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We analytically derive transfer probabilities and efficiencies for an artificial light-harvesting photo-
synthetic system, which consists of a ring coupled to a central acceptor. For an incident photon pair,
we find near-perfect single excitation transfer efficiency with negligible double excitation transfer in
the weak coupling regime. In the strong coupling regime, single excitation transfer efficiency was
greater than 90%, while the double excitation efficiency was approximately 50%. We have found
that the three main factors which determine high transfer efficiencies are large acceptor probabili-
ties, long acceptor decay times, and strong photon-ring coupling. A possible implementation of the
theoretical framework to bio-inspired solar energy devices is also discussed.

I. INTRODUCTION

Light-harvesting (LH) complexes consist of pigment-
proteins that capture sunlight and transport it to a reac-
tion center (RC) for photosynthesis [1–5]. Specifically,
LH1 systems found in purple photosynthetic bacteria
generally consist of protein complexes which form a ring
around a RC [6–8]. These LH1-RC systems are tightly
packed and organized in a way to give high photon trans-
fer efficiencies and can differ across species under different
light conditions [9].

The quantum nature of the LH process has been an
important area of research [10–12] and such systems are
often modeled through quantum Hamiltonians [13–18].
Ritz et al. [13] established an effective Hamiltonian of
the circular bacterial photosynthetic unit and determined
one- and two-exciton spectra. Wyke et al. [14] modeled
the antenna system as a ring of 2-level systems (2-LSs)
and found near-perfect transfer efficiency for a single pho-
ton and a reduced efficiency with a laser pulse. Caruso et
al. [15] examined the effect of noise in excitation trans-
port of LH systems and identified mechanisms for addi-
tional transport channels due to dephasing. Tan and
Kuang [16] investigated quantum phase transitions in
environment-assisted LH systems via a Lindblad master
equation, and found high efficiency close to the critical
point. Chuang and Brumer [17] examined steady state
incoherent light-matter interaction conditions in an LH1-
RC complex to more effectively model the natural envi-
ronment. Andrews et al. [18] used a Lindblad master
equation and demonstrated numerically that disorder in
the intra-ring couplings had a negligible effect on transfer
efficiency, however photon-ring disorder caused a signifi-
cant decrease close to resonance.

Other quantum effects in LH systems have also been in-
vestigated [19–21]. Sarovar et al. [19] examined a frame-
work to describe entanglement in LH complexes, and ap-
plied it to a specific system to show the existence of long-
range and multipartite entanglement. Strümpfer [20] in-
vestigated the role of quantum coherence and determined

the effect of energy level shifts and resonances for in-
creasing energy transfer rates. Dong et al. [21] examined
a ring of coupled 2-LSs and demonstrated that the col-
lective ring can be modeled as a Λ-type 3-level system
(3-LS). In addition, they determined the efficiency of a
ring coupled to a photon and a central two-level RC.
They explained the high transfer efficiencies and power
outputs using dark state channels.

Two-photon transfer in many systems has been an
area of active research [22–27]. Aiyejina et al. [22] con-
sidered a trimer of 3-LSs and found conditions for per-
fect and near-perfect double excitation transfer for laser
pulses and single photons. Dong et al. [23] considered
coupled cavity arrays containing 3-LSs and determined
that uniform intercavity coupling was most applicable
for quantum-state transfer. Alexanian [24] considered
two-photon exchange in a cavity containing two 3-LSs,
Rabi oscillations and entanglement for symmetric and
antisymmetric states. Liao and Law [25] explored two
photon transport properties in a cavity with a nonlinear
medium and demonstrated the emergence of quantum
correlations between the two photons. In a two nonlin-
ear cavity system, Hardal and Müstecaplioglu [26] consid-
ered coherences and entanglement to find an advantage
of practical realization of entanglement for two-photon
over one-photon exchange. Russo et al. [27] identified
photon pair hopping between two cavities separated by
a vibrating mirror.

Artificial light-harvesting systems have been experi-
mentally realized, such as the LH1-RC photosynthetic
complex [28–30]. Suemori et al. [28] isolated LH1-RC
units onto ITO electrodes to demonstrate the method-
ology that can be used to build artificial photosynthetic
units. Photocurrent response was measured, consistent
with the function of capturing light and transferring elec-
trons. Sumino et al. [29] designed assemblies of LH1-RC
arrays placed on domain-structured planar lipid bilayers.
Intermolecular energy transfer to the LH1-RC via LH2
was observed. Rousseaux et al. [30] fabricated a Rus-
sian doll complex with two poryphin nanorings which
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reflect LH1-RC architecture. Photophysical experiments
demonstrated excitation transfer between the two rings.
Recent advancements have also demonstrated the use of
photosynthetic and artificial photosynthetic systems in
order to harvest solar energy [31–33].

In pursuit of breakthroughs in renewable energy and
sustainable technologies, we present an analytical inves-
tigation into the probabilities and transfer efficiencies
within an artificial light-harvesting photosynthetic sys-
tem engineered to replicate key features of natural energy
conversion. This study models a donor ring coupled to a
central acceptor as a basis for developing next-generation
solar energy devices. Our analysis reveals that, for an in-
cident photon pair, the system achieves near-perfect sin-
gle excitation transfer in the weak coupling limit, while
in the strong coupling regime, single excitation trans-
fer efficiencies exceed 90% and double excitation efficien-
cies reach approximately 50%. These findings underscore
three pivotal design criteria that can be strategically ex-
ploited to optimize device performance: maximizing the
acceptor’s effective probability, prolonging its decay time,
and enhancing the photon-ring coupling. Ultimately, this
work not only advances our theoretical understanding
of excitation dynamics but also provides a theoretical
framework for the practical development of highly effi-
cient, bio-inspired light-harvesting technologies.

In this paper we analytically determine transfer effi-
ciencies of two LH1-RC models which consist of a ring of
3-LSs coupled separately to a 2-level and a 3-level RC. In
Sec. II we introduce the LH quantum system framework
and derive analytic transfer probabilities and efficiencies
for a range of collective, localized and delocalized states.
We expand the model to include coupling to photon pairs,
finding analytic solutions with perturbation theory. In
Sec. III we present results and analyses of probabilities
and efficiencies for a range of system parameters. Finally,
a conclusion is given in Sec. IV.

II. THEORY

The LH1 antenna system is made up of N 3-LSs, each
in the ladder configuration, coupled with their nearest-
neighbors to create a ring structure (see Fig. 1(a)). The
Hamiltonian of the ring system, Hd is given as

Hd =

N∑
j=1

[
(ωd − iκ)e†jej + g(e†jej+1 + h.c.)

]
, (1)

where the creation operator e†j is defined as (see Ap-

pendix A)

e†j = |1j⟩⟨0j |+
√
2|2j⟩⟨1j |, (2)

for j ∈ {1, N}, that act on the jth 3-LS. The jth 3-
LS has states |0j⟩, |1j⟩ and |2j⟩ with corresponding ener-
gies 0, ωd and 2ωd. The coupling constant between the
nearest-neighbor donor 3-LSs is g. Spontaneous emission
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FIG. 1. (a) Schematic showing the donor ring, made up of
3-LSs, each in the ladder configuration, with allowed transi-
tion energies ωd. The coupling constant between the nearest-
neighbor donor 3-LSs is g and between each donor 3-LS and
the acceptor is ξ. The acceptor is modeled as (b) a 2-LS with
transition energy ωa and (c) a 3-LS with two allowed transi-
tions each with energy ωa, and decay rate Γ.

is described phenomenologically using the decay constant
κ.

A. LH1 Ring Coupled to a 2-LS Acceptor without
Light

The 2-LS acceptor is coupled to a RC with decay rate
Γ (see Fig. 1(b)). It has energy level spacing ωa with
Hamiltonian Ha given as

Ha = (ωa − iΓ)a†a, (3)

where the creation (annihilation) operator a† (a) is de-
fined as |1a⟩⟨0a| (|0a⟩⟨1a|).
The donor-acceptor interaction Hamiltonian Hda, is

defined as

Hda = ξ

N∑
j=1

(e†ja+ eja
†), (4)

where each donor 3-LS is coupled to the 2-LS acceptor
with coupling constant ξ.

The total Hamiltonian, H0, of the LH1-RC system
without light is therefore

H0 = Hd +Ha +Hda,

=

N∑
j=1

[(ωd − iκ)e†jej + g(e†jej+1 + h.c.) + ξ(e†ja+ h.c.)]

+(ωa − iΓ)a†a. (5)
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We consider double excitation transfer from the ring to
the 2-LS acceptor. The wave function of the system at
time t is

|ψ0(t)⟩ =
N∑
i=1

N∑
j>i

u0ij(t)|0..1i..1j ..0; 0⟩

+

N∑
i=1

v0i(t)|0..2i..0; 0⟩

+

N∑
i=1

w0i(t)|0..1i..0; 1⟩. (6)

where for example |0..11..12..0; 0⟩ = |110..0; 0⟩ describes
the basis state with single excitations on ring sites 1 and
2 with corresponding amplitude u012(t); |0..21..0; 0⟩ =
|20..0; 0⟩ is the basis state with a double excitation on
ring site 1 with corresponding amplitude v01(t); and
|0..11..0; 1⟩ = |10..0; 1⟩ has a single excitation on ring
site 1 as well as on the acceptor with amplitude w01(t).

