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Abstract

There is a plethora of highly stochastic non-linear dynamical systems in fields such as molecular
biology, chemistry, epidemiology, and ecology. Yet, none of the currently available stochastic models
are both accurate and computationally efficient for long-term predictions of large systems. The Linear
Noise Approximation (LNA) model for biochemical reaction networks is analytically tractable, which
makes it computationally efficient for simulation, analysis, and inference. However, it is only accurate
for linear systems and short-time transitions. Other methods can achieve greater accuracy across
a wider range of systems, including non-linear ones, but lack analytical tractability. This paper
seeks to challenge the prevailing view by demonstrating that the Linear Noise Approximation can
indeed capture non-linear dynamics after certain modifications. We introduce a new framework that
utilises centre manifold theory allowing us to identify simple interventions to the LNA that do not
significantly compromise its computational efficiency. We develop specific algorithms for systems
that exhibit oscillations or bi-stability and demonstrate their accuracy and computational efficiency
across multiple examples.

Throughout biology, ecology, epidemiology and other fields, there is a plethora of non-linear dy-
namical phenomena such as oscillations and multi-stabilities. Examples include the circadian rhythms
[21], embryonic development oscillations [39], cell signalling oscillations [4], multi-stabilities in cell cycle
[45, 46, 2], cell differentiation [8, 19], and apoptosis [3], the central carbon metabolism in E.coli [26],
predator-prey oscillations in ecology [11], and epidemic oscillations [62]. These non-linear dynamics are
caused by feed-forward loops [38], negative feedback loops [38, 48] and other mechanisms, which are op-
erated by networks of interacting species. For example, gene expression oscillations are often generated
when a gene directly suppresses its own expression or activates the expression of its suppressors. In in-
fectious diseases outbreaks, compartments of the population, such as infected and recovered individuals,
interact between each other and phenomena like awareness and fatigue can generate oscillatory behaviors
[62]. The effects of stochasticity in these interactions, caused by molecular diffusion or, more generally,
the complex environment in which these interactions occur, are significant, especially when dealing with
smaller populations. Yet modeling the stochasticity using fast, accurate, scalable methods is an unsolved
problem.

These networks of stochastic interactions are often called reaction networks. The term reaction is
not only used for biochemical reactions but any event that directly causes a change in the population
of one or more species. The stochastic dynamics of reaction networks, can be described, under certain
assumptions, by Markov processes {Y (t) = (Y1(t), . . . , Yn(t))

⊺ | t ≥ 0}, describing the evolution of n
populations of different species over time. The so-called (chemical) master equation [13], which describes

∗To whom correspondence should be addressed. E-mail: gm256@st-andrews.ac.uk

1

ar
X

iv
:2

50
4.

15
16

6v
2 

 [
q-

bi
o.

Q
M

] 
 2

3 
A

pr
 2

02
5



the evolution of the probability distribution of the species populations, can be solved only rarely, severely
limiting its tractability. The stochastic simulation algorithm (SSA) [14] produces exact simulations of
the master equation but it is far too slow to be used in most applied settings since it simulates every
single reaction event.

At present, there are many methods of approximation of the master equation that target accelerating
simulation. Examples include tau leaping algorithms [17, 18] and the numerical integration of the (chem-
ical) Langevin equations [16]. Both rapidly increase the speed of simulation, however they leave no scope
for studying the distributions of the reaction network’s species analytically, and can be extremely slow for
sensitivity analysis and parameter estimation. Other recent methods [6, 28] focus on approximating any
protein-binding reactions, that often appearing in molecular biology networks, with simpler, analytically
tractable reactions.

Much work has followed from van Kampen’s system size expansion [58], which uses a system size
parameter Ω (like cell volume in molecular biology, population size in ecology or epidemiology) to derive
approximations of the master equation. Under certain conditions, the deterministic process {x(t) | t ≥
0} which solves the macroscopic reaction-rate equations was shown to be the limit, as Ω → ∞, of
the solutions of the master equation [32, 33]. The Linear Noise Approximation (LNA), derived using
the system size expansion, is a stochastic model that provides even more rapid simulation than the
aforementioned stochastic methods as well as being the only model in this field that allows analytical
expressions of probability distributions of the state of the system at arbitrary time-points. This makes
the LNA a powerful tool for sensitivity analysis and statistical inference [41, 42, 54, 43, 31, 10, 20, 49].

However, the important drawback of using the LNA is its inability to approximate the long-term
behavior of reaction networks exhibiting non-linear dynamics. Indeed, when the system dynamics are
non-linear [61], predictions of the state of the system at time t given the state at an earlier time s
become inaccurate as t − s becomes large. For a given reaction network, we can qualitatively examine
the dynamics of its paths and identify different phases of their evolution - for instance peaks and troughs
in species populations. If we were to examine the distribution of entire stochastic paths generated by
the SSA in a finite number of time-points then we find that, the phases of such paths become out
of sync with what the LNA predicts their phases to be. Hence the LNA makes incorrect predictions
of the dynamics thereafter. In [41], it was shown that in the specific setting where the macroscopic
(Ω → ∞) deterministic approximation has an attractive limit cycle solution, correcting these drifts
in phase predicted by the LNA is sufficient to produce simulations that are nearly identical to those
produced by the SSA. This approach enables the construction of both fast and accurate algorithms for
stochastic simulation, sensitivity analysis, and statistical inference of this class of non-linear systems [41].

There are three fundamental results in this paper. Firstly, we show that the analytically tractable LNA
model, which is known to be long-time accurate only for linear systems, can also be applied to non-linear
systems after appropriate modifications. In particular, we illustrate that it can accurately describe long-
term stochastic dynamics for arguably the two most abundant non-linear phenomena: oscillations and
bi-stability. We demonstrate this on several systems including the oscillatory systems in [35, 63, 4], and
bi-stable systems in [12, 2, 19]. Secondly, as part of this effort, we build a new framework for constructing
LNA-based models for non-linear dynamical systems. We call the models developed using our framework
phase corrected LNA (pcLNA) models because they use the LNA model equations to evolve the system
except that the phase of the system is adjusted in frequent times to control phase drifts. Fundamental
to the pcLNA approach is a mapping G that computes the phase of any stochastic state allowing for any
phase drift to be corrected. We show that for the very large class of systems whose macroscopic reaction
rate equation exhibits a non-hyperbolic equilibrium, the theory of centre manifolds of dynamical systems
can be employed to explicitly define the phase correction map G. Thirdly, we illustrate how the pcLNA
framework can be applied to accurately describe reaction networks whose macroscopic deterministic
evolution {x(t) | t ≥ 0} exhibits Hopf bifurcation and those exhibiting bi-stability in a region of their
parameter space. That is, systems with oscillations; sustained or non-sustained and often determined
by only a small change in a parameter, or systems which can switch between two steady states due to

2



A

1.2 1.4 1.6 1.8 2
y1

0

0.5

1

1.5

y 2

1 2 3
y1

0.5

1

1.5

2 4
y1

1

2

3

4

B
1 2 3 4 5

y1

2

4

6

8

2 4
y1

1

2

3

4

5

2 4
y1

1

2

3

4

5

y 2

Figure 1: A. Phase portraits of RRE solutions in (6) and a SSA simulation (red) for the system in [63].
B. Phase portraits of 20 SSA simulations (color) and the fixed points of the RRE in (6) (crosses) for the
system in [12]. The qualitative changes from left to right figure are due to changes in the bifurcation
parameter value.

stochasticity. We demonstrate that the pcLNA model for these systems offers accurate approximations
of the master equation for long-term simulation whilst substantially reducing the simulation time by
several orders of magnitude. Perhaps even more importantly, the accuracy of the pcLNA models opens
up the possibility of using its tractability to perform computationally demanding tasks such as sensitivity
analysis, inference and prediction.

While the approach developed in [41] demonstrated that phase correction significantly improves the
long-term accuracy of the LNA in oscillatory systems with stable limit cycles, it was limited to this
specific dynamical setting. In contrast, the framework introduced in this paper generalises the concept
of phase correction by introducing centre manifold theory to define and correct phase drifts in a broader
class of systems—specifically, those with non-hyperbolic equilibria, including both oscillatory and bi-
stable dynamics. This theoretical foundation enables us to construct a unified, algorithmic approach
for defining and correcting phase across diverse nonlinear regimes, allowing the pcLNA to extend the
analytical tractability and computational efficiency of the LNA to a significantly wider class of biologically
relevant systems.

We begin in Section 1 by introducing the pcLNA modelling framework. We first review reaction
networks and the system size expansion in Sections 1.1 and 1.2, before introducing the Linear Noise
Approximation (LNA) in Section 1.3. We then discuss the LNA’s loss of accuracy in non-linear sys-
tems and introduce the concept of phase in this context. In Section 1.4, we present the phase corrected
LNA (pcLNA), followed by the theoretical foundation of our approach—centre manifold theory—in Sec-
tion 1.5, with further implications discussed in Section 1.6. In Section 2, we apply our framework to
reaction networks whose macroscopic reaction rate equation undergoes a Hopf bifurcation and develop
the pcLNA algorithm specific to these systems. Section 3 focuses on bi-stable systems and constructs
the corresponding pcLNA algorithms. We validate our framework through numerical investigations in
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Section 4, and conclude with a discussion of our findings and future directions in Section 5. Additional
numerical investigations demonstrating the accuracy of the pcLNA modelling techniques on other reac-
tion networks, as well as supporting technical results and derivations, are provided in the Supporting
Information (SI).

