𝑡
⊙ 𝑐𝑡−1⊙

𝑑𝜎(𝑓𝑠)

𝑑𝑓𝑠
(35) 

𝜕𝐸

𝜕𝑔𝑠
=
𝜕𝐸

𝜕𝑔𝑡
∙
𝜕𝑔𝑡
𝜕𝑔𝑠

=
𝜕𝐸

𝜕𝑐𝑡
⊙ 𝑖𝑡 ⊙

𝑑 tanh(𝑔𝑠)

𝑑𝑔𝑠
(36) 

𝜕𝐸

𝜕𝑖𝑠
=
𝜕𝐸

𝜕𝑖𝑡
∙
𝜕𝑖𝑡
𝜕𝑖𝑠

=
𝜕𝐸

𝜕𝑐𝑡
⊙𝑔𝑡⊙

𝑑𝜎(𝑖𝑠)

𝑑𝑖𝑠
(37) 

 

At this point, all gradients with respect to the DB-LSTM cell parameters at time step t have been yielded. The 

following tasks are propagating the gradient to previous time step as well as generating the weight gradient. Both 

previous hidden state and cell state gradients are connected with four data paths within the DB-LSTM cell, whose 

outcomes are shown in (38) and (39) respectively. 

 

𝜕𝐸

𝜕ℎ𝑡−1
=
𝜕𝐸

𝜕𝑓𝑠
∙
𝜕𝑓𝑠
𝜕ℎ𝑡−1

+
𝜕𝐸

𝜕𝑔𝑠
∙
𝜕𝑔𝑠
𝜕ℎ𝑡−1

+
𝜕𝐸

𝜕𝑖𝑠
∙
𝜕𝑖𝑠
𝜕ℎ𝑡−1

+
𝜕𝐸

𝜕𝑜𝑠
∙
𝜕𝑜𝑠
𝜕ℎ𝑡−1

 

  = 𝑅𝑓
𝑇 ×

𝜕𝐸

𝜕𝑓𝑠
+ 𝑅𝑔

𝑇 ×
𝜕𝐸

𝜕𝑔𝑠
+ 𝑅𝑖

𝑇 ×
𝜕𝐸

𝜕𝑖𝑠
+ 𝑅𝑜

𝑇 ×
𝜕𝐸

𝜕𝑜𝑠
 (38) 

𝜕𝐸

𝜕𝑐𝑡−1
=
𝜕𝐸

𝜕𝑐𝑡
∙
𝜕𝑐𝑡
𝜕𝑐𝑡−1

 (39) 

 

where 

 

𝜕𝑐𝑡
𝜕𝑐𝑡−1

= 𝑓𝑡 + 𝑐𝑡−1⊙
𝜕𝑓𝑡
𝜕𝑐𝑡−1

+ 𝑖𝑡⊙
𝜕𝑔𝑡
𝜕𝑐𝑡−1

+ 𝑔𝑡⊙
𝜕𝑖𝑡
𝜕𝑐𝑡−1

 

𝜕𝑓𝑡
𝜕𝑐𝑡−1

=
𝜕𝑓𝑡
𝜕𝑓𝑠

∙
𝜕𝑓𝑠
𝜕𝑐𝑡−1

= 𝐶𝑓
𝑇 ×

𝑑𝜎(𝑓𝑠)

𝑑𝑓𝑠
 

𝜕𝑔𝑡
𝜕𝑐𝑡−1

=
𝜕𝑔𝑡
𝜕𝑔𝑠

∙
𝜕𝑔𝑠
𝜕𝑐𝑡−1

= 𝐶𝑔
𝑇 ×

𝑑 tanh(𝑔𝑠)

𝑑𝑔𝑠
 

𝜕𝑖𝑡
𝜕𝑐𝑡−1

=
𝜕𝑖𝑡
𝜕𝑖𝑠

∙
𝜕𝑖𝑠
𝜕𝑐𝑡−1

= 𝐶𝑖
𝑇 ×

𝑑𝜎(𝑖𝑠)

𝑑𝑖𝑠
 

 

On the other hand, three groups of weight gradient at time step t can be derived involving (25) and (35) – (37), 

shown in (40) – (43). 