1. Collective LH1-RC Hamiltonian and Transfer Efficiency

The Hamiltonian H0 in Eq. (5) can be rewritten in

terms of the k−space collective operators ẽ0, ẽ
†
0 as fol-

lows [34]

H̃0 = (ω0 + 2g)ẽ†0ẽ0 + ω1a
†a+

√
Nξ(ẽ†0a+ h.c.), (7)

since only k = 0 mode couples to the acceptor (see
Appendix B). We define frequencies ω0 = ωd − iκ and

ω1 = ωa − iΓ. ẽ0 and ẽ†0 are defined as follows

ẽ0 =
1√
N

N∑
j=1

ej , (8a)

ẽ†0 =
1√
N

N∑
j=1

e†j . (8b)

where ej and e†j are defined in Eq. (2). The matrix form

of H̃0 in Eq. (7) in the double excitation subspace is given
as

H̃0 =

(
2ω0 + 4g

√
2Nξ√

2Nξ ω0 + ω1 + 2g

)
, (9)

where the double excitation basis vectors |2N ; 0⟩ and
|1N ; 1⟩ are given as

|2N ; 0⟩ = 1

N

(√
2

N∑
i=1

N∑
j>i

|0..1i..1j ..0; 0⟩

+

N∑
i=1

|0..2i..0; 0⟩
)
, (10a)

|1N ; 1⟩ = 1√
N

N∑
i=1

|0..1i..0; 1⟩. (10b)

The eigenvalues of H̃0 for Γ = κ are given as

ϵ
(1,2)
0 =

1

2
(6g + 3ω0 + ω1 ± q0) , (11)

where q0 =
√
8ξ2N + (2g +∆)2 and ∆ = ωd − ωa.

We consider an initial state at t = 0, i.e. |Ψ̃0(0)⟩ =
|2N ; 0⟩, with two excitations on the ring. The state at

time t, |Ψ̃0(t)⟩, is found by solving the Schrödinger equa-

tion d|Ψ̃0(t)⟩
dt = −iH̃0|Ψ̃0(t)⟩. We obtain the state |Ψ̃0(t)⟩

as

|Ψ̃ 0(t)⟩ =
1

r2
exp

(
− i

2

(
ϵ
(1)
0 + ϵ

(2)
0

)
t
)(

q0 cos
(q0
2
t
)

−i (2g +∆) sin
(q0
2
t
))

|2N ; 0⟩ −

(
i2
√
2Nξ

q0
×

exp
(
− i

2

(
ϵ
(1)
0 + ϵ

(2)
0

)
t
)
sin
(q0
2
t
))

|1N ; 1⟩. (12)

The probability that the acceptor is excited, P(1)(t), is

P(1)(t) =
4ξ2

4ξ2 + (2g+∆)2

2N

e−4κt sin2
(q0
2
t
)
. (13)

P(1)(t) can be used to find the transfer efficiency, η
(1)
0 ,

as [35]

η
(1)
0 =

∫ ∞

0

2ΓP(1)(t)dt, (14)

which gives

η
(1)
0 =

2ξ2N

8ξ2N + (2g +∆)2 + 16κ2
. (15)

2. Initial Delocalized Double Excitations

For simplicity, we consider the case when N = 3, with
the following basis vectors |D0⟩, |L0⟩, and |A0⟩, given as

|D0⟩ =
1√
3
(|110; 0⟩+ |101; 0⟩+ |011; 0⟩) , (16a)

|L0⟩ =
1√
3
(|200; 0⟩+ |020; 0⟩+ |002; 0⟩) , (16b)

|A0⟩ =
1√
3
(|100; 1⟩+ |010; 1⟩+ |001; 1⟩) . (16c)

|D0⟩ (|L0⟩) describes delocalized (localized) double exci-
tations on the ring and |A0⟩ describes double excitations
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including an excited acceptor. Using the Hamiltonian in
Eq. (5) we obtain the matrix form of H0 in this basis,
H ′

0, as

H ′
0 =

2ω0 + 2g 2
√
2g 2ξ

2
√
2g 2ω0

√
2ξ

2ξ
√
2ξ ω0 + ω1 + 2g

 . (17)

The eigenvalues of H ′
0 for Γ = κ, ϵ′0

(i) (i = 1, 2, 3), are
found to be

ϵ′0
(1) = 2(ω0 − g), (18a)

ϵ′0
(2) =

1

2
(6g + 3ω0 + ω1 − r0), (18b)

ϵ′0
(3) =

1

2
(6g + 3ω0 + ω1 + r0), (18c)

where r0 =
√
24ξ2 + (2g +∆2). These have correspond-

ing eigenvectors

|ϵ′0(1)⟩ =
|D0⟩ −

√
2|L0⟩√

3
, (19a)

|ϵ′0(2)⟩ =
1√
3B−

(
(2g +∆− r0)

(√
2|D0⟩+ |L0⟩

)
+6

√
2ξ|A0⟩

)
, (19b)

|ϵ′0(2)⟩ =
1√
3B+

(
(2g +∆+ r0)

(√
2|D0⟩+ |L0⟩

)
+6

√
2ξ|A0⟩

)
, (19c)

with B± =
√
24ξ2 + (2g +∆± r0)2 as normalization

factors. The wave function at time t, |Ψ′
0(t)⟩, is given

|Ψ′
0(t)⟩ = u′0(t)|D0⟩+ v′0(t)|L0⟩+ w′

0(t)|A0⟩. (20)

where u′0(t), v
′
0(t), and w′

0(t) are the amplitudes corre-
sponding to states |D0⟩, |L0⟩, and |A0⟩, respectively. For
an initial delocalized state, |Ψ′

0D(0)⟩ = |D0⟩, the ampli-
tudes for the state at time t, u′0D(t), v′0D(t) and w′

0D(t),
are given as

u′0D(t) =
1

6r0

(
4 exp

(
− i

2

(
ϵ′
(2)
0 + ϵ′

(3)
0

)
t

)
×
(
r0 cos

(
r0
2 t
)
− i(2d+∆) sin

(
r0
2 t
))

+2r0 exp
(
−iϵ′(1)0 t

))
, (21a)

v′0D(t) =
1

6r0

(
2
√
2 exp

(
− i

2

(
ϵ′
(2)
0 + ϵ′

(3)
0

)
t

)
×
(
r0 cos

(
r0
2 t
)
− i(2d+∆) sin

(
r0
2 t
))

−2
√
2r0 exp

(
−iϵ′(1)0 t

))
, (21b)

w′
0D(t) = −4ξi

r0
exp

(
− i

2

(
ϵ′
(2)
0 + ϵ′

(3)
0

)
t

)
sin
(r0
2
t
)
.

(21c)

The probability for an excitation on the acceptor, P
(1)
0D(t),

is found to be

P
(1)
0D(t) =

16ξ2

24ξ2 + (2g +∆)2
e−4κt sin2

(r0
2
t
)
. (22)

P
(1)
0D(t) then gives a transfer efficiency η

(1)
0D as

η
(1)
0D =

4ξ2

24ξ2 + (2g +∆)2 + 16κ2
. (23)

3. Initial Localized Double Excitations

In this case, the localized initial state, |Ψ′
0L(0)⟩ = |L0⟩,

given in Eq. (16). The amplitudes u′0L(t), v
′
0L(t) and

w′
0L(t), for the state at time t are as follows;

u′0L(t) =
1

6r0

(
2
√
2 exp

(
− i

2

(
ϵ′0

(2) + ϵ′0
(3)
)
t

)
×
(
r0 cos

(
r0
2 t
)
− i(2d+∆) sin

(
r0
2 t
))

−2
√
2r0 exp

(
−iϵ′0(1)t

))
, (24a)

v′0L(t) =
1

6r0

(
2 exp

(
− i

2

(
ϵ′0

(2) + ϵ′0
(3)
)
t

)
(
r0 cos

(
r0
2 t
)
− i(2d+∆) sin

(
r0
2 t
))

+4r0 exp
(
−iϵ′0(1)t

))
, (24b)

w′
0L(t) = −2

√
2ξi

r0
exp

(
− i

2

(
ϵ′0

(2) + ϵ′0
(3)
)
t

)
sin
(r0
2
t
)
.

(24c)

The probability for an excited acceptor P
(1)
0L (t), is

P
(1)
0L (t) =

8ξ2

24ξ2 + (2g +∆)2
e−4κt sin2

(r0
2
t
)
. (25)

The transfer efficiency in this case, η
(1)
0L , is calculated to

be

η
(1)
0L =

2ξ2

24ξ2 + (2g +∆)2 + 16κ2
. (26)



5

B. LH1 Ring Coupled to a 3-LS Acceptor

The acceptor site is a 3-LS in the ladder configuration
with allowed transition frequency ωa and spontaneous
decay Γ to the RC (see Fig. 1(c)). The acceptor Hamil-
tonian Hb, is given as

Hb = (ωa − iΓ)b†b. (27)

b† (b) is the 3-LS creation (annihilation) operator acting
on the acceptor, and defined as

b† = |1⟩⟨0|+
√
2|2⟩⟨1|,

b = |0⟩⟨1|+
√
2|1⟩⟨2|. (28)

The interaction Hamiltonian describing the coupling be-
tween the acceptor and the ring, Hdb, is given as

Hdb = ζ

N∑
j=1

(e†jb+ ejb
†), (29)

where ζ is the donor-acceptor coupling constant. The
total Hamiltonian, H1, describing the LH1-RC system is

H1 = Hd +Hb +Hdb (30)

=

N∑
j=1

[(ωd − iκ)e†jej + g(e†jej+1 + h.c.) + ζ(e†ja+ h.c.)]