Results

1 The pcLNA modelling framework

1.1 Reaction networks

We begin by presenting a mathematical formulation of reaction networks. We describe this framework
within the context of molecular biology, although analogous terminology can be applied in other fields
such as epidemiology and ecology (see, for instance, [20, 64]).

A system of multiple different molecular sub-populations, M1,M2, . . . ,Mn has state vector, Y (t) =
(Y1(t), . . . , Yn(t))

⊺ where Yi(t) ≥ 0, i ∈ {1, . . . , n}, denotes the number of Mi molecules at time t.
These molecules undergo reactions Rj , j ∈ {1, . . . , r}, such as transcription, translation, degradation
and translocation, which change the number of molecules of each specie,

k1jM1 + · · ·+ knjMn
cj−→ k′1jM1 + · · ·+ k′njMn. (1)

Here, the non-negative coefficients kij , k′ij ≥ 0 denote the number of molecules ofMi involved as reactants
and products, respectively, in reaction Rj . If Rj occurs at time t ≥ 0, Y (t) jumps to a new state Y (t)+νj ,
where the transition vectors νj = (k′1j − k1j , . . . , k

′
nj − knj)

⊺ ∈ Rn are often called stoichiometric. Under
the assumption that these reactions occur in a well-mixed solution [14], we can derive the propensity
functions πj : Rn → [0,∞) for each j ∈ {1, . . . , r} with the probability of one Rj reaction occurring in
the next infinitesimal time interval [t, t+ dt)

P (Y (t+ dt)− Y (t) = νj) = πj(Y (t))dt+ o(dt2). (2)

The propensity functions πj along with the stoichiometric vector νj , j = 1, . . . , r completely specify
the evolution of the reaction network.

The general form of the propensity function of the reaction in (1) is πj(y) = cj
∏

i y
kij

i , with uni-
molecular (Mi

cj−→ ·) and bi-molecular reactions (Mi + Mi′
cj−→ ·) with propensity of the form cjyi

and cjyiyi′ , respectively, being the most common type [60]. Here cj ∈ R is the reaction rate constant
corresponding to reaction Rj . The propensity functions are not restricted to the above general form.
For instance, for enzymatic reactions involving species Mi the propensity has the Michaelis-Menten form
[29], c2yi/(c1 + yi), while the Hill form [24], c2yhi /(c

h
1 + yhi ), is also often used to reflect cooperative

binding. For a discussion on the latter forms of propensities see [6].
These conditions give rise to a time-inhomogeneous, discrete state-space Markov process {Y (t) | t ≥

0}. The Kolmogorov forward equation [15] describing the evolution of the probability distribution,
P (y, t) := P (Y (t) = y | Y (t0) = y0), of the stochastic process {Y (t) | t ≥ 0} is,

∂P (y, t)

∂t
=

r∑
j=1

πj(y − νj)P (y − νj , t)−
r∑

j=1

πj(y)P (y, t). (3)

The Kolmogorov equation is often referred as (chemical) master equation. Despite the equation only
being analytically tractable for few cases, an exact simulation algorithm is available, namely Gillespie’s
stochastic simulation algorithm (SSA) [14]. We provide details of this in SI (Section

S1).
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1.2 System Size Expansion

The time-evolution of the stochastic process {Y (t) | t ≥ 0} can be described using the random time
change representation (RTC) [1]

Y (t) = Y (0) +

r∑
j=1

νjNj

(∫ t

0

πj(Y (s))ds

)
, (4)

where, for j ∈ {1, . . . , r}, Nj are independent, unit Poisson processes corresponding to reaction Rj .

This implies that for a given trajectory Y (s), s ∈ [0, t), the random variables Nj

(∫ t

0
πj(Y (s))ds

)
are

independent and have Poisson distribution with mean
∫ t

0
πj(Y (s))ds.

In pursuit of seeking methods to approximate the process {Y (t) | t ≥ 0}, it is common to introduce a
system size parameter Ω. Through setting X(t) := Y (t)/Ω, one can study the dependence of stochastic
fluctuations upon system size. It is sufficient to assume that the rates πj(Y (t)) depend upon Ω as
πj(Y (t)) := Ωρj(Y (t)/Ω) where ρj are called macroscopic rates of the system. This is a fairly-relaxed
condition, that can be further relaxed to more general relations between the two functions [58, 33].

Using this condition, we can re-write the infinitesimal RTC equation in (18) in terms of X(t) as

X(t+ dt)−X(t) =

r∑
j=1

νjΩ
−1Nj (Ωρj(X(t))dt) , (5)

with X(0) = X0, thus providing a time evolution law for the process {X(t) | t ≥ 0}. If, for each t ≥ 0,
we define x(t) as the limit in probability of X(t) as Ω → ∞, we can use the law of large numbers 1 (see
[32, 33]) to derive the limit of equation (5), as Ω → ∞, x(t+ dt)−x(t) =

∑r
j=1 νjρj(x(t))dt, x(0) = x0.

Letting dt → 0 we derive the macroscopic reaction rate equation (RRE), corresponding to the classical
mass-action kinetics. Typical in applied biochemical settings is the need to study the qualitative changes
in the dynamics of {X(t) | t ≥ 0} and {x(t) | t ≥ 0} when one (or more) of the system parameters, say
α, is free to vary. To emphasize this dependence on parameter α ∈ R we write the RRE as

ẋ = F (x, α), F (x, α) =

r∑
j=1

νjρj(x(t), α), x(0) = x0. (6)

and the corresponding Jacobian matrix

J = J(x, α) = (∂Fi/∂xj)
n
i,j=1 (7)

We will refer to the parameter α as the bifurcation parameter.

1.3 The Linear Noise Approximation (LNA)

To take into account the stochasticity of molecular interactions, one approach is to define the LNA
ansatz equation [58, 32, 33] that describes the relation between the stochastic process {X(t) | t ≥ 0}
and the deterministic process {x(t) | t ≥ 0}. Their difference, scaled by Ω−1/2, is a stochastic process,
{ξ(t) | t ≥ 0}, describing the noise around {x(t) | t ≥ 0}. That is, for each t ≥ 0,

X(t) = x(t) + Ω−1/2ξ(t). (8)

1Note that for a sequence X1, X2, . . . , of independent Poi(λ) random variables (0 < λ < ∞), N−1
∑N

i=1 Xi converges
in probability to λ, as N → ∞.
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As we show in SI (Section S2) by applying a derivation similar to [1] we get that for sufficiently large
values of Ω, the time-evolution of {ξ(t), t ≥ 0} can be described by the linear Stochastic Differential
equation (in the Itô sense)

dξ = Jξdt+E dBt, (9)

where J is the Jacobian matrix in (7), E = E(x) = Sdiag
(√

ρ1(x), . . . ,
√
ρr(x)

)
the product of the

stoichiometry matrix S = [ν1 · · ·νr], and the square root of the diagonal matrix, with main diagonal
entries (ρ1(x), . . . , ρr(x)), and Bt an n-dimensional Wiener process.

This linear SDE in (25) has a solution that can be written as

ξ(t) = C(s, t)ξ(s) + η(s, t), η(s, t) ∼ MVN(0,D(s, t)). (10)

where C(s, t) the fundamental matrix of (6), that is the solution of the initial value problem

Ċ = JC, C(s, s) = I, (11)

and D(s, t) the symmetric, positive-definite matrix, which is a solution of the initial value problem

Ḋ = JD +DJ⊺ +EE⊺, D(s, s) = 0. (12)

Here we write I for the identity matrix and 0 for the zero matrix. We also write MVN(m,S) for the
Multivariate Normal (Gaussian) distribution with mean m, and variance matrix S.

The above representation implies that by solving the initial value problems in (6), (11) and (12),
and starting with an initial condition for ξ(s) = ξ0 drawn from an arbitrary MVN distribution, one
can easily derive the MVN probability distribution of ξ(t), for any time t > s. In this case, we say the
LNA prediction for X(t) was initialised at time s. To simulate a path {X(t) | t ≥ 0}, we set s = 0.
The process {X(t) | t ≥ 0} modeled by the LNA is only an approximation of the true dynamics of the
reaction network {Y (t)/Ω | t ≥ 0} where {Y (t) | t ≥ 0} evolves according to (18) by the SSA. Therefore,
when we refer to the notion of accuracy, we mean the accuracy in the distribution of X(t) when trying
to capture the distribution of Y (t)/Ω for each t ≥ 0.