 

𝜕𝐸

𝜕𝑊𝑓,𝑔,𝑖,𝑜
=

𝜕𝐸

𝜕𝑓, 𝑔, 𝑖, 𝑜𝑠
× [𝑋𝑡   𝑏]

𝑇 (40) 

𝜕𝐸

𝜕𝑅𝑓,𝑔,𝑖,𝑜
=

𝜕𝐸

𝜕𝑓, 𝑔, 𝑖, 𝑜𝑠
× ℎ𝑡−1

𝑇  (41) 
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𝜕𝐸

𝜕𝐶𝑓,𝑔,𝑖
=

𝜕𝐸

𝜕𝑓, 𝑔, 𝑖𝑠
× 𝑐𝑡−1

𝑇  (42) 

𝜕𝐸

𝜕𝐶𝑜
=
𝜕𝐸

𝜕𝑜𝑠
× 𝑐𝑡

𝑇 (43) 

 

The above equations for BP in forecasting will be calculated for a total time steps of k in each training iteration. 

At the end of each training iteration, the weights will be updated using the accumulated cost gradient with respect 

to each weight for all time steps. With a learning rate of 𝜂, the updating for all three groups of weight can be 

expressed by (44) for the program to run to the next epoch 

 

𝛿𝑊, 𝑅, 𝐶 =  ∑
𝜕𝐸

𝜕𝑊,𝑅, 𝐶
𝑘

 

𝑊,𝑅, 𝐶 = 𝑊,𝑅, 𝐶 − 𝜂 ∙ 𝛿𝑊, 𝑅, 𝐶 (44) 

 

3.2.2 BP for Classification Model 

 

As for classification model, the output error at time step t is expressed as the cross-entropy loss function shown 

in (45) 

 

𝐸 =  −∑𝑦𝑖 log(𝑝𝑖)

𝑛

𝑖=1

 (45) 

 

where n stands for the number of classes, 𝑦𝑖 is the truth label and 𝑝𝑖  is the SoftMax probability for the ith class. 

Since Chapter 3.1 has introduced the difference between forecasting and classification models, the BP process of 

classification model is proposed in Fig. 3.6, whose green block stands for BP computation of DB-LSTM layer for 

all k time steps. The cross-entropy loss will be propagated to FC layer to obtain the gradient with respect to the 

last hidden state of DB-LSTM layer shown in (45). 

 

𝜕𝐸

𝜕𝑂𝑢𝑡𝑗
= −∑𝑦𝑖

𝜕 log(𝑝𝑖)

𝜕𝑂𝑢𝑡𝑗

𝑛

𝑖=1

 

                             = −∑𝑦𝑖
𝜕 log(𝑝𝑖)

𝜕𝑝𝑖
×

𝜕𝑝𝑖
𝜕𝑂𝑢𝑡𝑗

𝑛

𝑖=1

 

                = −∑𝑦𝑖
1

𝑝𝑖
×

𝜕𝑝𝑖
𝜕𝑂𝑢𝑡𝑗

𝑛

𝑖=1

(45) 

 

 

Figure 3.6: BP algorithm for classification model. 
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where 
𝜕𝑝𝑖

𝜕𝑂𝑢𝑡𝑗
 is the derivative of SoftMax function obtained in (46) 

 

𝜕𝑝𝑖
𝜕𝑂𝑢𝑡𝑗

= {
𝑝𝑖(1 − 𝑝𝑗), 𝑖 = 𝑗

−𝑝𝑖 ∙ 𝑝𝑗 , 𝑖 ≠ 𝑗
 (46) 

 

As a result, the gradient with respect to output class is 

 

𝜕𝐸

𝜕𝑂𝑢𝑡𝑗
= 𝑝𝑗 − 𝑦𝑗 

 

and the gradient regarding to final hidden state of DB-LSTM layer and the weight gradient of FC layer are 

expressed in (47) and (48) respectively. 