+(ωa − iΓ)a†a. (31)

The generalized wave function at time t, |Ψ1(t)⟩, in the
double excitation subspace is given as

|Ψ1(t)⟩ =
N∑
i=1

N∑
j>i

u1ij(t)|0..1i..1j ..0; 0⟩

+

N∑
i=1

v1i(t)|0..2i..0; 0⟩ (32)

+

N∑
i=1

w1i(t)|0..1i..0; 1⟩+ x1(t)|0..0; 2⟩.

where u1ij(t), v1i(t), w1i(t), and x1(t) are the amplitudes
for the respective basis states |0..1i..1j ..0; 0⟩, |0..2i..0; 0⟩,
|0..1i..0; 1⟩, and |0..0; 2⟩.

1. Collective LH1-RC Hamiltonian and Transfer Efficiency

For the k−space operators defined in Sec. IIA 1, the 3-
LS acceptor couples to the k = 0 mode defined in Eq. (8).
In terms of these collective operators, the Hamiltonian
H1 becomes

H̃1 = (ω0 + 2g)ẽ†0ẽ0 + ω1b
†b+

√
Nζ(ẽ†0b+ h.c.). (33)

The matrix form of H̃1 is given as

H̃1 =

2ω0 + 4g
√
2Nζ 0√

2Nζ ω0 + ω1 + 2g
√
2Nζ

0
√
2Nζ 2ω1

 , (34)

which acts on the basis states |2N ; 0⟩, |1N ; 1⟩ and |0N ; 2⟩,
where |0N ; 2⟩ is defined by

|0N ; 2⟩ = |0...0; 2⟩, (35)

and |2N ; 0⟩ and |1N ; 1⟩ are defined in Eq. (10a) and

Eq. (10b), respectively. The eigenvalues of H̃1 with Γ = κ
are

ϵ
(1)
1 = ω0 + ω1 + 2g − q1, ϵ

(2)
1 = ω0 + ω1 + 2g, (36)

ϵ
(3)
1 = ω0 + ω1 + 2g + q1, (37)

with q1 =
√
4ζ2N + (2g +∆)2. Starting with an initial

state |Ψ̃1(0)⟩ = |2N ; 0⟩, the state at time t, |Ψ̃1(t)⟩, is
given as

|Ψ̃1(t)⟩ =
1

q21
exp

(
−iϵ(2)1 t

)(
2ζ2N

(
1 + cos (q1t)

)
+ (2g +∆)2(cos (q1t)− iq1 sin (q1t))

)
|2N ; 0⟩

+

√
2Nζ

q21
exp

(
−iϵ(2)1 t

)(
(2g +∆) (cos (q1t)− 1)

− q1i sin (q1t)
)
|1N ; 1⟩

− 2ζ2N

q21
exp

(
−iϵ(2)1 t

)
(1− cos (q1t)) |0N ; 2⟩.

(38)

The probabilities that the acceptor is singly-excited, P
(1)
1 ,

and doubly-excited, P
(2)
1 , are given as

P
(1)
1 (t) =

2ζ2N

q41

(
(2g +∆)

2
(1− cos (q1t))

2

+ q21 sin(q1t)
2
)
e−4κt, (39a)

P
(2)
1 (t) =

4ζ4N2

(4Nζ2 + (2g +∆)2)2
(1− cos(q1t))

2e−4κt.

(39b)

The double excitation transfer efficiency η
(2)
1 is defined

as

η
(2)
1 =

∫ ∞

0

4ΓP
(2)
1 (t)dt. (40)

Substituting Eq. (39b) in Eq. (40) gives η
(2)
1 as

η
(2)
1 = 6ζ4N2

(4ζ2N+16κ2+(2g+∆)2)(4ζ2N+4κ2+(2g+∆)2) .

(41)

The probability of transferring a single excitation, η
(1)
1 ,

defined in Eq. (14) is

η
(1)
1 = 2ζ2N(ζ2N+4κ2+(2g+∆)2)

(4ζ2N+16κ2+(2g+∆)2)(4ζ2N+4κ2+(2g+∆)2) .

(42)
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2. Initial Delocalized Double Excitations

Using the Hamiltonian in Eq. (30), with the basis
states in Eqs. (16a)-(16c) (which also apply to a 2-LS
acceptor), in addition to |A1⟩ = |03; 2⟩ from Eq. (35),
the matrix form of H1, which is denoted H ′

1, is

H ′
1 =


2ω0 + 2g 2

√
2g 2ζ 0

2
√
2g 2ω0

√
2ζ 0

2ζ
√
2ζ ω0 + ω1 + 2g

√
6ζ

0 0
√
6ζ 2w1

 , (43)

with eigenvalues ϵ′1
(i)(i = 1, .., 4), for Γ = κ given as

ϵ′1
(1) = 2(ω0 − g), ϵ′1

(2) = 2g + ω0 + ω1 − r1,

ϵ′1
(3) = 2g + ω0 + ω1, ϵ

′
1
(4) = 2g + ω0 + ω1 + r1, (44)

where r1 =
√

12ζ2 + (2g +∆)2. The wave function at
time t, |Ψ′

1(t)⟩, is

|Ψ1(t)⟩ = u′1(t)|D0⟩+ v′1(t)|L0⟩+ w′
1(t)|A0⟩

+x′1(t)|A1⟩, (45)

with amplitudes u′1(t), v
′
1(t), w

′
1(t), and x

′
1(t) correspond-

ing to the states |D0⟩, |L0⟩, |A0⟩, |A1⟩, respectively. For
an initial delocalized state, |Ψ′

1D(0)⟩ = |D0⟩, the ampli-
tudes at time t are given as

u′1D(t) =
1

3
exp

(
−iϵ′1(1)t

)
+

1

3r21
exp

(
−iϵ′1(3)t

)(
12ζ2

+
(
(2g +∆)2 + r21

)
cos (r1t)− 2ir1(2g +∆) sin (r1)

)
,

(46a)

v′1D(t) =
−
√
2

3
exp

(
−iϵ′1(1)t

)
+

√
2

3r21
exp

(
−iϵ′1(3)t

)(
6ζ2

+
(
(2g +∆)2 + 6ζ2

)
cos (r1t)− ir1(2g +∆) sin (r1)

)
,

(46b)

w′
1D(t) =

2ζ

r21
exp

(
−iϵ′1(3)t

)
(
(2g +∆) (cos (r1t)− 1)− ir1 sin (r1t)

)
,

(46c)

x′1D(t) =
2
√
6ζ2

r21
exp(−iϵ′1(3)t)(cos(r1t)− 1). (46d)

The probabilities that the acceptor is singly-excited,

P
(1)
1D(t), and doubly-excited, P

(2)
1D(t), are given as

P
(1)
1D(t) =

4ζ2

(12ζ2 + (2g +∆)2)
2 e

−4κt

×
(
(2g +∆)

2
(cos(r1t)− 1)2 + r21 sin (r1t)

)
, (47a)

P
(2)
1D(t) =

24ζ4(cos(r1t)− 1)2

(12ζ2 + (2g +∆)2)2
e−4κt. (47b)

The single-excitation transfer efficiency, η
(1)
1D, and double-

excitation transfer efficiency, η
(2)
1D, are given as

η
(1)
1D = 4ζ2(3ζ2+4κ2+(2g+∆)2)

(12ζ2+16κ2+(2g+∆)2)(12ζ2+4κ2+(2g+∆)2) ,

(48a)

η
(2)
1D = 36ζ4

(12ζ2+16κ2+(2g+∆)2)(12ζ2+4κ2+(2g+∆)2) .

(48b)

3. Initial Localized Double Excitations

We now consider an initial localized state |Ψ′
1L(0)⟩ =

|L0⟩, which results in the following amplitudes in the
wave function at time t:

u′1L(t) = −
√
2

3
exp

(
−iϵ′1(1)t

)
+

√
2

3r21
exp

(
−iϵ′1(3)t

)(
6ζ2

+
(
(2g +∆)2 + 6ζ2

)
cos (r1t)− ir1(2g +∆) sin (r1)

)
,

(49a)

v′1L(t) =
2

3
exp

(
−iϵ′1(1)t

)
+

1

3r21
exp

(
−iϵ′1(3)t

)(
6ξ2

+
(
(2g +∆)2 + 6ζ2

)
cos (r1t)− ir1(2g +∆) sin (r1)

)
,

(49b)

w′
1L(t) =

√
2ζ

r21
exp

(
−iϵ′1(3)t

)
(
(2g +∆) (cos (r1t)− 1)− ir1 sin (r1t)

)
,

(49c)

x′1L(t) =
2
√
3ζ2

r21
exp(−iϵ′1(3)(cos(r1t)− 1), (49d)

The probabilities for a singly-excited and doubly-excited

acceptor, P
(1)
1L (t) and P

(2)
1L (t), respectively, are given as

P
(1)
1L (t) =

2ζ2

(12ζ2 + (2g +∆)2)
2 e

−4κt

(
(2g +∆)

2
(cos(r1t)− 1)2 + r21 sin (r1t)

)
, (50a)

P
(2)
1L (t) =

12ζ4(cos(r1t)− 1)2

(12ζ2 + (2g +∆)2)2
e−4κt. (50b)

The single-excitation and double-excitation transfer effi-

ciencies, η
(1)
1L and η

(2)
1L , respectively, are

η
(1)
1L = 2ζ2(3ζ2+4κ2+(2g+∆)2)

(12ζ2+16κ2+(2g+∆)2)(12ζ2+4κ2+(2g+∆)2) ,

(51a)
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η
(2)
1L = 18ζ4

(12ζ2+16κ2+(2g+∆)2)(12ζ2+4κ2+(2g+∆)2) .