1.3.1 Accuracy of the LNA

The LNA accurately approximates the master equation in specific contexts. As discussed in SI (Section
S2), the LNA is derived using the Central Limit Theorem, as Ω tends to ∞, as an approximation of
the probability distribution function satisfying the master equation. As a result, we expect the LNA
to be accurate when Ω is sufficiently large. The value of Ω needed to ensure accuracy depends on the
characteristics of the system’s dynamics and the length of time internal where the approximation is
sought.

If the LNA accurately represents the distribution of the state of a given system at some time-point s,
it is expected to maintain this accuracy for a short time interval [s, s+ δ) [61]. The duration for which
the LNA remains accurate is influenced by the dynamics of the system and the level of stochasticity
present. For instance, it was observed in [41] that for periodic systems with a moderate size Ω, the time
interval over which the LNA retains its accuracy is approximately equal to the period of the system.

In situations where the system displays linear dynamics (i.e. the propensity functions in (2) are
linear with respect to Y (t)) the first two moments of the LNA coincide with those of solutions of the
master equation [36]. Additionally, empirical studies comparing the distribution of the system at specific
time-points, as predicted by the LNA, with histograms of the state distribution derived by simulated
trajectories using the SSA, have shown agreement when the initial conditions are in the vicinity of stable
equilibrium points (see e.g., [56, 41, 50]). Recent results identified the precise generic conditions under
which the LNA is accurate near equilibrium points [22].

It is important to note that, for moderate system sizes, the LNA tends to fail in approximating the
long-term dynamics of multi-stable and oscillatory systems [50, 5, 27, 56, 41].
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1.3.2 Phase

Important in diagnosing this issue, and indeed the rest of this paper, is the idea of phase. For a given
reaction network, we can qualitatively examine the dynamics of its paths and identify different stages
of their evolution. For example, a phase could correspond to a specific species’ peak or trough or
intermediate point in the evolution of an oscillatory system or a point leading to one of the equilibria of
a multi-stable system. For a stochastic path {X(t) | t ≥ 0} and its deterministic path {x(t) | t ≥ 0} we
are able to isolate the points X(s) and x(s) at any time s ≥ 0 on their path and qualitatively say what
stages X(s) and x(s) are in with respect to the evolution of the entire path. We call these stages the
phase of X(s) and x(s) respectively. Note that due to stochasticity, the phase of X(s) and the phase of
x(s) can be different, particularly for large s. We also note that the consideration of phase is only useful
for non-linear systems, since for linear systems, all trajectories lead to the same nearby equilibrium as
t → ∞ (or t → −∞). For networks with non-linear dynamics (e.g. oscillatory or multi-stable), once
the LNA becomes inaccurate at some time-point τ , the phase of X(s), for s ≥ τ , becomes out of sync
with the phase of x(s) causing ξ(s) to be too large for the LNA to make accurate predictions, even for
short time transitions. That is, for times s ≥ τ , there will be no agreement between the LNA and SSA
paths, at least for the next time interval. We call this phenomenon a phase drift. Therefore, initialising
the LNA to the correct phase is a necessary condition for the LNA to be accurate. This leads us to
speculate, if one can continually initialise the LNA with the correct phase so that the phase of X(s) is
always that of the phase of x(s), and ξ(s) remains sufficiently small for all s ≥ 0, then the LNA will
remain accurate at all times and produce paths agreeing to those from the SSA. We argue that, for some
classes of dynamical systems, this is indeed the case. For instance, it is shown in [41] that this is true for
systems with RRE that has an attractive limit cycle solution and a range of moderate system sizes. We
call this modelling technique the phase corrected Linear Noise Approximation (pcLNA).

1.4 The phase corrected Linear Noise Approximation (pcLNA)

Here we present the phase corrected Linear Noise Approximation algorithm in order to accurately sim-
ulate reaction networks with non-linear dynamics using LNA predictions. For each t ≥ 0, we define the
following ansatz;

X(t) = G(X(t)) + Ω−1/2κ(t). (13)

The map G : Rn → {x(t) | t ≥ 0} takes the current stochastic state X(t) and maps it to a point x(s)
on the deterministic evolution whose phase is the correct phase of X(t). Here the phase “correctness”
depends on context. Then κ(t) denotes the perturbation of X(t) from x(s). We use this ansatz as
follows.

That is, after each LNA step, the phase of the system is “corrected” such that x(si) = G(X(ti)) and
the fluctuations ξ(si−1 + ∆t) are replaced with the fluctuations remaining after the phase correction.
Providing ∆t is not too large, then any drifts in phase should be reset by this correction, ensuring the
phase of deterministic state x(si) matches the phase of the stochastic state X(ti). Hence for the next
step of the algorithm, the LNA predictions are initialised using the time corresponding to this phase,
preventing the increasing variance due to phase drifts. Indeed, {κ(si) | i ∈ N0} should have uniformly
bounded variance and remain sufficiently small for the LNA predictions to be valid over the short time
intervals [si, si + ∆t), i ∈ N0. Importantly for computational efficiency is that the same solutions of
ODEs (6), (11) and (12) are used in all steps. The fact that these ODEs only need to be solved once
before any simulations, rapidly increases the computation speed. The steps are illustrated in Figure 2
(A).

All that is preventing one from readily following the steps in the pcLNA algorithm is an explicit
definition of the map G. A natural question to ask is, does there exist an explicit definition of the map
G which will work for every reaction network? As we will soon see, the answer is no; phase is a concept
specific to the dynamics of paths of reaction networks and so the map G is highly specific to the network.
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Algorithm 1 General pcLNA algorithm
Inputs:
a. Initial conditions: s0 = 0 = t0, x(0), X(0), Parameters: ∆t, Ω.
b. The system with RRE as in (6) and solution {x(t) | t ≥ 0}.
c. The solutions C and D of (11), (12), respectively.
d. Times (ti)i∈N0

, with ti = t0 + i∆t.

Steps: Take κ(s0) = Ω1/2(X(0)− x(0)) and for i = 1, 2, . . . ,

1. sample ξ(si−1+∆t) from the MVN distribution with mean C(si−1, si−1+∆t)κ(si−1), and variance
matrix D(si−1, si−1 +∆t);

2. compute X(ti) = x(si−1 +∆t) + Ω−1/2ξ(si−1 +∆t);

3. set si such that G(X(ti)) = x(si) and set κ(si) = Ω1/2(X(ti)− x(si)).

Outputs: {X(ti) | i = 0, 1, 2, . . . }.

Despite this, we show, in Sections 1.5 and 1.6, the problem of finding G can be reduced since large
classes of networks can be grouped together according to topological equivalence of their RRE solution
{x(t) | t ≥ 0} and simulated using the same explicit form of G.

1.5 Centre manifolds in n-dimensional reaction networks

In this section, we present some results from the theory of dynamical systems that are classical yet
crucial for the development of our methods. We discuss how different dynamical systems can be grouped
together based on the qualitative similarity of their behavior near their equilibrium points. Additionally,
we explain how dynamical systems can be decomposed into linear and non-linear components in the
vicinity of an equilibrium. This decomposition facilitates the computation and control of the system’s
phase, which is vital for the speed and accuracy of the pcLNA models.

First, suppose we have two ODE systems with velocities, F and F ′, on Rn and Rm respectively. Also,
suppose they each have an equilibrium point, x0 and x′

0, respectively. Then, near their equilibrium, the
two dynamical systems are locally topologically equivalent if there exists a homeomorphism h : Rn → Rm

that is,

(i) defined in a neighbourhood A ⊂ Rn of x0;

(ii) satisfies x′
0 = h(x0);

(iii) maps paths of the system with velocity F in the neighbourhood A onto paths of the system with
velocity F ′ in the neighbourhood h(A) ⊂ Rm, preserving the direction of time.

Intuitively, this means the paths of one dynamical system near its equilibrium can be continuously
deformed onto paths of the other dynamical system near its equilibrium, and hence both systems exhibit
paths that are qualitatively similar, i.e. have the same key features, near their equilibria.

Now we turn our focus to the deterministic evolution {x(t) | t ≥ 0} solving the reaction rate equation
(RRE) (6) when one parameter, say α ∈ R, is free to vary. We assume that the system has a non-
hyperbolic equilibrium. That is, there exists an αp ∈ R such that,

F (xp, αp) = 0 and n0 > 0, (14)
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where n0, n+, n− denote the number of eigenvalues of the Jacobian matrix J(xp, αp) with zero, positive
and negative real part, respectively. Following this, consider the extended system,{

ẋ = F (x, α),

α̇ = 0.
(15)

Note that the Jacobian matrix of (15) evaluated at x = xp and α = αp is the (n+ 1)× (n+ 1) matrix,(
0 0

∂F
∂α

∣∣x=xp
α=αp

J(xp, αp)

)
, (16)

with n0 + 1 eigenvalues with zero real part and n − n0 eigenvalues with nonzero real part. Under the
assumptions above, the following theorem holds (see [34, Theorem 5.1 and Lemma 5.1]).