 
𝜕𝐸

𝜕ℎ𝑒𝑛𝑑
=

𝜕𝐸

𝜕𝑂𝑢𝑡
∙
𝜕𝑂𝑢𝑡

𝜕ℎ𝑒𝑛𝑑
= 𝑊𝑂ℎ

𝑇 ×
𝜕𝐸

𝜕𝑂𝑢𝑡
 (47) 

𝜕𝐸

𝜕𝑊𝑂ℎ

=
𝜕𝐸

𝜕𝑂𝑢𝑡
∙
𝜕𝑂𝑢𝑡

𝜕𝑊𝑂ℎ

=
𝜕𝐸

𝜕𝑂𝑢𝑡
× 𝑂𝑢𝑡𝑇 (48) 

 

Comparing to the BP process in Fig. 3.5, only the last time step of DB-LSTM receives the output error gradient 

from the next fully connected layer, while all other hidden states only do recursing. Thus, the gradient of hidden 

state for all k time steps can be modified to (49) based on (37). By obtaining the gradient of hidden state in (49), 

the following BP algorithm is same as (33) – (43) to attain the update of three groups of weight. Similarly, the 

update of 𝑊𝑂ℎ follows the same rule as (43) with learning rate of 𝜂. 

 

𝜕𝐸

𝜕ℎ𝑡
= 

{
 

 
𝜕𝐸

𝜕ℎ𝑒𝑛𝑑
, 𝑡 = 𝑘

𝜕𝐸

𝜕ℎ𝑛𝑒𝑥𝑡
, 𝑡 ≠ 𝑘

  (49) 

 

3.3 Fix-point Weight Training 

 

The weights in the AI algorithms are normally represented in FP32. However, as the goal of this work is to 

implement the algorithm in portable device, it is important to quantize the weights. So that they can fit into the 

limit hardware resources of edge device with acceptable accuracy degradations. The weights are mapped to fixed-

point numbers, which are quantized into signed 2×2n states including negative values, where n is the bit length. 

The quantization procedure is to firstly find the maximum and minimum numbers in that weight matrix in absolute 

value, denoted as 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛, respectively. They create the boundary of states, and 𝑤𝑚𝑖𝑛 is set as the first 

state 𝑠1. The interval between these states is given by 

 

∆𝑤 =
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

2𝑛 − 1
 (50) 

 

where the classify interval is half of ∆𝑤. For each weight entry 𝑤𝑖  within that weight matrix, the mapping method 

obeys 

 

𝑤𝑖 = 𝑠𝑗+1, 𝑖𝑓 |𝑤𝑖 − (𝑠1 + 𝑗 × ∆𝑤)| ≤
∆𝑤

2
(51) 

where 𝑗 = 0, 1, 2, …2𝑛 − 1. Fig. 3.7 compares the training accuracy with different weight precisions of FP32 and 

fixed bit length quantization in forecasting and classification training, respectively. According to Fig. 3.7(a), it 

can be observed that floating weights achieved the fastest convergence and has high accuracy. On the other hand, 

with shorter fixed weight precision, the convergence speed becomes slower, though there is no degradation of 

accuracy. This is because the result is based on normal ECG dataset whose QRS sequence varies periodically. If 

an abnormal dataset is tested, the accuracy will decline as indicated in Table III, whose details will be discussed 

in Chapter 4. Fixed-point weight precision with the best accuracy is also selected for comparison with the floating 

case. Since the weights in fixed-point are quantized into finite numbers, the initial random weight can significantly 

affect the converge direction in training the model, which increased the failure rate to around 5% for INT1 
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precision. While in classification task in Fig. 3.7(b), INT4 weight precision obtained similar accuracy and loss as 

floating. On the other hand, with shorter fixed-point weight precision, INT3 for instance, the convergence speed 

became slower, and the degradation of accuracy is around 6%. That is because finite choice of weights will limit 

the computing sparsity and result indistinguishable outputs.  