(51b)

C. LH1 Ring Coupled to Two Photons

The Hamiltonian which described two incident pho-
tons, Hp

Hp = ωk1
c†k1
ck1

+ ωk2
c†k2
ck2
, (52)

where the photons frequencies are ωk1
and ωk2

, respec-

tively. The annihilation (creation) operators, cki (c†ki
),

are defined as |1ki
⟩⟨0ki

| (|0ki
⟩⟨1ki

|), i = 1, 2. |0ki
⟩ and

|1ki
⟩ are the vacuum and one photon states correspond-

ing to the mode ki, respectively. Each photon is coupled
to the ring with coupling constant J which gives the pho-
ton pair interaction Hamiltonian Hdp as

Hdp = J

N∑
j=1

[
(c†k1

+ c†k2
)ej + h.c.

]
. (53)

The interaction Hamiltonian, Hdp, can be written in
terms of the collective ring operator ẽ0, as

H̃dp =
√
NJ((c†k1

+ c†k2
)ẽ0 + h.c.). (54)

1. LH1 Ring Coupled to a 2-LS Acceptor with an Incident
Photon Pair

Combining the Hamiltonians in Eq. (52) and Eq. (54)

with H̃0 in Eq. (7), we obtain the total Hamiltonian H̃2,
as

H̃2 = H0 +Hp + H̃dp,

= (ω0 + 2g)ẽ†0ẽ0 + ω1a
†a+

√
Nξ(ẽ†0a+ h.c.)

+ ωk1
c†k1
ck1

+ ωk2
c†k2
ck2

+
√
NJ((c†k1

+ c†k2
)ẽ0 + h.c.).

(55)

In matrix form, H̃2 becomes

H̃2 =



ωk1 + ωk2

√
NJ

√
NJ 0 0 0 0√

NJ ωk1 + ω0 + 2g 0
√
2NJ

√
Nξ 0 0√

NJ 0 ωk2
+ ω0 + 2g

√
2NJ 0

√
Nξ 0

0
√
2NJ

√
2NJ 2ω0 + 4g 0 0

√
2Nξ

0
√
Nξ 0 0 ωk1

+ ω1 0
√
NJ

0 0
√
Nξ 0 0 ωk2

+ ω1

√
NJ

0 0 0
√
2Nξ

√
NJ

√
NJ ω0 + ω1 + 2g


, (56)

which acts on the basis states

|1k11k2 ;0N ; 0⟩,|1k10k2 ;1N ; 0⟩, |0k11k2 ;1N ; 0⟩,
|0k10k2 ;2N ; 0⟩,|1k10k2 ;0N ; 1⟩, |1k10k2 ;0N ; 1⟩,

|0k1
0k2

;1N ; 1⟩. (57)

The wave function at time t, |Ψ̃2(t)⟩, is given as

|Ψ̃2(t)⟩ =ñ2(t)|1k1
1k2

;0N ; 0⟩+ p̃2(t)|1k1
0k2

;1N ; 0⟩
+ q̃2(t)|0k1

1k2
;1N ; 0⟩+ s̃2(t)|0k1

0k2
;2N ; 0⟩

+ ũ2(t)|1k1
0k2

;0N ; 1⟩+ ṽ2(t)|0k1
1k2

;0N ; 1⟩
+ w̃2(t)|0k10k2 ;1N ; 1⟩, (58)

where ñ2(t), p̃2(t), q̃2(t), s̃2(t), ũ2(t), ṽ2(t) and w̃2(t)
are the amplitudes corresponding to the basis states de-
fined in Eq. (57). The transition energies of the collective
donor (ωd + 2g) and acceptor (ωa) are on resonance, i.e.
ωd + 2g = ωa, and the photon frequencies are detuned
by δ, such that ωk1

= ωa + δ and ωk2
= ωa − δ. In

the perturbative regime, where J << ξ, the system will
evolve adiabatically and we can apply perturbation the-

ory to calculate the eigenvalues of H̃2, ϵ
(j)
2 (j = 1, .., 7),

with Γ = κ which are found to be

ϵ
(1)
2 = 2ωa −

2NJ2κ(δ2 +Nξ2 + κ2)

δ4 +D2(κ2 −Nξ2) + (κ2 +Nξ2)2
, (59a)

ϵ
(2)
2 =2ωa − δ − iκ−

√
Nξ − NJ2

2(δ + iκ+
√
Nξ)

+
NJ2(3iκ− 3δ − 7

√
Nξ)

2((δ − iκ)2 + 2(δ − iκ)
√
Nξ −Nξ2)

, (59b)

ϵ
(3)
2 =2ωa + δ − iκ−

√
Nξ +

NJ2

2(δ − iκ−
√
Nξ)

+
NJ2(3iκ+ 3δ − 7

√
Nξ)

2((δ + iκ)2 − 2(δ + iκ)
√
Nξ −Nξ2)

, (59c)

ϵ
(4)
2 =2ωa − δ − iκ+

√
Nξ − NJ2

2(δ + iκ−
√
Nξ)

+
NJ2(3iκ− 3δ + 7

√
Nξ)

2((δ − iκ)2 − 2(δ − iκ)
√
Nξ −Nξ2)

, (59d)
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ϵ
(5)
2 =2ωa + δ − iκ+

√
Nξ +

NJ2

2(δ − iκ+
√
Nξ)

+
NJ2(3iκ+ 3δ + 7

√
Nξ)

2((δ + iκ)2 + 2(δ + iκ)
√
Nξ −Nξ2)

, (59e)

ϵ
(6)
2 =2ωa − 2iκ−

√
2Nξ

− (2
√
2− 3)NJ2(

√
Nξ(1 +

√
2) + iκ)

2(δ2 − (iκ+ (1 +
√
2)
√
Nξ)2)

+
NJ2(i(3 + 2

√
2)κ+ (1 +

√
2)
√
Nx)

2(δ2 + (iκ+ (
√
2− 1)ξ)2)

, (59f)

ϵ
(7)
2 =2ωa − 2iκ+

√
2Nξ

+
(2
√
2− 3)NJ2(

√
Nξ(1 +

√
2)− Iκ)

2(δ2 − (iκ− (1 +
√
2)ξ)2)

+
NJ2((3 + 2

√
2)κ+ i(1 +

√
2)
√
Nx)

2(δ2 − (iκ+ (1−
√
2)
√
Nξ)2)

. (59g)

Starting in the state |Ψ̃2(0)⟩ = |1k1
1k2

;0N ; 0⟩, the am-
plitudes at time t in Eq. (58) are obtained as

ñ2(t) = −
7∑

j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

)
×
((
α1 − ϵ

(j)
2

)
−Nξ2

)((
α2 − ϵ

(j)
2

)
−Nξ2

)
×
((

2κ+ 2iωa − iϵ
(j)
2

)2
+ 2Nξ2

)
, (60a)

p̃2(t) = −
√
NJ

7∑
j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

) (ϵ(j)2 − α1

)
×

((
α2 − ϵ

(j)
2

)
−Nξ2

)((
2κ+ 2iωa − iϵ

(j)
2

)2
+ 2Nξ2

)
,

(60b)

q̃2(t) = −
√
NJ

7∑
j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

) (ϵ(j)2 − α2

)
×

((
α1 − ϵ

(j)
2

)
−Nξ2

)((
2κ+ 2iωa − iϵ

(j)
2

)2
+ 2Nξ2

)
,

s̃2(t) = 2
√
2NJ2ξ

7∑
j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

)
×

((
Nξ2 +

(
κ+ 2iωa − iϵ

(j)
2

)2)
×
(
2κ2 −Nξ2 + 3iκ

(
2ωa − ϵ

(j)
2

)
−
(
2ω1 − ϵ

(j)
2

)2)
+ δ2

(
2κ2 +Nξ2 + 3iκ

(
2ωa − ϵ

(j)
2

)
− (ϵ

(j)
2 − 2ωa)

2
))

,

(60c)

ũ2(t) = −NJξ
7∑

j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

)×
((
α2 − ϵ

(j)
2

)
−Nξ2

)((
2κ+ 2iωa − iϵ

(j)
2

)2
+ 2Nξ2

)
,

(60d)