Center Manifold Theorem Let T c be the eigenspace corresponding to the n0+1 eigenvalues of (16)
with zero real part. Then, there exists a smooth (n0 + 1)-dimensional manifold Wc defined locally to
x = xp and α = αp and tangent to T c at x = xp and α = αp.
Moreover since α̇ = 0 the hyperplanes, Πα′ = {(x, α) | α = α′}, α′ ∈ R are invariant with respect to
(15) and so, for each α local to αp, Wc is foliated by the n0 dimensional manifolds Wc

α = Wc ∩Πα. For
each α local to αp we call Wc

α the centre manifold.
Finally, for each α local to αp, there exists a neighbourhood ∆(xp) of x = xp such that if a path of (6)
starting in ∆(xp), remains in ∆(xp), then this path approach Wc

α as t → ∞.
In other words, the Center Manifold Theorem states that there exists a parameter-dependent n0-

dimensional invariant center manifold Wc
α which is locally attracting. The next theorem (see [52])

describes a decomposition of non-hyperbolic systems into a linear and a non-linear component.

Shoshitaishvili Reduction Principle Let α be local to αp and let (u,v,w) be a coordinate system
with coordinates, u ∈ Rn0 , v ∈ Rn− and w ∈ Rn+ lying on the eigenspaces corresponding to the n0, n+,
n− eigenvalues of J(xp, αp) with zero, positive and negative real part, respectively.
Then, the centre manifold Wc

α can be locally represented as a graph of a smooth function Vα : Rn0 →
Rn−+n+ with Vα(u) = O(∥u∥2)2;

Wc
α = {(u,v,w) | (v,w) = Vα(u)}.

Moreover, near the equilibrium xp, (6) is locally topologically equivalent to the following system;
u̇ = Au+ g(u,Vα(u)),

v̇ = −v,

ẇ = w,

(17)

near its equilibrium. Here A is an n0 × n0 matrix with all its eigenvalues, for α = αp, on the imaginary
axis and g : Rn → Rn0 is a smooth function with Taylor expansions starting with at least quadratic terms.

The first equation in (17) is a restriction of equation (15) on the center manifold Wc
α. The other

two equations in (17) present linear, transient dynamics. Therefore, for small |α− αp|, all non-transient
events are captured on the invariant Wc

α by the n0 dimensional system of u, where n0 can be much
smaller than n. It is worth noting that if n+ = 0, the third equation vanishes, and the center manifold
Wc

α is attracting.
Furthermore, the last theorem states that there exists a parameter-dependent coordinate system on

Wc
α with coordinate u, which satisfies the first equation in (17). Given the uniqueness of the eigenspace
2This implies that the Taylor expansion of Vα(u) starts with at least quadratic terms.
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of any matrix, particularly the Jacobian J(xp, αp), the coordinate u ∈ Rn0 of Wc
α indeed satisfies the

first equation in (17). That is, the system described in (6) satisfying (14) is not only qualitatively similar
to the system in (17) but also, when transformed into (u,v,w) coordinates, it satisfies the first equation
in (17) exactly.

1.6 Consequences on the pcLNA

Recall that we need to be able to define the map G to take a stochastic state X and map it to a point on
the deterministic evolution {x(t) | t ≥ 0} with the correct phase of the stochastic state X. Importantly,
we have shown that if a reaction network has a RRE that contains a non-hyperbolic equilibrium, then
one can perform a coordinate transformation from the standard basis in Rn to the eigenbasis (u,v,w)
of J(xp, αp). Since local topological equivalence preserves the direction of time, then, assuming X and
{x(t) | t ≥ 0} are close to xp, we could perform this coordinate transformation to transform X and
{x(t) | t ≥ 0} into the eigenbasis and use their respective locations there in order to define G. In terms
of the pcLNA, we know the dynamics in v and w are entirely linear and hence will be captured accurately
by the LNA. Consequently, phase drifts, if they occur, will only take place in u on the centre manifold
Wc

α. That is, letting {X(t) = (U(t),V (t),W (t)) | t ≥ 0} and {x(t) = (u(t),v(t),w(t)) | t ≥ 0} denote
a stochastic path predicted by the LNA and the deterministic path respectively, the phase of U(s) will
become out of sync with the phase of u(s) for large s ≥ 0 whereas the phase of (V (s),W (s)) should
match that of (v(s),w(s)). The stochastic perturbation ξ(s) will only grow too large in the dimension
u and not the others. Hence, when defining G, we only need phase corrections to keep ξ(s) small for
each s ≥ 0 in the reduced n0 dimensions as opposed to n. The explicit definition of G will only depend
on the position of the stochastic state in these n0 dimensions; the same number of dimensions for all
topologically equivalent networks. We make the following remark.

Remark Equivalence classes made up of reaction networks with RREs containing a non-hyperbolic
equilibrium and topologically equivalent solutions {x(t) | t ≥ 0}, have centre manifolds which share
dimension n0 as well as dynamics of paths on their respective manifolds.
Hence, if one can define a phase correction map G which works for paths exhibiting such dynamics in the
n0 dimensions, then, in theory, this same map can be used to accurately simulate any reaction network
in the equivalence class using the pcLNA algorithm.

2 Hopf bifurcation systems

2.1 The Hopf bifurcation

We now consider systems which present oscillatory behaviour. Let {X(t) | t ≥ 0} be a reaction network
in Rn with deterministic evolution {x(t) | t ≥ 0} solving the macroscopic reaction rate equation in (6).
Suppose {x(t) | t ≥ 0} depends smoothly on a parameter α ∈ R and satisfies the conditions

(H.I) there exists an αp ∈ R and xp ∈ Rn such that, F (xp, αp) = 0,

(H.II) when evaluated at x = xp and α local to αp, the Jacobian of (6), has all negative eigenvalues
except for a pair of complex conjugate eigenvalues λ(α), λ̄(α) such that

λ(α) = µ(α) + iω(α), where µ(αp) = 0, ω(αp) > 0.

Condition (H.I) is precisely the requirement for the macroscopic reaction rate equation to exhibit a
equilibrium. Condition (H.II) ensures the equilibrium is non-hyperbolic and restricts all such networks
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to consist of oscillatory paths. For any system satisfying the above conditions, we can define a phase
correction map G. Let (6) correspond to a reaction network in Rn satisfying the conditions and α be
local to αp. Then, there exists a two dimensional centre manifold Wc

α which is attracting and invariant
for paths of (6).

Moreover, if (u,v) denote the coordinate system with coordinates, u ∈ R2, v ∈ Rn−2 lying on the
eigenspaces corresponding to the 2, n − 2 eigenvalues of J(xp, αp) with zero, and negative real part,
respectively. then, near the equilibrium xp, (6) is locally topologically equivalent to the dynamical
system in (17). near its equilibrium. Here the matrix A is an 2 × 2 matrix with all its eigenvalues, for
α = αP , on the imaginary axis, g : Rn → R2.

Equation (17) tells us the non-linear dynamics, which the LNA fails to simulate accurately, lie on the
centre manifold Wc

α.

2.2 The pcLNA algorithm for Hopf bifurcation systems

Suppose we have a reaction network with macroscopic RRE as in (6) satisfying conditions (H.I), (H.II).
Consider a stochastic trajectory {X(t) | t ≥ 0} and a deterministic trajectory {x(t) | t ∈ [0, T ]} of
this network, for some value α of the bifurcation parameter that is near the critical αp. Here T ≫ 0 is
the end of the time-interval where the solution of (6) is computed. We wish to define the phase map
G : Rn × [0,∞) → {x(t) | t ∈ [0, T ]}, where G(X(t)) = x(s), s ∈ [0, T ].

First, we find the u coordinates in (17). We identify the conjugate pair of eigenvectors, u1 ± iu2,
corresponding to the complex eigenvalues of the Jacobian J(xp, α) of the system in (6). The eigenspace
corresponding to these complex eigenvalues is spanned by {u1,u2}, and while the vectors u1,u2 are not
necessarily orthonormal, we can easily find an orthonormal basis {û1, û2} of this eigenspace using Gram-
Schmidt orthonormalisation or a similar method. Letting R = [û1 û2]. the vector U = R⊺(X−xp) ∈ R2

gives the u-coordinates of the arbitrary state X ∈ Rn. Henceforth we write the map G3 : Rn → R2,
U = G3(X) = R⊺(X − xp) that performs this change of coordinates.

The trajectory {x(t) | t ≥ 0} lies on its centre manifold (except initial transient periods), and
u(t) = G3(x(t)), t ≥ 0, give its u-coordinates on the centre manifold. As discussed in section 1.6, to
control phase drifts we need to control the deviations of the stochastic trajectory in the u coordinates.
We therefore wish to minimise the distance of U(t) = G3(X(t)) and u(t) = G3(x(t)). We define the
map G2 : R2 ∈ [0, T ], where s = G2(U) = argmins′∈[0,T ]∥U −u(s′)∥, that gives the time minimising this
distance. Finally, the map G1 : [0, T ] → Rn, G1(s) = x(s) simply gives the state of {x(t) | t ∈ [0, T ]} at
time s. The phase correction map G is the convolution G = G1◦G2◦G3, x(s) = G(X) = G1(G2(G3(X))
(see Figure 2B).