 

 
(a) 

 

(b) 

Figure 3.7: Comparison of training process with different weight resolution in: (a) forecasting model and (b) classification 

model. 
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TABLE III  MULTI DATASET PERFORMANCE COMPARSION  

Database Category Total Length 
Prediction 

Ability 

Average 

Accuracy 

Average 

NMSE 

MIT-BIH N 420 min 1 HB 98.86% 0.00026 

MIT-BIH V 42 min 2 HBs 95.31% 0.00049 

MIT-BIH R 41 min 1 HB 94.96% 0.00058 

MIT-BIH L 45 min 1 HB 96.79% 0.00061 

MIT-BIH P 39 min 1 HB 97.56% 0.00025 

INCART N 30 min 1 HB 94.53% 0.00083 

INCART V 30 min 2 HBs 93.53% 0.00086 
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Chapter 4 

 

Results 
 

4.1 Introduction 

 

Both ECG forecasting and classification tasks are applied to verify the robustness of DB-LSTM network. To 

classify ECG singles efficiently, both patients and medical doctors can notice the type of cardiac diseases fast and 

apply necessary treatments in time. When the patient is alone and outbreak illness accidently, even if the patient 

is unconscious that cannot talk about the symptom, this portable classification system can guide the physician to 

implement medication punctually. Besides just classifying signals, this system can further forecast the waveform 

of following heartbeats since every patient’s cardiac disease may differ although belonging to the same type of 

illness. Thus, it is also valuable to show the following heartbeat waveform to doctors to prescribe suitable 

treatment. 

 

4.2 DB-LSTM Cell Performance 

 

4.2.1 Theoretical Model Performance  

 

The theoretical performance shown in Fig. 4.1 is a comparison of loss between traditional LSTM [26] and the 

proposed DB-LSTM model with 32-bit precision weight. The training data is a multi-sequence to sequence 

prediction. Here, the input is a 200×15 matrix and the output is a 200×1 vector, where 200 is the sequence length. 

It can be observed that the proposed method achieved better performance than the original LSTM in both final 

loss and training stability. Also, this model attained lower initial loss but a rapid loss reduction, which is due to 

the larger memory size of DB-LSTM cell structure. Moreover, the dynamic bias of LSTM can make the training 

procedure be stable. Thus, the result will not be reflected by the oscillation of descending gradient.  

 

 

 

 

 

Figure 4.1:  Comparison of training loss at default 32-bit weight. 
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4.2.2 Application on Real Life Problem 

 

To verify the performance of this DB-LSTM model solving practical problem, a time series forecasting for air 

passengers [28] is evaluated. 

 

In this problem, a time series of monthly traveller numbers is fed into the model, while the label output is the same 

 
(a) 

 
(b) 

Figure 4.2: Comparison (a) of training accuracies and losses for air passenger forecasting (b) between air passenger 

number true value and forecast results, with different weight quantization accuracies.  
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sequence but delay by one month. The aim is to have the model forecasts the next month’s passenger volume by 

providing the current data, and then repeat this procedure to predict for as many months as it can. Fig. 4.2(a) 

shows the accuracy and loss diagram in three precision weights to train the model with prior 109 months’ data, 

whereby the inputs are from 1 to 108 and the label output is from 2 to 109. The accuracy of this model reached 

95.49%, 93.97%, 94.96% for 32bit, fix 1-, and 2-point weights, correspondingly. Fig. 4.2(b) shows the difference 

between real and predict passengers in the next 34 months with three types of weight precision, from which the 

forecasting results for the next two years indicated a small diversity. The mean square error for 32-bit, 2-bit and 

1-bit weight validation are 156.34, 168.77 and 271.26, respectively using the same training parameters. 

 

Additionally, this model can yield satisfactory results in a shorter training time for one-dimension time series 

forecasting. This implies a higher probability for online training on edge devices. In the 2-bit precision experiment, 

it takes 200 epochs to reach a 94.96% accuracy and around 96% accuracy for 1000 epochs. This is of a better 

result than [13] which required 800 epochs training using the same dataset. A similar ELSTM [29] was presented 

with less gates for time series forecasting and attained 90.89% accuracy after training for 20,000 epochs. It saves 

on hardware cost but is only suitable for pre-training due to its long training period. Compared with the 32-bit 

 
(a) 

 
(b) 

Figure 4.3: Forecasting results of: (a) normal and (b) PVC ECG waveforms. 
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full-precision baseline, the 1-bit and 2-bit quantization achieved approximately 16.7% average memory saving 

and 9.8% inference acceleration on CPUs, with only a reasonable loss in the accuracy. 