ṽ2(t) = −NJξ
7∑

j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

)×
((
α1 − ϵ

(j)
2

)
−Nξ2

)((
2κ+ 2iωa − iϵ

(j)
2

)2
+ 2Nξ2

)
,

(60e)

w̃2(t) = −2
√
N3J2ξ

7∑
j=1

exp
(
−iϵ(j)2 t

)
∏

k ̸=j

(
ϵ
(j)
2 − ϵ

(k)
2

)
×

(
δ2
(
ϵ
(j)
2 − 2ωa

)
+
(
κ+ i

(
2ωa − x− ϵ

(j)
2

))
×
(
4κ+ 6iωa − 3iϵ

(j)
2

)(
iκ− 2ωa −

√
Nξ + ϵ

(j)
2

))
,

(60f)

where α1 = 2ωa + δ − iκ and α2 = 2ωa − δ − iκ. The

probability that the acceptor is singly-excited, P
(1)
2 (t), is

P
(1)
2 (t) = |ũ2(t)|2 + |ṽ2(t)|2 + |w̃2(t)|2. (61)

The long-time behavior of ũ2(t), ṽ2(t), and w̃2(t) to
a good approximation is determined by the term with

exp(−iϵ(1)2 t) in Eqs. (60d)-(60f). We can therefore ap-
proximate the probabilities |ũ2(t)|2, |ṽ2(t)|2, and |w̃2(t)|2
as

|ũ2(t)|2 = |ṽ2(t)|2 ≈ N2J2ξ2

F2
exp

(
−E2

F2
t

)
, (62a)

|w̃2(t)|2 ≈
16N3J4ξ2κ2(κ2 +Nξ2)2 exp

(
−E2

F2
t
)

F 2
2 (2κ

2 +Nξ2)2
,

(62b)
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where

E2 = 4NJ2κ(δ2 + κ2 +Nξ2),

F2 = (δ4 + 2δ2(κ2 −Nξ2) + (κ2 +Nξ2)2). (63)

To lowest-order of J , i.e. J2, P
(1)
2 (t) is

P
(1)
2 (t) =|ũ2(t)|2 + |ṽ2(t)|2

=
2N2J2ξ2

F2
exp

(
−E2

F2
t

)
. (64)

This gives the single-excitation transfer efficiency η
(1)
2 , as

η
(1)
2 ≈ Nξ2

δ2 + κ2 +Nξ2
. (65)

2. LH1 Ring Coupled to a 3-LS Acceptor with an Incident
Photon Pair

Considering our acceptor is a 3-LS, the total system
Hamiltonian H̃3 is given as

H̃3 = H̃1 +Hp + H̃dp,

= (ω0 + 2g)ẽ†0ẽ0 + ω1b
†b+

√
Nζ(ẽ†0b+ h.c.)

+ ωk1
c†k1
ck1

+ ωk2
c†k2
ck2

+
√
NJ((c†k1

+ c†k2
)ẽ0 + h.c.).

(66)

where H̃1 is defined in Eq. (30), Hp in Eq. (52) and H̃pd

in Eq. (54). In matrix form, H̃3 becomes

H̃3 =



ωk1
+ ωk2

√
NJ

√
NJ 0 0 0 0 0√

NJ ωk1
+ ω0 + 2g 0

√
2NJ

√
Nζ 0 0 0√

NJ 0 ωk2
+ ω0 + 2g

√
2NJ 0

√
Nζ 0 0

0
√
2NJ

√
2NJ 2ω0 + 4g 0 0

√
2Nζ 0

0
√
Nζ 0 0 ωk1

+ ω1 0
√
NJ 0

0 0
√
Nζ 0 0 ωk2

+ ω1

√
NJ 0

0 0 0
√
2Nζ

√
NJ

√
NJ ω0 + ω1 + 2g

√
2Nζ

0 0 0 0 0 0
√
2Nζ 2ω1


, (67)

which acts on the same basis states in Eq. (57), in ad-
dition to the state |0k10k2 ;0N ; 2⟩. The wave function at

time t, |Ψ̃3(t)⟩ is

|Ψ̃3(t)⟩ =ñ3(t)|1k11k2 ;0N ; 0⟩+ p̃3(t)|1k10k2 ;1N ; 0⟩
+ q̃3(t)|0k1

1k2
;1N ; 0⟩+ s̃3(t)|0k1

0k2
;2N ; 0⟩

+ ũ3(t)|1k1
0k2

;0N ; 1⟩+ ṽ3(t)|0k1
1k2

;0N ; 1⟩
+ w̃3(t)|0k1

0k2
;1N ; 1⟩+ x̃3(t)|0k1

0k2
;0N ; 2⟩,

(68)

where ñ3(t), p̃3(t), q̃3(t), s̃3(t), ũ3(t), ṽ3(t), w̃3(t) and
x̃3(t) are the amplitudes corresponding to the basis
states.

Similar to the case with the 2-LS acceptor, transition
energies of the collective donor (ωd + 2g) and acceptor
(ωa) are on resonance, i.e. ωd + 2g = ωa, and the pair
photon frequencies are detuned by δ, such that ωk1

=
ωa + δ and ωk2

= ωa − δ. For J << ζ, we can calculate

the eigenvalues of H̃3, ϵ
(j)
3 (j = 1, .., 8), for Γ = κ are

found to be

ϵ
(1)
3 = 2ωa −

2iNJ2κ(δ2 + κ2 +Nζ2

δ4 + 2δ2(κ2 −Nζ2) + (κ2 +Nζ2)2
, (69a)

ϵ
(2)
3 = 2ωa − iκ+

2iNJ2κ(δ2 + κ2 +Nζ2

δ4 + 2δ2(κ2 −Nζ2) + (κ2 +Nζ2)2
,

(69b)

ϵ
(3)
3 = 2(ωa −

√
Nζ − iκ) +

2NJ2(iκ+
√
Nζ)

δ2 − (
√
Nζ + iκ)2

, (69c)

ϵ
(4)
3 = 2(ωa +

√
Nζ − iκ) +

2NJ2(iκ+
√
Nζ)

δ2 − (
√
Nζ − iκ)2

, (69d)

ϵ
(5)
3 = 2ωa − δ − iκ−

√
Nζ +

NJ2

2

(
2

−δ + iκ+
√
Nζ

− 2(δ +
√
Nξ)

δ2 + κ2 +Nζ2 + 2
√
Nδζ

)
, (69e)

ϵ
(6)
3 = 2ωa + δ − iκ−

√
Nζ +

NJ2

2

(
2

δ + iκ+
√
Nζ

+
2(δ −

√
Nξ)

δ2 + κ2 +Nζ2 − 2
√
Nδζ

)
, (69f)
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ϵ
(7)
3 = 2ωa − δ + iκ−

√
Nζ +

NJ2

2

(
−2

δ − iκ+
√
Nζ

− 2(δ −
√
Nξ)

δ2 + κ2 +Nζ2 − 2
√
Nδζ

)
, (69g)

ϵ
(8)
3 = 2ωa + δ − iκ+

√
Nζ +

NJ2

2

(
2

δ + iκ−
√
Nζ

+
2(δ +

√
Nξ)

δ2 + κ2 +Nζ2 + 2
√
Nδζ

)
. (69h)

Using the initial state |Ψ̃3(0)⟩ = |1k1
1k2

;0N ; 0⟩, the am-
plitudes in Eq. (68) at time t to lowest order in J are
given as

ñ3(t) =

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

) (2iκ− 2ωa + ϵ
(j)
3

)
×
((

2ωa + δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − 2iκ− ϵ
(j)
3

)2
− 4Nζ2

)
, (70a)

p̃3(t) =−
√
NJ

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

)
×
(
2iκ− 2ωa + ϵ

(j)
3

)(
2ωa + δ − iκ− ϵ

(j)
3

)
×
((

2ωa − δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − 2iκ− ϵ
(j)
3

)2
− 4Nζ2

)
, (70b)

q̃3(t) =−
√
NJ

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

)
×
(
2iκ− 2ωa + ϵ

(j)
3

)(
2ω1 − δ − iκ− ϵ

(j)
3

)
×
((

2ωa + δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − 2iκ− ϵ
(j)
3

)2
− 4Nζ2

)
, (70c)

s̃3(t) = 2
√
2NJ2

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

)
×

(
2Nδ2ζ2(2iκ− 2ωa + ϵ

(j)
3 )+

(
δ2 +Nζ2 −

(
2ωa − iκ− ϵ

(j)
3

)2)(
Nζ2

(
ϵ
(j)
3 − 2ωa

)
+
(
2ωa − 2iκ− ϵ

(j)
3

)(
2ωa − iκ− ϵ

(j)
3

)))
, (70d)

ũ3(t) =NJζ

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

) (2iκ− 2ωa + ϵ
(j)
3

)
×
((

2ωa − δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − 2iκ− ϵ
(j)
3

)2
− 4Nζ2

)
, (70e)

ṽ3(t) =NJζ

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

) (2iκ− 2ωa + ϵ
(j)
3

)
×
((

2ωa + δ − iκ− ϵ
(j)
3

)2
−Nζ2

)
×
((

2ωa − 2iκ− ϵ
(j)
3

)2
− 4Nζ2

)
, (70f)

w̃3(t) = 2
√
N3J2ζ

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

)
(
δ2
(
ϵ
(j)
3 − 2ωa

)
−
(
6ωa − 4iκ− 3ϵ

(j)
3

)
×

(
Nζ2 −

(
2ωa − iκ− ϵ

(j)
3

)2))(
2ωa − 2iκ− ϵ

(j)
3

)
,

(70g)

x̃3(t) =− 2
√
2N2J2ζ2

8∑
j=1

exp
(
−iϵ(j)3 t

)
∏

k ̸=j

(
ϵ
(j)
3 − ϵ

(k)
3

)
×

(
δ2
(
ϵ
(j)
3 − 2ωa

)
−
(
6ωa − 4iκ− 3ϵ

(j)
3

)
×
(
Nζ2 −

(
2ωa − iκ− ϵ

(j)
3

)2))
. (70h)