The perturbation κ(t) =
√
Ω(X(t)−G(X(t))) has minimised u coordinate. If the phase correction

is performed in frequent times, the perturbations κ(t) will remain small.
Having defined the map G, we now provide the pcLNA algorithm for Hopf bifurcation systems in

Algorithm 2.

3 Bi-stable systems

3.1 Bi-stability

We now consider systems that present bi-stability. We focus on the type of bi-stability arising in the
systems presented in [2], [19] and [12].

Let {X(t) | t ≥ 0} be a reaction network in Rn with RRE limit (as Ω → ∞) satisfying (6) and
Jacobian as in (7). There exist disjoint real subsets A1, A2, A3 of the space A of the bifurcation
parameter α such that
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Algorithm 2 pcLNA for Hopf bifurcation systems
Inputs:
a.. Initial conditions: s0 = 0 = t0, x(0), X(0), Parameters: ∆t, Ω.
b. System satisfying (H.I), (H.II), with solution {x(t) | t ≥ 0} and orthonormal basis vectors, û1, û2, of
the eigenspace corresponding to the conjugate pair of complex eigenvalues of J(xp, α).
c. The solutions C and D of (11), (12), respectively.
d. Times (ti)i∈N0

, with ti = t0 + i∆t.

Steps:

A. Compute κ(s0) = Ω1/2(X(0)− x(0)).
B. Set R = [û1 û2] and projR : Rn → R2, u = projR(x) = RT (x − xp). Compute {u(t) =

projR(x(t)) | t ≥ 0}.
C. For i = 1, 2, . . . ,

1. sample ξ(si−1 + ∆t) from the MVN distribution with mean C(si−1, si−1 + ∆t)κ(si−1), and
variance matrix D(si−1, si−1 +∆t);

2. compute X(ti) = x(si−1 +∆t) + Ω−1/2ξ(si−1 +∆t);

3. compute U = projR(X(ti)) and set si = argmins∥U − u(s)∥ with ∥·∥ being the Euclidean
norm, and κ(si) = Ω1/2(X(ti)− x(si)).

Outputs: {X(ti) | i = 0, 1, 2, . . . }.

(B.I) for α ∈ A1, (6) has a single fixed point x = x∗
1, and all eigenvalues of J(x∗

1, α) have negative real
part.

(B.II) for α ∈ A2, (6) has two fixed points x = x∗
1,xu, and all eigenvalues of J(x∗

1, α) have negative real
part, while all eigenvalues of J(xu, α) have negative real part except one zero eigenvalue.

(B.III) for α ∈ A3, (6) has three fixed points x = x∗
1,xu,x

∗
2, and all eigenvalues of J(x∗

i , α), for i = 1, 2,
have negative real part, while all eigenvalues of J(xu, α) have negative real part except one real
positive eigenvalue.

The system has three disjoint subsets of the parameter space, the first presenting a single, stable equi-
librium, the second presenting a non-hyperbolic equilibrium and a stable equilibrium, while the third
presents two stable equilibria and one unstable equilibrium. The Centre Manifold Theorem implies the
existence of a locally defined (1+1)-dimensional manifold Wc

α with an one-dimensional u coordinate sys-
tem. For the case (B.III), the coordinate u ∈ R lies on the direction of the eigenvector u corresponding
to the positive eigenvalue of J(xu, α).

3.2 The pcLNA algorithm for bi-stable systems

Following the pcLNA principle, we construct a phase correction map G to control phase drifts for systems
satisfying these conditions. As discussed in section 1.3.1, the LNA is long-time accurate if the conditions
in (B.I) or (B.II) are satisfied. For the case where there is bi-stability as in (B.III), the standard LNA
that uses a single deterministic solution to simulate a trajectory will produce trajectories centered around
the “nearest” fixed point and therefore it will fail when there is a significant likelihood that a stochastic
trajectory produced by SSA escapes from the nearest fixed point (see SI Figure S14). The main focus
of phase correction is therefore to adapt the deterministic trajectory to allow for this event. At the very
least, more than one deterministic trajectories will need to be used.

There is a simple way to predict the equilibrium that the current state is expected to converge. The
u-coordinates of the two stable equilibria, u∗

1 = uT (x∗
1 −xu) and u∗

2 = uT (x∗
2 −xu), have different sign,
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say u∗
1 < 0 < u∗

2. Then, near xu, the eigenvector u defines a separatrix, that is the trajectories with
initial condition that has negative u-coordinate converge to x∗

1, and vice versa.
The phase map G(X) for a state X of the stochastic trajectory is chosen to control perturbations

in the u-coordinate. For this, it is essential that G(X) and X have u-coordinate of the same sign. To
simplify notation, we write the map proju : Rn → R, u = proju(x). We consider a phase map that uses
only two trajectories {x1(t) | t ≥ 0} and {x2(t) | t ≥ 0}, the first converging to x∗

1 and the second to
x∗
2 and their corresponding u-coordinates, {uj(t) = proju(x1(t)) | t ≥ 0} and u∗

j = proju(x∗
j ), j = 1, 2.

Let U = proju(X). The phase map is then G(X) = xj′(s
′), where j′ ∈ {1, 2} such that u∗

j′ U > 0 and
s′ = argmins ∥U − uj′(s)∥. That is, G maps X to a point xj′(s

′) where j′ ∈ {1, 2} is such that the
point X lies on the same side of the separatrix defined by u with the trajectory {xj′(t) | t ≥ 0} and
s′ such that xj′(s

′) is the point on this trajectory that has the closest u-coordinate to the u-coordinate
of X. This phase map ensures that when the trajectory jumps from one side of the separatrix to the
other, then the map also switches side. Using only two trajectories is the most minimal option; one
may consider using more trajectories or using a new trajectory every time the state jumps to a different
side of the separatrix, but this will be computationally more costly. In Algorithm 3, we describe the
associated pcLNA simulation algorithm. In section 4, we show that this simple phase map is sufficient
to achieve high levels of accuracy.

Algorithm 3 pcLNA for bistable systems
Inputs:
a. Initial conditions: s0 = 0 = t0, X(0), xj(0), j = 1, 2. Parameters: ∆t, Ω.
b. System satisfying (B.III) with eigenvector u corresponding to the positive eigenvalue of J(xu, α) and
solutions {xj(t) | t ≥ 0} converging to x∗

j , j = 1, 2, respectively.
c. The solutions C and D of (11), (12), respectively.
d. Times (ti)i∈N0

, with ti = t0 + i∆t.

Steps:

A. Define proju : Rn → R, u = proju(x) = uT (x−xu). Compute {uj(t) = proju(xj(t)) | t ≥ 0}, and
u∗
j = proju(x∗

j (t)) j = 1, 2.
B. Compute κ(s0) = Ω1/2(X(0)− x(0)).
C. For i = 1, 2, . . . ,

1. sample ξ(si−1 + ∆t) from the MVN distribution with mean C(si−1, si−1 + ∆t)κ(si−1), and
variance matrix D(si−1, si−1 +∆t);

2. compute X(ti) = x(si−1 +∆t) + Ω−1/2ξ(si−1 +∆t);

3. compute U = proju(X(ti))} and set si = argmins∥U − uj′(s)∥ where j′ ∈ {1, 2} such that
u∗
j′ U > 0, and ∥·∥ being the Euclidean norm. Set κ(si) = Ω1/2(X(ti)− x(si)).

Outputs: {X(ti) | i = 0, 1, 2, . . . }.

4 Numerical investigations

As mentioned in Section 1.3, the LNA boasts fast computation of distributions of the stochastic process
{X(t) | t ≥ 0} as it only demands solving a set of ODEs to derive the RRE solution {x(t) | t ≥ 0} in
(6) and the drift and diffusion matrix solutions, C and D, of Eq. (11-12). Since the pcLNA algorithm
also only requires such solutions, it also inherits its speed of simulation.

Next, we study the accuracy and computational efficiency of the pcLNA compared to the SSA. For
this, we separately use SSA and pcLNA to produce a large number of long-time, stochastic trajectories
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Figure 2: A. Phase Correction (PC) adjusts the times ti to si and the perturbations ξ(ti) to κ(si)
between LNA steps. B-C. pcLNA simulation trajectory (red) on (B) a Hopf Bifurcation system and (C)
a bistable system (ode solution in blue). B. (Left) The points of PC (red crosses) and the perturbations
before (ξ, light blue, dashed line) and after (κ, orange, dashed line) PC. (Right) Zoom in of a PC with
the G map analysed to a convolution of Gj , j = 1, 2, 3. C. (Left) The two stable fixed points (x) and
the unstable fixed point (+). (Right) Zoom in to the early part of simulation where a crossing was
performed. G mappings shown (red circles on the ode solution).

and then compare their empirical probability distribution at various time-points. We perform this exercise
for various systems, either presenting bi-stability or a Hopf bifurcation.

For Hopf bifurcation systems, we perform comparisons for all three qualitatively different cases where
the system complex conjugate pair of eigenvalues in (H.II) has µ(α) < 0,= 0, > 0. In these three
cases, the limiting RRE system presents quickly dampened oscillations, slowly dampened oscillations,
and sustained oscillations, respectively (see also Figure 1A). For bistable systems, we focus on parameter
values satisfying (B.III) (see Figure 1B, right) where the system present bistability, since in the case of
(B.I), (B.II) the system is mono-stable and the standard LNA, under the usual conditions, is an accurate
approximation (see 1.3.1).