 

4.3 Results for ECG Forecasting 

 

The following study focused on the forecasting for the normal ECG and premature ventricular contraction (PVC) 

ECG. For normal ECG signal, each heartbeat is similar and regular. Hence the PQRST peaks are easy to 

differentiate. By selecting the delay period of 280 samples which are the heartbeat rates of the ECG signal, DB-

LSTM can be trained within 560 samples for forecasting of consecutive heartbeats. Fig. 4.3(a)  illustrates the time 

series prediction result for dataset 101 in MIT-BIH database, which is a typical Normal ECG signal. With only 

100 epochs training, DB-LSTM can realize trained and validation accuracy of 99.23% and 98.86%, respectively; 

the RMSE of train and validation set are 0.00021 and 0.00026, respectively.  

 

As for ECG associated with disease information, each type of ECG wave provides unique characteristics, which 

can be memorized by DB-LSTM. Thus, an abnormal ECG signal such as the Premature Ventricular Contraction 

(PVC) is chosen to test the creditability of DB-LSTM. PVC [30] had an advanced occurrence of QRS complexes 

than the normally conducted heartbeat. Also, the duration of PVC is longer than the typical one. The direction of 

ST segment and T wave is opposite to the main wave direction of QRS complexes. The full cycle of PVC is two 

heartbeats including one PVC and one normal contraction. Thus, the DB-LSTM is able to forecast the following 

two heartbeats ECG wave. With same model parameters of DB-LSTM, that is, 0.1 learning rate, 0.01 weight 

penalty, and 100 epochs, Fig. 4.3(b) states the forecasting result of dataset 200 in MIT-BIH database. With a delay 

duration of 460 samples, it reached a train and validation accuracy of 95.97% and 95.31%, respectively, where 

their RMSE being 0.00051 and 0.00049 respectively. 

 

To verify the robustness of DB-LSTM model, different databases are tested to validate the performance of this 

model, whose results are tabulated in Table III. Two databases, MIT-BIH and INCART [31] with five categories 

of ECG signals are realized to conduct both the accuracy and Normalized Mean Square Error (NMSE) evaluation. 

All datasets are over 30 minutes so that the prediction results are reliable. For premature ventricular contraction, 

DB-LSTM needs to be trained for two heartbeats. With following two heartbeats forecast, whereas the other four 

types of ECG can be adequately trained with single heartbeat. Consequently, this DB-LSTM had verified its ability 

to deal with multi-variate ECG signals. 

 

The training process of DB-LSTM is much faster and more stable than the conventional LSTM [26], whose 

comparison is shown in Fig. 4.4. The comparison dataset is chosen to be the 101 normal heartbeat ECG signal. 

With same learning rate, weight penalty and epochs, the DB-LSTM is associated with a lower initial loss and 

higher training accuracy than the conventional LSTM. Moreover, a faster and stabler training period can render 

the real AIoT devices more user efficient and accurate.  

 

 

 
Figure 4.4: Training comparison between DB-LSTM and conventional LSTM.  
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4.4 Results for ECG Classification 

 

The performance of the proposed algorithm is evaluated with MIT-BIH ECG database which includes 48 sets of 

30-minute-long ECG data. Each dataset contains both normal and abnormal ECG features (N, L, R, A, V) shown 

in Fig. 1.1 recorded with a fixed sampling frequency of 360 Hz and 11-bit data resolution.  

 

After pre-processing, the training dataset contains 20,000 samples with 4000 samples in each category and the 

validation dataset has 5000 samples with 1000 samples in each category. The output size of DB-LSTM cell is set 

as 32, thus the total number of training parameters is 8608. With 0.01 learning rate, 0.05 weight gradient, 0.01 

weight penalty and cross-entropy loss function, the validation accuracy for five-category classification with FP32 

weight precision is 97.5%, the corresponding confusion matrix is shown in Fig. 4.5(a). Furthermore, after weight 

being quantized into INT4 and INT3, the validation accuracy dropped to 96.2% and 91.8%, as shown in Fig. 