The probabilities that the acceptor is singly- and doubly-

excited, P
(1)
3 (t) and P

(2)
3 (t), respectively, are as follows

P
(1)
3 (t) = |ũ3(t)|2 + |ṽ3(t)|2 + |w̃3(t)|2, (71a)
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P
(2)
3 (t) = |x̃3(t)|2. (71b)

Similar to the 2-LS acceptor, the long term dynamics are

dominated by the terms with exp(−iϵ(1)3 t) in Eqs. (70e)-
(70h). The probabilities in Eqs. (71a) and (71b) can
therefore be approximated as

|ũ3(t)|2 = |ṽ3(t)|2 ≈ N2J2ζ2

F3
exp

(
−E3

F3
t

)
, (72a)

|w̃3(t)|2 ≈ 4N3J4ζ2κ2

F 2
3

exp

(
−E3

F3
t

)
, (72b)

|x̃3(t)|2 ≈ 2N4J4ζ4

F 2
3

exp

(
−E3

F3
t

)
, (72c)

where

E3 = 4NJ2κ(δ2 + κ2 +Nζ2),

F3 = (δ4 + 2δ2(κ2 −Nζ2) + (κ2 +Nζ2)2). (73)

To lowest order in J , P
(1)
2 (t) and P

(3)
2 (t) can be approxi-

mated as

P
(1)
3 (t) =

2N2J2ζ2

F3
exp

(
−E3

F3
t

)
, (74a)

P
(2)
3 (t) =

2N4J4ζ4

F 2
3

exp

(
−E3

F3
t

)
. (74b)

The resulting one photon and two photon efficiencies, η
(1)
3

and η
(2)
3 , are therefore given as

η
(1)
3 ≈ Nζ2

δ2 + κ2 +Nζ2
, (75a)

η
(2)
3 ≈ 2N3J2ζ4

(δ2 + κ2 +Nζ2)F3
. (75b)

III. RESULTS

Graphs of probabilities and efficiencies are plotted us-
ing the following parameter values: ωa = 12ξ, κ = Γ =
0.3ξ, ζ = ξ, J = 0.01ξ, and ξ = 10 ps−1. Probabilities
are plotted against the dimensionless time parameters
ξt for the 2-LS acceptor and ζt for the 3-LS acceptor,
and efficiencies are plotted against the dimensionless pa-
rameters (2g +∆)/ξ and J/ξ for the 2-LS acceptor, and
(2g +∆)/ζ, (2g +∆)/δ, and J/ζ for the 3-LS acceptor.

(a) (b)

FIG. 2. Plots of the probabilities P
(1)
0 (t) (blue), P

(1)
0D(t)

(red) and P
(1)
0L (t) (green) against ξt for a singly-excited 2-

LS acceptor for states |Ψ̃0(t)⟩ (with N = 3), |Ψ0D(t)⟩, and
|Ψ0L(t)⟩ in Eqs. (13), (22), and (25), respectively. In Fig. 2(a)
2g +∆ = 0 and in Fig. 2(b) 2g +∆ = 5ξ.

A. Probabilities

Probabilities P
(1)
0 (t), P

(1)
0D(t) and P

(1)
0L (t) in Eq. (13),

(22), and (25), respectively, for a singly-excited 2-LS ac-

ceptor are plotted in Fig. 2. P
(1)
0 (t) is the acceptor single

excitation probability corresponding to an initial dou-
ble excitation on the ring with N = 3 donor atoms. In
Fig. 2(a) the energy levels of the collective donor ring and
acceptor atom are on resonance, i.e. ∆+2g = 0, where ∆
is the detuning between the acceptor and a single donor
atom, and g is the inter-donor coupling constant. In
Fig. 2(b) the energy levels of the collective donor ring
and acceptor are off-resonance, with ∆ + 2g = 5ξ. In

Fig. 2(a) and Fig. 2(b), P
(1)
0 (t) exhibits a decaying oscil-

latory behavior, with periods 2π/(
√
24ξ) and 2π/(

√
49ξ),

respectively and decay rate 0.6ξ. It should be noted that
the period in the on-resonance case is larger by a factor
of approximately

√
2 compared to the off-resonance case.

The initial probability maximum in the on-resonant case
is 0.491, which is larger by a factor of approximately
1.67 compared to the off-resonance maximum of 0.294.
In both on- and off-resonance cases, the singly-excited

acceptor probabilities, P
(1)
0D(t) and P

(1)
0L (t), for delocal-

ized and localized initial states, respectively, have the

same period and decay rate as P
(1)
0 (t). At all times

P
(1)
0D(t) = 2

3P
(1)
0 (t) and P

(1)
0L (t) = 1

3P
(1)
0 (t). An initial

state |2N ; 0⟩ defined in Eq. (10a) simplifies when N = 3
to

|Ψ0(0)⟩ = α|Ψ0D(0)⟩+ β|Ψ0L(0)⟩, (76)

where α =
√

2/3 and β =
√
1/3. It should be noted

that this initial state gives P
(1)
0 (t), which is the high-

est singly-excited acceptor probability at all times t. All
other normalized values of α and β give lower probabili-
ties.
The probabilities P

(1)
1 (t), P

(1)
1D(t) and P

(1)
1L (t) in

Eqs. (39b), (47a), and (50a), for a singly-excited 3-LS
acceptor are plotted in Fig. 3(a) and Fig. 3(b) for the on-
resonance (2g +∆ = 0) and off-resonance (2g +∆ = 5ζ)
cases, respectively. Similar to the 2-LS acceptor, all prob-
abilities exhibit a decaying oscillatory behavior. The
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(a) (b)

(c) (d)

FIG. 3. (a) and (b) are plots of P
(1)
1 (t) (blue), P

(1)
1D(t)

(red) and P
(1)
1L (t) (green) in Eq. (39b), (47a), and (50a), re-

spectively, against ζt for a singly-excited 3-LS acceptor. (c)

and (d) are plots of P
(2)
1 (t) (blue), P

(2)
1D(t) (red) and P

(2)
1L (t)

(green) from Eq. (39a), (47b), and (50b), respectively, against
ζt for a doubly-excited 3-LS acceptor. In Figs. 3(a) and 3(c)
2g +∆ = 0 and in Figs. 3(b) and 3(d) 2g +∆ = 5ζ.

on-resonance single excitation probability, P
(1)
1 (t), has

a period of π/(
√
12ζ) while the off-resonance period is

2π/(
√
37ζ). Compared to the 2-LS acceptor single exci-

tation probability, the on-resonance period for the 3-LS
acceptor is smaller by a factor of 0.707, while the off-
resonance period is larger by a factor of 1.15. The initial
probability maximum for the on-resonance case is 0.298,
and off-resonance it is 0.252. Both these probabilities
are smaller compared to the corresponding probabilities
for the 2-LS acceptor. The single excitation probabili-

ties, P
(1)
1D(t), and P

(1)
1L (t), for the delocalized and local-

ized initial states, respectively, have the same period,
π/(

√
12ζ) for the on-resonance case and π/(

√
37ζ) for

the off-resonance case. P
(1)
1D(t) and P

(1)
1L (t) have initial

maxima of 0.198 and 0.0993 in the on-resonance case,
and 0.168 and 0.0840 in the off-resonance case, respec-
tively. It should be noted that the initial maximum of

P
(1)
1D(t) and P

(1)
1L (t) is 2/3 and 1/3 of the initial maximum

of P
(1)
1 (t), respectively. The periods of P

(1)
1D(t) and P

(1)
1L (t)

are the equal to the period of P
(1)
1 (t).

We now consider P
(2)
1 (t), P

(2)
1D(t) and P

(2)
1L (t) in

Eqs. (39a), (47b), and (50b), respectively, for the doubly-
excited 3-LS acceptor in Fig. 3(c) (on-resonance) and

Fig. 3(d) (off-resonance). The period of P
(2)
1 (t) in the

on-resonance case is 2π/(
√
12ζ), which is twice the pe-

riod of P
(1)
1 (t). In general, this means that on-resonance

there is faster transfer of single excitations compared to
double excitations. However, in the off-resonance case
the period 2π/(

√
37ζ), which is the same as that for

P
(1)
1 (t). This indicates that the transfer time for both sin-

gle and double excitations is the same in the off-resonance
case. The fastest transfer occurs for single excitations in
the on-resonance case, while the slowest transfer is for
on-resonance double excitations. The initial maximum
for P

(1)
2 (t) on-resonance is 0.358, while the off-resonance

value is 0.058. The double excitation probabilities for

the delocalized initial state, P
(2)
1D(t), and localized ini-

tial state, P
(2)
1L (t), have the same period of 2π/(

√
12ζ)

and 2π/(
√
37ζ) for the on- and off-resonance cases, re-

spectively. The initial maxima of P
(2)
1D(t) and P

(2)
1L (t) are

0.238 and 0.039 for on-resonance, and 0.119 and 0.019
for off-resonance, respectively. Similar to the single ex-
citation case, it should be noted the initial maximum of

P
(2)
1D(t) and P

(2)
1L (t) is 2/3 and 1/3 of the initial maximum

of P
(2)
1 (t), respectively. Also, the periods of P

(2)
1D(t) and

P
(2)
1L (t) are the equal to the period of P

(2)
1 (t).