The Hopf bifurcation systems used for comparisons are the following.

• The Brusselator system in [35], which is a classical oscillatory system involving complex interactions
between two variables (for more details, see SI Section S3.2).

• The three-variable system in [63] that is the smallest reaction network presenting a Hopf bifurcation
(see SI Section S3.3).

• The response of the NF-κB signalling system to TNFα signals in [4], which is a system that involves
11 molecular populations involved in a large number of complex interactions (see SI Section S3.1).

For the first two systems above, we produced 1000 stochastic trajectories using SSA and pcLNA for a
time interval with length of 8τ , where τ the length of one period-cycle of the corresponding system. For
the third system (where SSA simulations are substantially slower), we run 500 repetitions for a time-
length of 4 periods of the system. We recorded the time taken to compute one stochastic trajectory for
these time intervals, and then computed the median of these times, which we call CPU time in all the
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presented figures. We also collected using these simulations the state, (X1(tj), . . . , Xn(tj)) of all variables
at various time-points, tj , j = 1, 2, . . . , J in each repetition, and computed the corresponding empirical
density functions for the probability distribution of each variable Xi(tj) using kernel density estimation
in MATLAB [25]. We present the results in Figure 3A and SI Figures S4- S12.

We clearly see that the pcLNA and SSA distributions are hardly distinguishable, while the CPU
time is reduced by a magnitude of order O(10) − O(103). The reduction in CPU time depends on the
complexity of the system (number and speed of reactions) and the system size. Larger system sizes imply
larger number of reaction occurrences and slower SSA simulations, while CPU times for pcLNA are not
affected by system size.

The bi-stable systems considered are the following.

• The Genetic Toggle-Switch system in [12], which involves two-variables (for more details, see SI
Section S3.4.

• The two-variable, simplified Cell-Cycle system presented in [2] (see SI Section S3.5).

• The Somitogenesis Switch system, presented in [19], that involves four variables and ten reactions
(see SI Section S3.6).

We produced 1000 trajectories using SSA and pcLNA for the above systems, running for time in-
tervals of length sufficient for convergence to one of the two stable fixed points by the solution of the
corresponding RRE.

Note that if we initialise the system at a point close to one of the fixed points, then nearly all
trajectories converge to that fixed point and the SSA simulations are well approximated by the standard
LNA. Instead, we focused on simulations where the initial conditions are close to the unstable fixed point
and where there is a substantial probability of convergence of a given trajectory to both fixed points.
In this case, all the standard LNA trajectories will converge to the same fixed point and therefore can
badly fail to approximate the SSA simulations (see SI Figure S14).

The pcLNA algorithm 3 requires the choice of at least two solutions of RRE that differ only by their
initial condition and converge to a different fixed point. In the presented simulations, the two initial
conditions are of the form (1− ϵ)xu + ϵx∗

j + c, j = 1, 2. Here 0 ≤ ϵ ≤ 0.1, xu the unstable fixed point
and x∗

j , j = 1, 2, the stable fixed points. The real vector c performs a change of location in a direction
orthogonal to the eigenvector corresponding to the real positive eigenvalue of the Jacobian J(xu). This
change of location allows to view some short-time transient dynamics, but it is not necessary if one is
interested in the long-time dynamics. For the specific initial conditions and other details, see SI Sections
S3.4- S3.6.

The results are presented in Figure 3B and SI Figures S13, S15, S16. The two methods, SSA and
pcLNA, are compared in the same way as the Hopf bifurcation system and the results are again showing
the agreement between the two methods and similarly to above, significant reductions in the CPU time.

5 Discussion

The results in the previous section demonstrate the capability of the modified LNA method to effectively
capture non-linear dynamics over long time intervals. The accuracy of the approximation combined with
the analytical tractability of the LNA method establishes a robust framework for investigating reaction
networks, and fitting these models to data. Fast and accurate simulations are critical for methods like
Approximate Bayesian Computation [55, 40, 53, 57], in silico experimentation and sensitivity analysis
[30, 23, 59, 47, 37, 51, 7, 44]. Furthermore, this work serves as a foundation for the development of
methods that capitalize on the long-term accuracy and tractability of pcLNA, enabling the exact (under
pcLNA) computation of the likelihood function of pcLNA and associated quantities, such as Fisher
Information.
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Figure 3: Comparison between SSA (red) and pcLNA (blue) for (A) the NF-κB [4] and (B) the cell-
cycle [2] system. (Left) The states recorded after four cycles (A) and at t = 100mins (B) of respectively
n = 500 and n = 1000 simulations of the two systems and solutions of the corresponding RRE in (6).
(Right) The corresponding empirical probability density functions of each of the system variables. The
median CPU times for deriving one stochastic trajectory are also reported. See SI Section S3 for the
details of the simulations.

We demonstrate the applicability of our technique across a variety of systems that exhibit two forms
of non-linear behaviour, namely oscillations and bistability that are prevalent in biology and other fields.
However, the modelling approach we propose, which draws on the centre manifold theory of dynamical
systems, is applicable to a much broader range of reaction networks than those addressed in this paper.
Indeed, for any network whose RRE solution contains a non-hyperbolic equilibrium, then providing
one can produce a phase correction map G, the pcLNA algorithm can be used to simulate stochastic
trajectories.

Supporting Information (SI)

The SI contains further mathematical details and numerical investigations referenced in this paper.
We used PeTTSy [9] implemented in the MATLAB [25] environment and available at https://wrap.
warwick.ac.uk/id/eprint/77654/ to produce all results.
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Supporting Information (SI)

S1 The stochastic simulation algorithm (SSA)

Consider paths of {Y (t) | t ≥ 0} whose time-evolution is given by the random time change representation
(RTC),

Y (t) = Y (0) +

r∑
j=1

νjNj

(∫ t

0

πj(Y (s))ds

)
, (18)

where, for j ∈ {1, . . . , r}, Nj are independent, unit Poisson processes corresponding to reaction Rj . To
simulate such paths, the stochastic simulation algorithm (SSA) generates the next reaction at any given
state. That is, if τ̂ > 0 and k ∈ {1, 2, . . . , r} correspond to the time to the next reaction and the index
of the next reaction, respectively, it can be shown that, given the current state at time t ≥ 0, Y (t) = y,
the joint probability density function p(τ̂, k | y, t) of τ̂ and k are

p(τ̂, k | y, t) = πk(y) exp

−
r∑

j=1

πj(y)τ

. (19)

where πk the propensity function of reaction k. Informally, p(τ̂, k | y, t)dτ represents the probability
that, given that Y (t) = y, the next reaction in the system will occur at in the infinitesimal time interval
[t + τ̂, t + τ̂ + dτ̂) and will be a Rk reaction. Equation (19) implies that τ̂ is an exponential random
variable with mean 1/

∑r
j=1 πj(y) and k is a statistically independent to τ integer random variable with

point probabilities πk(y)/
∑r

j=1 πj(y). Hence we can sample such random variables exactly using the
following; generate two random numbers, r1 and r2, from the uniform distribution in the unit interval
and take,

τ̂ = − log(r1)∑r
j=1 πj(y)

, (20)

and k to be the smallest integer such that,

k∑
j=1

πj(y) > r2

r∑
j=1

πj(y). (21)

Using the sampling procedure given by (20) and (21), we are able to construct the SSA for paths of
{Y (t) | t ≥ 0} which evolve exactly according to (18): Let t0 = 0 and Y (t0) = y. Then iteratively, for
i = 1, 2, . . . ,

1. generate two random numbers, r1 and r2, from the uniform distribution on the unit interval;

2. sample τ̂ according to (20) and k according to (21);

3. set ti = ti−1 + τ̂ and Y (ti) = y + νk;

4. set y = Y (ti).

The result is the numerical simulation {Y (ti) | i ∈ N0} where (ti)i∈N0
is a sequence of times, almost

certainly not equally spaced. These paths are exact consequences of the chemical physics of stochastic
reaction networks and hence capture the true dynamics of the network. For further details see [13, 14].

17



Consequently, one can compare distributions of states simulated by a model to that by the SSA in order
to test the statistical accuracy of the model.

When performing the SSA simulations, we used the so-called thinning method to reduce the compu-
tational memory used. That is, we only record the SSA generated states at the first reaction times after
times mδt, m = 0, 1, 2, . . . ,M , for some large M and small δt. Furthermore, when we wish to compare
SSA with pcLNA at specific times we use a smoothing spline interpolation to get the state of SSA (and
similarly pcLNA) at specific time, say t ∈ [(m− 1)δt,mδt].

S2 The derivation of the Linear Noise Approximation (LNA)

To simplify notation, in this section we use the notation xt = x(t), for all states considered (i.e. x, ξ,
X). The LNA ansantz,

X(t) = x(t) + Ω−1/2ξ(t), (22)

implies that
ξt =

√
Ω(Xt − xt)

and thus
ξt+dt − ξt =

√
Ω ((Xt+dt −Xt)− (xt+dt − xt)) .