4.5(b) and (c), respectively. For each confusion matrix, the horizontal axis stands for the predicted category and 

the vertical axis gives the actual label. For each entry in the matrix, the upper data is the number of predicted 

samples, while the lower one is the percentage out of the total validation dataset. The summation of diagonal 

entries is the total validation accuracy. 

 

Various Deep CNN, conventional LSTM and bidirectional LSTM models are built to compare the performance, 

the results are tabulated in Table IV. Different window sizes are used to characterize the influence on accuracy 

and training parameters. With the same deep CNN structure, double window size will result in almost double in 

total training parameters, but only 2% improvement of accuracy. On the other hand, the training parameters of 

LSTM will not be affected by the variance of window size, which only depends on the input and output size. 

Comparing to conventional LSTM, bidirectional LSTM doubles the number of parameters and enhance the 

accuracy by 8.5%. The drawback of it is that bidirectional cannot perform continuous time monitoring, which 

yields a large latency in real-time classification. DB-LSTM yields short window size, continuous time processing, 

less training parameters and higher classification accuracy than other models. It reached similar classification 

result as Deep CNN with same window size, but a smaller number of neural network layers and 43.6% less of 

training parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV  MULTI MODEL PERFORMANCE COMPARSION  

Topology 
Number of NN 

Layer 
Window Size 

Number of 

Weight 

Parameters 

Validation 

Accuracy 
Weight 

Quantization 

Deep CNN 9 360 22,181 98.62% FP32 

Deep CNN 9 180 14,981 96.66% FP32 

LSTM 4 360 4,517 87.26% FP32 

LSTM 4 180 4,517 84.90% FP32 

BiLSTM 4 180 9,029 95.92% FP32 

DB-LSTM 4 180 8,608 
91.8%, 96.2% & 

97.5% 

INT3, INT4 & 

FP32 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 4.5: Classification confusion matrices for different weight precisions, (a) FP32, (b) INT4 and (c) INT3. 
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Chapter 5 

 

Discussion 
 

This section focuses on the comparison between this DB-LSTM system and other top-north systems to validate 

its strong effects on both forecasting and classification applications. 

 

5.1 Discussion on ECG Forecasting 

 

This DB-LSTM model is compared with other 1-dimentional time-series forecasting on bio signals, such as the 

ECG, Electroencephalogram (EEG) and surface electromyography (sEMG), as benchmarked in Table V. 

 

A 500-sample forecasted system using Deep LSTM for EEG prediction had been reported in [32]. The model is 

structured by 5-layer NN, consisting of two LSTM layers and one fully connected layer. With 18 LSTM neurons 

for each layer, the total number of weights is 450. After 1280 samples, it achieved an accuracy of 88.9%. An 

online training LSTM [33] achieved low forecasting error but required long training samples, that could result in 

high latency when training on edge devices. A state-of-art application on sEMG real time forecasting stated in 

[34] demonstrated ability to forecast 25 seconds ahead with CNN. A stack of six dilated convolutional layers with 

two filters in size of length 4×64 is embedded in this model. Accompanied by a fully connected layer, the total 

learnable parameters are 6.4×106, which consumed large memory and high power in hardware implementation. 

This model is well trained, based on a total number of 108342 samples. It had conducted online monitoring of 

low back pain with 82.8% accuracy. 