(a) (b)

FIG. 4. Plots of probabilities (a) P
(1)
3 (t) and (b) P

(2)
3 (t)

against the ζt in Eq. (74a) for a 3-LS acceptor in the singly-
and doubly-excited state, respectively, for N = 3 and an inci-
dent photon pair. Both plots correspond to δ = 0 (blue) and
δ = 5ζ/2 (red) for the on-resonance and off-resonance cases,
respectively.

Fig. 4 gives the probabilities P
(1)
3 (t) and P

(2)
3 (t) against

ζt in Eqs. (74a) and (74b) with N = 3 and an in-
cident photon pair, for the 3-LS acceptor in a singly-
and doubly-excited state, respectively. It should be

noted that P
(1)
2 (t) = P

(1)
3 (t), where P

(1)
2 (t) is the singly-

excited probability for the 2-LS acceptor with an in-

cident photon pair and therefore P
(1)
3 (t) also describes

P
(1)
2 (t). Fig. 4(a) shows the plots P

(1)
3 (t), for the singly-

excited 3-LS acceptor, for the δ = 0 (blue) and for
δ = 5ζ/2 (red) cases. In both cases, the probabilities ex-
hibit damped oscillations, which asymptotically decay to
1.89×10−4 exp(−1.17×10−4ζt) in the on-resonance case
and 1.47×10−4 exp(−2.75×10−4ζt) in the off-resonance
case, for ζt ⪆ 25. Fig. 4(b) shows the plots of the prob-

abilities, P
(2)
3 (t), for the doubly-excited 3-LS acceptor

in the on-resonance and off-resonance cases. Similar to
the singly-excited 3-LS acceptor, both probabilities ex-
hibit initial damped oscillations, which asymptotically
decay to 1.78×10−8 exp(−1.17×10−4ζt) in on-resonance
case, and to 1.08× 10−8 exp(−2.75× 10−4ζt) in the off-

resonance case. P
(1)
3 (t) and P

(2)
3 (t) have initial maxima

of the order of 10−4 and 10−7, respectively, while the

probabilities without light, P
(1)
1 (t) and P

(2)
1 (t), both have
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initial maxima of the order of 10−1.

B. Transfer Efficiencies

(a) (b)

(c) (d)

FIG. 5. (a) Plots of the single excitation efficiency η
(1)
0 in

Eq. (15) for 2-LS acceptor against the dimensionless detun-
ing (2g + ∆)/ξ. (b) Plots of the single excitation efficiency

η
(1)
1 in Eq. (42) for a 3-LS acceptor against the dimension-

less detuning (2g + ∆)/ζ. (c) Plots of the double excitation

efficiency η
(2)
1 in Eq. (41) for a 3-LS acceptor against the di-

mensionless detuning (2g +∆)/ζ. (d) Plots of the single ex-

citation efficiency η
(1)
2 in Eq. (65) for 2-LS acceptor with an

incident photon pair against the dimensionless detuning δ/ξ.
The graphs plotted are for N = 3 (red) and N = 10 (blue).

Fig. 5 shows the plots of the efficiencies η
(1)
0 (Eq. (15)),

η
(1)
1 (Eq. (42)), η

(2)
1 (Eq. (41)), and η

(1)
2 (Eq. (65)) against

the detuning parameters (2g+∆)/ξ, (2g+∆)/ζ, and δ/ξ.
Fig. 5(a) gives the plots of the single excitation efficiency

η
(1)
0 in Eq. (15) for the 2-LS acceptor against (2g+∆)/ξ,

for N = 3 and N = 10. The maximum efficiencies for η
(1)
0

occur at zero detuning and are 0.236 for N = 3 and 0.246
for N = 10. The maximum efficiency for arbitrary N is

given as η
(1)
0 = N

0.72+4N . The dimensionless bandwidth

of η
(1)
0 for N = 3 it is 6.95 while for N = 10 is 12.66. It

should be noted that the efficiency for N = 10 is always
greater than the efficiency for N = 3, for all values of the
dimensionless detunings.

Fig. 5(b) gives the plots of the single excitation ef-

ficiency η
(1)
1 in Eq. (42) for the 3-LS acceptor against

(2g + ∆)/ζ. In this case the maximum efficiency for
N = 3 is 0.157 occurring at dimensionless detuning val-
ues ±4.49 and for N = 10, the maximum is 0.164 occur-

ring at ±2.48. The dimensionless bandwidth of η
(1)
1 for

N = 3 is 14.45 while for N = 10 it is 25.89. It should
be noted that η

(1)
1 has a minimum of 12.1 for N = 3 and

12.4 for N = 10 on-resonance.

Fig. 5(c) gives the plots of the double excitation ef-

ficiency η
(2)
1 in Eq. (41) for the 3-LS acceptor against

(2g + ∆)/ζ. The maximum efficiencies of η
(1)
1 occur at

zero detuning and are 0.325 for N = 3 and 0.359 for
N = 10. The maximum efficiency for arbitrary N is

given as η
(2)
1 = 6N2

(4N+ 9
25 )(4N+ 36

25 )
. The bandwidth of η

(2)
1

for N = 3 is 4.62 while for N = 10 it is 8.23. Similar to
η
(1)
0 the efficiency for N = 10 is always greater than the
efficiency for N = 3.

Fig. 5(d) gives the plots of the single excitation effi-

ciency η
(1)
2 in Eq. (65) for two incident photons for the

2-LS acceptor against δ/ξ. The maximum efficiencies of

η
(1)
2 occur at zero detuning and are 0.971 for N = 3 and
0.991 for N = 10. The maximum efficiency for arbitrary

N is given as η
(1)
2 = N

9
100+N

. The bandwidth of η
(1)
2 for

N = 3 is 3.51 while for N = 10 it is 6.32. It should be
noted that the efficiency for N = 10 is always greater
than the efficiency for N = 3. In addition, the single ex-

citation efficiency η
(1)
2 in Eq. (65) for the 2-LS acceptor is

the same as the single excitation efficiency for the 3-LS

acceptor, η
(1)
3 , in Eq. (75a), for ζ = ξ. It is found the

double excitation transfer efficiency η
(2)
3 is negligible in

the perturbative regime J << ζ.

Fig. 6(a) gives numerical plots in the non-perturbative

regime for the single excitation efficiency η
(1)
2 against J/ξ

for a 2-LS acceptor with an incident on-resonant pho-
ton pair for N = 3 and N = 10. Maxima of 0.895
at J = 0.15ξ for N = 3 and 0.913 at J = 0.15ξ for
N = 10 are obtained. In contrast to the perturbative
regime in Fig. 5(d), the simulated efficiencies are almost
identical for N = 3 and N = 10. However, in pertur-
bative regime, with J = 0.01ξ, near-unity maxima are
obtained for N = 3 and N = 10. Fig. 6(b) gives plots

for the single excitation efficiency η
(1)
3 against J/ζ for a

3-LS acceptor with an incident on-resonant photon pair
for N = 3 and N = 10. Maxima of 0.870 at J = 0.15ζ for
N = 3 and 0.890 at J = 0.15ζ for N = 10 are obtained.
The single excitation transfer efficiency is higher for the
2-LS acceptor for all values of the dimensionless coupling
J/ζ compared to that of the 3-LS acceptor. It should be

noted that there is a sharp decrease in the efficiency η
(1)
3

for couplings 0.15 ≥ J/ζ < 0.9, followed by a slight in-
crease between 0.9 ≥ J/ζ < 1.6 and a general decrease for
J/ζ > 1.6. Fig. 6(c) gives plots for the double excitation

efficiency η
(2)
3 against J/ζ for a 3-LS acceptor with an

incident on-resonant photon pair for N = 3 and N = 10.
Maxima of 0.481 at J = 0.70ζ for N = 3 and 0.521
at J = 0.70ζ for N = 10 are obtained. It is observed
that larger photon couplings are required for maximum
double excitation transfer efficiency compared to the sin-
gle excitation transfer efficiency. However, the maximum
double excitation transfer efficiencies are smaller and ap-
proximately 60% of the single excitation transfer efficien-
cies. Additional numerical simulations with an incident
off-resonant photon pair resulted in reduced transfer ef-
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(a) (b) (c)

FIG. 6. Numerical plots in the non-perturbative regime for (a) single excitation efficiency η
(1)
2 against J/ξ for a 2-LS acceptor,

(b) single excitation efficiency η
(1)
3 against J/ζ for a 3-LS acceptor, (c) double excitation efficiency η

(2)
3 against J/ζ for a 3-LS

acceptor with an incident photon pair. Plots correspond to N = 3 (red) and N = 10 (blue), for δ = 0.

ficiencies in all cases.

IV. CONCLUSION

In this paper we derived analytically and simulated nu-
merically the acceptor probabilities and transfer efficien-
cies for a ring antenna light harvesting system coupled
to either a 2-LS or a 3-LS acceptor atom with no light or
with an incident photon pair. All acceptor probabilities
in the no light case with an initial double excitation on
the ring exhibit a decaying oscillatory behavior over a
time scale of approximately 40ps. Generally, a less than
50% efficiency was obtained in both the single excitation
transfer and double excitation transfer cases.