Using the form of RTC for X and the RRE, we get that

ξt+dt − ξt =
√
Ω

 r∑
j=1

νj

{
Ω−1Nj (Ωρj(Xt)dt)− ρj(xt)dt

} .

We next insert in the above sum the zero terms 0 = ρj(Xt)dt − ρj(Xt)dt, where ρj(Xt)dt the mean of
Ω−1Nj (Ωρj(Xt)dt), to get

ξt+dt − ξt =
√
Ω

 r∑
j=1

νj

{
Ω−1Nj (Ωρj(Xt)dt)− ρj(Xt)dt+ (ρj(Xt)− ρj(xt)) dt

} .

Then, by the Central Limit Theorem, as Ω → ∞,

Z =
Ω−1Nj (Ωρj(Xt)dt)− ρj(Xt)dt√

Ω−1ρj(Xt)dt
∼ N(0, 1)

where N(0, 1) is the standard normal distribution. Then for sufficiently large Ω,

√
Ω
(
Ω−1Nj (Ωρj(Xt)dt)− ρj(Xt)dt

)
≈ Z

√
ρj(xt)dt. (23)

Furthermore, by applying a Taylor expansion of ρj(Xt) about xt, we get

√
Ω (ρj(Xt)− ρj(xt)) = ξ(t)T∇x ρj(xt) +O

(
Ω−1/2

)
, (24)

where ∇⊺
x = (∂/∂x1, . . . , ∂/∂xn). Hence, for sufficiently large Ω,

ξt+dt − ξt ≈
∑
j

νjξ(t)
T∇x ρj(xt)dt+

∑
j

Zjνj

√
ρj(xt)dt
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where Zj are independent random variables following the standard normal distribution. Writing the
above equation in matrix form, we get

dξ = Jξdt+E dBt, (25)

where J is the Jacobian matrix of the RRE, E = E(x) = Sdiag
(√

ρ1(x), . . . ,
√
ρr(x)

)
the product of

the stoichiometry matrix S = [ν1 · · ·νr], and the square root of the diagonal matrix, with main diagonal
entries (ρ1(x), . . . , ρr(x)), and Bt an n-dimensional Wiener process.

S3 Numerical Investigations

S3.1 The NF-κB reaction network

The NF-κB network consists of 11 species detailed in Table S1.

Table S1: Details of the 11 species characterising the NF-κB network and their initial concentrations
in three simulation settings with different value of the bifurcation parameter.

Name Description Initial values Fig. S4 Initial values Fig. S5 Initial values Fig. S6
1 Nc Free Cytoplasmic NFkB 0.0059 0.0065 0.0044
2 Ic Free Cytoplasmic IkBa 0.0119 0.0289 0.0267
3 NIc Cytoplasmic NFkB-IkBa 0.0096 0.0611 0.0442
4 Nn Free nuclear NFkB 0.0639 0.0111 0.0305
5 In Free nuclear IkBa 0.0001 0.0010 0.0003
6 NIn Nuclear NFkB-IkBa 0.0002 0.0005 0.0005
7 Im IkBa transcription 0.0001 0.0002 0.0002
8 Kn Kinase IKKn 0.0368 0.0071 0.0015
9 Ka Kinase IKKa 0.0083 0.0034 0.0023
10 Am A20 transcription 0.0001 0.0001 0.0001
11 A A20 0.0117 0.0139 0.0135
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Table S2: The parameters of NF-κB system and the values used in simulations. Each of the three different
levels of TNFα displayed in last row are used for the simulations in Figures S4,S5,S6, respectively.

parameter description value unit
kv Cytoplasm:Nucleus ratio 3.3 –
kp IKKn production 0.0006 s−1

ka Activation caused by TNFa 0.004 s−1

ki Spontaneous IKK activation 0.003 s−1

ka1a NFkB-IkBa association 0.5 µM−1s−1

kd1a NFkB-IkBa dissociation 0.0005 s−1

kc1a Catalysis of IKK-IkBa dimer 0.074 s−1

kc2a Catalysis of IKK-IkBa-NFkB trimer 0.37 s−1

kt2a degradation of IkBa (IKK dependent from trimer) 0.1 s−1

c4a Free IkBa degradation 0.0005 s−1

c5a NFkB complexed IkBa degradation 0.000022 s−1

ki1 NFkB nuclear import 0.0026 s−1

ke1 NFkB nuclear export 0.000052 s−1

ke2a NFkB-IkBa nuclear export 0.01 s−1

ki3a IkBa nuclear import 0.00067 s−1

ke3a IkBa nuclear export 0.000335 s−1

h Order of hill function 2 –
k Hill constant 0.0650 µM/L
c1a IkBa mRNA synthesis 1.400e-07 µM−1s−1

c2a IkBa translation rate 0.5 s−1

c3a IkBa mRNA degradation 0.0003 s−1

c1 IkBa mRNA synthesis 1.4e-07 µM−1s−1

c2 A20 mRNA translation 0.5 s−1

c3 A20 mRNA degradation 0.00048 s−1

c4 A20 degradation 0.0045 s−1

kbA20 Half-max A20 inhibition concentration 0.0018 µM/L
TNF-κB total NF-κB concentration 0.08 µM
TIKK total IKK concentration 0.08 µM
TNFα Tumor necrosis factor alpha level 1.5 / 3.66 / 10 ng/mL

The ODE system for the NF-κB system are given in table
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Table S3: The RRE ODE system equations for the NF-κB system in [4]
Ṅc = kd1aNIc − ka1aNcIc − ki1Nc + c5aNIc + kvke1Nn + kt2a × (TNFKB −Nc −NIc −Nn +NIn)

İc = kd1aNIc − ka1aNcIc − ki3aIc + kvke3aIn − c4aIc + c2aIm − kc1aKaIc

ṄIc = ka1aNcIc − kd1aNIc + kvke2aNIn − c5aNIc − kc2aKaNIc

Ṅn = kd1aNIn − kvka1aNnIn + ki1Nc − kvke1Nn

İn = kd1aNIn − kvka1aNnIn + ki3aIc − kvke3aIn − c4aIn

ṄIn = kvka1aNIn − kd1aNIn − kvke2aNIn

İm = c1a(N
h
n/(N

h
n + (k/kv)

h))− c3aIm

K̇n = kp(TIKK −Kn −Ka)(kbA20/(kbA20 +A× TNFα/10))− kaTNFαKn/10

K̇a = kaTNFαKn/10− kiKa

Ȧm = c1(N
h
n/(N

h
n + (k/kv)

h))− c3Am

Ȧ = c2Am − c4A

The reaction rates used for the SSA are provided in the table below. The values of the parameters
are the same as in Table S2 with suitable rate constant conversions applied.
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Table S4: The reactions and the corresponding propensity functions used for the SSA simulations of the
NF-κB system.

reaction rate

Nc + Ic
ka1a−−−→ NIc ka1a × Ic ×Nc/Ω

NIc
kd1a−−−→ Nc + Ic kd1a ×NIc

Nn + In
ka1a−−−→ NIn kvka1a × In ×Nn/Ω

NIn
kd1a−−−→ Nn + In kd1an ×NIn

Ka + Ic
kc1a−−−→ Ka + Ip kc1a ×Ka × Ic/Ω

Ka +NIc
kc2a−−−→ Ka +NIp kc2a ×Ka ×NIc/Ω

NIp
kt2a−−−→ Nc kt2a ×NIp

Nc
ki1−−→ Nn ki1 ×Nc

Nn
ke1−−→ Nc ke1 × kv ×Nn

NIn
ke2a−−−→ NIc ke2a × kv ×NIn

Ic
ki3a−−→ In ki3a × Ic

In
ke3a−−−→ Ic ke3a × kv × Ic

∅ HI−−→ Im (c1aΩ)
Nh

n

Nh
n+(kΩ/kv)h

Im
c2a−−→ Im + Ic c2a × Im
Im

c3a−−→ ∅ c3a × Im
Ic

c4a−−→ ∅ c4a × Ic
In

c4a−−→ ∅ c4a × In
NIc

c5a−−→ Nc c5a ×NIc

∅ HA−−→ Am (c1Ω)
Nh

n

Nh
n+(kΩ/kv)h

Am
c2−→ Am +A c2 ×Am

v Am
c3−→ ∅ c3 ×Am

A
c4−→ ∅ c4 ×A

Ki
MA−−→ Kn kp(TIKK −Kn −Ka)

kbA20×Ω
(kbA20Ω)+A×TNFα/10

Kn
TNFα/10×ka−−−−−−−−−→ Ka TNFα/10× ka ×Kn

Ka
ki−→ Ki ki ×Ka

S3.1.1 Details for Figure 3A

The bifurcation parameter of this system is the level of the Tumor necrosis factor alpha level (TNFα).
The Hopf bifurcation value is ≈ 3.66ng/mL. The simulations in Figure 3A are produced with the level of
TNFα at the Hopf bifurcation value and with initial conditions given in Table S1 in the column “Initial
values Fig. S5”.