 

TABLE V  BENCHMARK TABLE FOR FORECASTING  

 [16] [17] [18] [32] [33] [34] This Work 

Topology 
VMD + 

NN 
PSR + NN TS Fuzzy 

Deep 

LSTM 

ef-WMF-

LSTM 
CNN DB-LSTM 

Application ECG ECG ECG EEG Alcoa sEMG ECG 

Forecast 

Steps 

(Samples) 

1 1 1 500 1 5875 280 

Number of 

Layer 
3 3 NA 5 4 9 3 

No. of 
Weight 

Parameters 
180 300 7201* 450* 220 6.4×106* 16 

Training 
Samples 

9×2160 9×2880 2500 1280 1000 108342 280 

Training 

Method 

Pre-

Training 

Pre-

Training 

Pre-

Training 

Pre-

Training 

Online 

Training 

Pre-

Training 

Online 

Training 

RMSE 0.0233 0.0423 0.0146 NA 0.0042 NA 
0.0352 ± 

0.0021 

Validation 

Accuracy 
98.8% 97.3% NA 88.9% NA 82.8% 

98.1 ± 

0.15% 

Weight 

Quantization 
FP32 FP32 FP32 FP32 FP32 FP32 

INT3, 

INT2 and 

INT1 
  * Calculated based on information provided in paper. 
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The DB-LSTM system for ECG forecasting described in this paper enhances the LSTM cell structure to come out 

high speed training with high accuracy using simple neural network architecture. This model trained with 280 

samples and forecast 280 samples, to attain 0.0352 ± 0.0021 RMSE and 98.1 ± 0.15% accuracy. Moreover, fix-

point weight is implemented and can achieve similar performance as the floating weight. As a result, online 

training is reliable for embedding in hardware to build a model based on the individual ECG properties. 

 

5.2 Discussion on ECG Classification 

 

A comparison graph shown in Fig. 5.1 which shows the classification accuracy based on hidden neuron number 

and different weight quantization. According to the figure, it has shown that higher classification accuracy can be 

obtained by setting larger hidden neuron number and higher weight quantization. With a smaller number of weight 

bits, the effeteness of accuracy is stronger due to various of hidden size, which can be explained by the total 

number of training parameters shown on the right-hand side of Fig. 5.1. Lower weight quantization stands for that 

the choice of weight is limited, thus by involving larger number of parameters, the error due to quantization can 

be traded off.  

 

The performance of the proposed model is summarized and compared with other state-of-arts in Table VI. [37] is 

an improved model based on [22], it significantly decreased number of weight parameters by decomposing fully 

connected layer and CNN layer into multiple steps. However, the drawbacks of this decomposition method are 

increasing number of activation functions, normalization processes, convolution operations, number of biases, 

splitting and concatenate operations, which cannot afford parallel computing, and could increase model latency 

in hardware implementation. Moreover, this model increased the number of CNN layers and maintain window 

size of 400.Compared to those designs implemented with FP32 weight resolution, the proposed algorithm used 

one of the smallest network sizes and achieved comparable accuracy.  When the weight is quantized to INT4, the 

accuracy only has minor degradation of 1.6%. If the weight resolution is further reduced to INT3, the accuracy 

can still be maintained at 91.8%. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Validation accuracy based on different weight quantization and number of hidden neurons (left). The total 

number of training parameters based on various hidden size (right). 
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TABLE VI  BENCHMARK TABLE FOR CLASSIFICATION 

 [21] [22] [23] [24] [35] [36] [37] 
This 

Work 

Year 2017 2019 2021 2021 2021 2021 2022 2022 

Dataset 
MIT-

BIH 

MIT-

BIH 

MIT-

BIH 
Fantasia 

MIT-

BIH 
PTB 

Diagnostic 
MIT-

BIH 

MIT-

BIH 

Topology 
1-D 

CNN 

Deep 

CNN 

1-D 

CNN 

Deep 

CNN 

SVM+M

LP 
LSTM 

Deep 

CNN 

DB-

LSTM 

Number 
of Layers 10 10 10 42 4 3 12 4 

No. of 
Weight 

Parameter
s 

19,750 198,037 49,216* >10M 
NA 

Input:32 
NA 8,157 8,608 

Window 

Size 
260 400 260 160 NA NA 400 180 

No. of 

Classes 
5 5 5 40 5 2 5 5 

Validation 
Accuracy 93.47% 98.40% 98.12% 99.5% 79.33% 84.63% 99.10% 

91.8%, 
96.2% & 

97.5% 

Weight 
Resolution FP32 FP32 FP32 FP32 FP32 INT1 FP32 

INT3, 
INT4 

&FP32 

* Calculated based on information provided in paper. 
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Chapter 6 