In the perturbative limit (J << ξ) with an incident
photon pair, single excitation probabilities for a 2-LS or
a 3-LS acceptor are 3 orders of magnitude smaller than
in the no-light case and exhibit short term oscillatory
behavior as well as long term decay over a time scale
of hundreds of nanoseconds. Near-perfect efficiency was
obtained for single excitation transfer with on-resonant
photon pairs. Double excitation probabilities were a fac-
tor of 1000 smaller than single excitation probabilities
but with the same decay time scale leading to negligible
double excitation transfer efficiency.

In the non-perturbative case with an incident on-
resonance photon pair, numerical simulations demon-
strated an over 90% single excitation transfer efficiency
and approximately 50% double excitation transfer effi-
ciency. Off-resonant photon pairs tend to be transferred
less efficiently compared to on-resonant photon pairs.

In conclusion, the three factors that determine high
excitation transfer efficiency in LH1-RC type photosyn-
thetic units are relatively high acceptor probabilities,
long decay times, and for double excitation transfer,
strong photon-ring coupling. The theoretical framework
presented in this paper can be implemented in the prac-
tical design of light-harvesting technologies which will be
useful for the realization of highly efficient bio-inspired
solar energy devices. However, translating these find-

ings into a practical device requires addressing several
key considerations. Below we outline a possible experi-
mental strategy and discuss the materials and engineer-
ing challenges, drawing upon recent advances in the field.

A. Device Architecture and Materials

A feasible practical implementation would adopt a
bio-inspired architecture featuring a donor ring coupled
to a central acceptor, mimicking the LH1-RC arrange-
ment in natural photosynthetic bacteria. In practice, the
donor ring may be realized using one of the following
approaches:

• Self-assembled Nanostructures: Organic dye
molecules or semiconductor quantum dots can
be functionalized with ligands to promote self-
assembly into ring structures. The close-packing
and precise spatial arrangement are critical for
strong inter-donor coupling, which is essential to
achieve the high transfer efficiencies predicted by
our model.

• Nanofabrication Techniques: Advanced litho-
graphic methods or templated deposition (e.g., on
pre-patterned substrates) may be used to engineer
the precise geometry of the ring. Such techniques
allow for fine tuning of donor–donor spacing and
coupling constants, thereby optimizing the pho-
ton–ring interaction.

For the central acceptor:

• Molecular Acceptors: A robust candidate would
be a specially designed molecular complex with a
two-level or three-level electronic structure, engi-
neered to have a long-lived excited state. This
could be achieved through modifications on con-
ventional porphyrin or phthalocyanine systems.

• Hybrid Materials: Integration of organic and in-
organic materials—such as combining conjugated
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polymers with metal oxides or perovskite nanos-
tructures—can lead to acceptors with tailored elec-
tronic properties and enhanced stability.

B. Integration with Electrodes and
Photoelectrochemical Cells

For energy conversion applications, the self-assembled
LH complex can be integrated into a photoelectrochem-
ical cell:

• Electrode Immobilization: Following the ap-
proach of Suemori et al. [28], the donor-acceptor
assemblies can be immobilized onto transparent
conductive substrates such as indium tin oxide
(ITO) electrodes. Such arrangements have been
shown to facilitate efficient photocurrent generation
by providing a direct path for charge collection.

• Charge Extraction Layers: In addition to the
conducting electrode, proper electron and hole ex-
traction layers should be designed. These could
be realized with metal oxides (e.g., TiO2 for elec-
trons and NiO for holes) that are widely used in
dye-sensitized and perovskite solar cells.

• Encapsulation and Stability: Stability is a criti-
cal issue in practical devices. Encapsulation strate-
gies, for instance using polymer matrices or ro-
bust inorganic coatings, can protect the delicate
donor and acceptor components from environmen-
tal degradation (e.g., moisture and oxygen).

C. Parameter Optimization Based on Analytical
Insights

Our analytical results suggest that the overall device
performance will be maximized by:

1. Maximizing the Acceptor’s Excitation Prob-
ability: This can be achieved by selecting accep-
tor materials with inherently high absorption cross-
sections and engineering strong donor–acceptor
coupling through chemical modification (e.g., teth-
ering or covalent linking).

2. Prolonging the Excited State Lifetimes: Ma-
terials with low non-radiative decay channels are
preferred. This might involve the incorporation of
heavy atoms or the design of rigid molecular frame-
works that reduce vibrational losses.

3. Enhancing Photon–Ring Coupling: Nanos-
tructuring approaches such as plasmonic enhance-
ment (using noble metal nanoparticles) or dielectric
resonators can be explored to further amplify the
local electromagnetic field, thereby increasing the
effective coupling.

By systematically tuning these parameters, one can tailor
the quantum efficiency of the transfer process to meet the
requirements of a scalable solar energy device.

D. Scalability and Future Directions

In terms of scalability, the self-assembly and nanofab-
rication techniques discussed are already being explored
in the context of organic photovoltaics and artificial pho-
tosynthesis [33, 36, 37]. Future research could focus on:

• Hybrid Integration: Combining the light-
harvesting unit with semiconductor devices to cre-
ate integrated photoelectrochemical systems.

• In-situ Characterization: Advanced spectro-
scopic and microscopic techniques will be critical
for monitoring the assembly and charge transfer dy-
namics in real time.

• Optimization through Simulation: Computa-
tional modeling can help to predict optimal config-
urations and guide the synthesis of new materials
with tailored electronic properties.

Ultimately, the experimental implementation of these ar-
tificial light-harvesting devices, guided by our detailed
analytical insights, holds great promise for the develop-
ment of next-generation renewable energy technologies.
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Appendix A: Ring Operators

The j-th 3-LS on the ring has states |0j⟩, |1j⟩, and
|2j⟩. We have allowed transitions |0j⟩ → |1j⟩ (|1j⟩ →
|0j⟩), defined by the operator Sj

10 (Sj
01), and |1j⟩ → |2j⟩

(|2j⟩ → |1j⟩), with the operator Sj
21 (Sj

12). In bra-ket
notation, these operators are as follows

Sj
10 = |1j⟩⟨0j |, Sj

01 = |0j⟩⟨1j |, (A1)

Sj
21 = |2j⟩⟨1j |, Sj

12 = |1j⟩⟨2j |. (A2)

Additionally, we introduce the operators Sj
ii = |i⟩⟨i|. The

Hamiltonian of the ring system with these operators is

Hd =

N∑
j=1

[
(ωd − iκ)Sj

11 + 2(ωd − iκ)Sj
22

+g
(
(Sj

10 +
√
2Sj

21)(S
j+1
01 +

√
2Sj+1

12 ) + h.c.
)]
.

(A3)
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We have chosen couplings for transitions between the |0⟩
and |1⟩ states on both 3-LSs to be g, coupling between
the |0⟩ and |1⟩ on one 3-LS and the |1⟩ and |2⟩ on the

other to be
√
2g, and coupling between |1⟩ and |2⟩ on

both 3-LSs to be 2g [38].

Introducing the creation (annihilation operators) e†j
(ej), defined in terms of transition operators

e†j = Sj
10 +

√
2Sj

21 ej = Sj
01 +

√
2Sj

12. (A4)

These satisfy the site-dependent commutation relations

[ei, e
†
j ] = δij(|0i⟩⟨0j |+ |1i⟩⟨1j | − 2|2i⟩⟨2j |). (A5)

The Hamiltonian Hd with these operators becomes

Hd =

N∑
j=1

[
(ωd − iκ)e†jej + g(e†jej+1 + h.c.)

]
. (A6)

Appendix B: Collective State Operators

The Fourier transformation of the ring operators in
Eq. (2) is given as

ej =
1√
N

∑
k

eijkẽk, (B1a)

e†j =
1√
N

∑
k

e−ijkẽ†k, (B1b)

where ẽ†k (ẽk) are the creation (annihilation) collective
momentum-space operators defined by momentum k,

with k = 2π(i−1)
N and i = 1, .., N . The momentum-space

operators have commutation relations

[ẽk, ẽ
†
k′ ] = δkk′

1− 3

N

N∑
j=1

|2j⟩⟨2j |

 . (B2)

The ring Hamiltonian, Hd in Eq. (1), with these new
operators becomes

H̃d =
∑
k

(ωd − iκ+ 2g cos(k))ẽ†kẽk. (B3)

Additionally, the donor-acceptor coupling, Hda in
Eq. (4), for the 2-LS acceptor becomes

H̃da = ξ(ẽ†0a+ ẽ0a
†), (B4)

since the only mode that couples to the acceptor is the
k = 0 mode.
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ment organization and transfer of electronic excitation
in the photosynthetic unit of purple bacteria, The Jour-
nal of Physical Chemistry B 101, 3854 (1997), doi:
10.1021/jp963777g.

[9] R. Croce and H. V. Amerongen, Natural strategies for

photosynthetic light harvesting, Nature Chemical Biol-
ogy 10, 492 (2014).

[10] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler,
and M. Motzkus, Quantum control of energy flow in light
harvesting, Nature 417, 533 (2002).
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