 

Conclusion and Future Work 
 

 6.1 Conclusion  

 

In this report, an ECG forecasting, and classification model is implemented with DB-LSTM, with fixed-point 

weight. The model structure is designed with pre-processing and input layer, DB-LSTM layer, fully connected 

layer particularly for classification task and output layer, from which DB-LSTM cell is using dynamic bias where 

all states are linked to previous or current cell states. Moreover, INT3 down to INT1 weight quantization are 

implemented on the forecasting model. Also, INT4 and INT3 weight precision are implemented on the 

classification model to fit edge devices for further purpose, where INT4 attained satisfactory results that contrast 

with the FP32. In ECG forecasting application, DB-LSTM can perform online training and multi heartbeat 

prediction, which yields a fast and stable training duration and higher performance. It obtained 98.86% accuracy 

for normal ECG signal and 0.00026 NMSE with MIT-BIH database. Multi datasets performance had also prove 

that the proposed innovative model can attain high quality performance. In ECG classification application, DB-

LSTM model can perform 97.5% accuracy with five categories with MIT-BIH database. Compared with 

conventional LSTM model, the DB-LSTM yields shorter window size and higher performance. Moreover, 

performance of multi models such as CNN and bidirectional LSTM, had also prove that the proposed innovative 

model can attain high quality performance.  

 

6.2  Future Work 

 

To better fit DB-LSTM algorithm into edge devices, the quantization for inputs and piecewise activate functions 

need to be adjusted. DigiNet, a simulation platform for neural networks on digital hardware has been uploaded to 

PyPi, which is continued updating. Right now, it supports: 

• LSTM and Fully Connected layer in both software and hardware programming, 

• various quantization selection for weights (16-, 12- and 8-bit),  

• various fraction width in weights (8-, 6- and 4-bit),  

• various piece-wise activation functions (sigmoid and tanh), 

• pure software simulation for contrast (FP32) 

 

The future of DigiNet is to integrate multiple neural network layers including conventional layer, attention layer 

altogether. It enables simulation for different hardware quantization requirement on software, which makes the 

connection and conversion between AI algorithm and edge devices be stronger and simpler.  

 

The next step is to integrate this real-time classification algorithm with hardware implementation to provide ECG 

anomaly classification for continuous cardiac monitoring. Right now, the conventional LSTM had been 

implemented on FPGA and waiting for application testing. And the final goal is to apply online training on edge 

devices for healthcare monitoring.  A detailed timeline is shown below: 

 

By end of PhD Year 2 

• Improve DigiNet package. 

• Implement LSTM algorithm on FPGA and CMOS. 

• Prepare a tapeout 

PhD Year 3 

• Finish DigiNet package to support most NN layers. 

• Combine sensors and chips to do real time ECG, breath, and uric acid 

monitoring. 

• Design online training for complex algorithm 

PhD Year 4 • Tapeout chip that supports online training 
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6.3  Challenges 

 

The challenges mainly come from: 

 

• The data transmit between sensors, chips and user end (mobile phones, watches) 

 

The bio-signal are most in analog manner, ADC is the primary choice but cause high energy 

consumption. Spiking algorithm is a state-of-the-art method that had been proven to replace the function 

of ADC. [38] had stated the similar performance between spiking model and FFT and yielded high 

accuracy in speak digit recognition. The material and inner design of sensors will be supported by IME 

or IMRE, A*STAR. The info communication between chips and user devices could through Bluetooth 

or NFC, but a specialized and more effective way could be invented. 

  

• Personalize online training algorithm: trade off among memory size, power consumption and latency 

 

[39] had provided a clear view to perform online training on chips on both training algorithm and 

hardware design aspects. However, it only implemented online training on basic recurrent neural network, 

and it cannot afford complex applications. Based on the existing research, online training based on LSTM 

together with Bio-signal monitoring would be the eventual objective of PhD journey.  
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