The empirical density functions of the probability distribution of each variable are derived using the
kernel density function “ksdensity” in MATLAB [25]. To ensure good visibility of all the curves, we scale
them. Specifically, both the x- and z-axis range from 0 to 1 since we divide both the value of each
variable and their densities obtained for both SSA and pcLNA by their maximum observed values for
both algorithms.
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S3.1.2 Further numerical investigations for the NF-κB system

See Figures S4, S5, S6.
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Figure S4: Comparison between SSA (red) and pcLNA (blue) for the NF-κB system at Ω = 600,000
with TNFα level = 1.5 ng/mL. Panels (A)–(D) correspond to times t = 5, τ + 5, 2τ + 5, 3τ + 5,
where τ ≈ 102.095 is the oscillation period. Each panel shows (left) the states recorded at time t of the
simulations with solutions of the corresponding RRE, and (right) the corresponding empirical probability
density functions of each system variable. Initial conditions and parameter values are given in Tables S1
and S2.
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Figure S5: Comparison between SSA (red) and pcLNA (blue) for the NF-κB system at Ω = 600,000
with TNFα level = 3.66 ng/mL (Hopf bifurcation point). Panels (A)–(D) correspond to times t =
5, τ + 5, 2τ + 5, 3τ + 5, where τ ≈ 102.095 is the oscillation period. Each panel shows (left) the
states recorded at time t of the simulations with solutions of the corresponding RRE, and (right) the
corresponding empirical probability density functions of each system variable. Initial conditions and
parameter values are provided in Tables S1 and S2.
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Figure S6: Comparison between SSA (red) and pcLNA (blue) for the NF-κB system at Ω = 600,000
with TNFα level = 10 ng/mL. Panels (A)–(D) correspond to times t = 5, τ + 5, 2τ + 5, 3τ + 5,
where τ ≈ 102.095 is the oscillation period. Each panel shows (left) the states recorded at time t of the
simulations with solutions of the corresponding RRE, and (right) the corresponding empirical probability
density functions of each system variable. Initial conditions and parameter values are listed in Tables S1
and S2.

S3.2 The Brusselator reaction network

The two dimensional Brusselator network, introduced in [35], consists of two chemical species, A and B,
which undergo the following reactions,

∅ 1−→ A, A
1−→ ∅, A

b−→ B, 2A+B
c−→ 3A.

If, for each t ≥ 0, we let Y (t) = (Y1(t), Y2(t))
⊺ denote the number of molecules of A and B respectively,

then these reactions occur according to the following intensities

π1 = Ω, π2 = Y1, π3 = bY1, π4 = cY 2
1 Y2/Ω

2.

With system size Ω and X(t) = Y (t)/Ω for each t ≥ 0, the corresponding RRE solution in the Ω → ∞
limit is {

ẋ1 = 1− x1(1 + b− cx1x2),

ẋ2 = x1(b− cx1x2).
(26)

From studying the Jacobian matrix of (26), we may conclude the system has a non-hyperbolic equi-
librium at (x1, x2) = (1, 2)⊺, when b = 2 and c = 1, with purely imaginary conjugate eigenvalues ±i.
Through small deviations of b we deduce the Hopf bifurcation is supercritical with losses of stability
occurring as the eigenvalues cross the imaginary axis. Parameters b < 2 give rise to a stable equilibrium,
whereas b > 2 gives rise to an unstable equilibrium surrounded by a unique and stable limit cycle.
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Table S5: Species in the Brusselator network and their initial concentrations for three different values
of parameter b.

Name Description Initial values Fig. S7 Initial values Fig. S8 Initial values Fig. S9
1 A Chemical species A 0.8000 0.8000 1.0340
2 B Chemical species B 1.5000 1.5000 2.9230

Table S6: Parameters used in the Brusselator network.
Parameter Description Value Unit
c Catalytic reaction rate 1 µM−2s−1

b Conversion rate of A to B 1.7 / 2.0 / 2.3 s−1

Table S7: The RRE ODEs for the mean-field dynamics of the Brusselator in the limit Ω → ∞.
ẋ1 = 1− x1(1 + b− cx1x2)

ẋ2 = x1(b− cx1x2)

Table S8: Reactions and their corresponding propensity functions for SSA simulations.
Reaction Propensity function
∅ 1−→ A π1 = Ω

A
1−→ ∅ π2 = Y1

A
b−→ B π3 = bY1

2A+B
c−→ 3A π4 = cY 2

1 Y2/Ω
2
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Figure S7: Comparison between SSA (red) and pcLNA (blue) for the Brusselator system at Ω = 1000
with parameter b = 1.7. Panels (A)–(D) correspond to times t = τ+0.5, 3τ+0.5, 5τ+0.5, 7τ+0.5 with
period τ = 6.2919. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are given in Tables S5 and S6.
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Figure S8: Comparison between SSA (red) and pcLNA (blue) for the Brusselator system at Ω = 1000
with parameter b = 2. Panels (A)–(D) correspond to times t = 0.5, 2τ + 0.5, 4τ + 0.5, 6τ + 0.5 with
period τ = 6.35. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are provided in Tables S5 and S6.
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Figure S9: Comparison between SSA (red) and pcLNA (blue) for the Brusselator system at Ω = 1000
with parameter b = 2.3. Panels (A)–(D) correspond to times t = τ+0.5, 3τ+0.5, 5τ+0.5, 7τ+0.5 with
period τ = 6.4276. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are listed in Tables S5 and S6.

S3.3 The smallest Hopf bifurcation reaction network

The system is described in [63]. The tables S9, S10, S11, S12 describe the species and their initial
conditions, the parameters, the ODE system, and the propensity functions of the SSA simulations of
this system, respectively. The results in Figures S10, S11, and S12 are derived using the same method
as used for Figure 3 in the main paper. The bifurcation parameter is k1 and its value at bifurcation is
6.6. The computation of the empirical density functions is done as described in SI section S3.1.1. We
used 1000 trajectories of each simulation algorithm to produce the results.

Table S9: Species in the smallest Hopf bifurcation network and their initial concentrations for three
different values of parameter k1.

Name Description Initial values Fig. S10 Initial values Fig. S11 Initial values Fig. S12
1 X1 Species 1 3.8220 3.8220 2.4460
2 X2 Species 2 3.8460 3.8460 1.0720
3 X3 Species 3 5.1400 5.1400 1.2940
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Table S10: Parameters used in the smallest Hopf bifurcation network.
Parameter Description Value Unit
k1 Activation rate 6 / 6.6 / 7 s−1

k2 Interaction rate between X1 and X2 2.2 s−1

k3 Degradation rate of X2 2.2 s−1

k4 Conversion rate from X1 to X3 2.2 s−1

k5 Conversion rate from X3 to X2 2.2 s−1

A External activation strength 1 –

Table S11: The RRE ODEs for the mean-field dynamics of the smallest Hopf bifurcation network in
the limit Ω → ∞.

ẋ1 = k1Ax1 − k4x1 − k2x1x2

ẋ2 = −k3x2 + k5x3

ẋ3 = k4x1 − k5x3

Table S12: Reactions and their corresponding propensity functions for SSA simulations.
Reaction Propensity function

X1
k1A−−→ X1 π1 = k1AY1

X1 +X2
k2−→ ∅ π2 = k2 · Y1 · Y2/Ω

X2
k3−→ ∅ π3 = k3 · Y2

X1
k4−→ X3 π4 = k4 · Y1

X3
k5−→ X2 π5 = k5 · Y3
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Figure S10: Comparison between SSA (red) and pcLNA (blue) for the smallest Hopf bifurcation network
at Ω = 500 with parameter k1 = 6. Panels (A)–(D) correspond to times t = τ +1, 3τ +1, 5τ +1, 7τ +1
with period τ ≈ 3. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are given in Tables S9 and S10.
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Figure S11: Comparison between SSA (red) and pcLNA (blue) for the smallest Hopf bifurcation network
at Ω = 500 with parameter k1 = 6.6. Panels (A)–(D) correspond to times t = τ+1, 3τ+1, 5τ+1, 7τ+1
with period τ ≈ 3. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are provided in Tables S9 and S10.
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Figure S12: Comparison between SSA (red) and pcLNA (blue) for the smallest Hopf bifurcation network
at Ω = 500 with parameter k1 = 7. Panels (A)–(D) correspond to times t = τ +1, 3τ +1, 5τ +1, 7τ +1
with period τ ≈ 3. Each panel shows (left) the states recorded at time t of the simulations with solutions
of the corresponding RRE, and (right) the corresponding empirical probability density functions of each
system variable. Initial conditions and parameter values are listed in Tables S9 and S10.

S3.4 The Genetic Toggle Switch reaction network

The system is described in [12]. The tables S13, S14, S15, S16 describe the species and their initial
conditions, the parameters, the ODE system, and the propensity functions of the SSA simulations of this
system, respectively. The results in Figure S13 are derived using the same method as used for Figure 3
in the main paper. The computation of the empirical density functions is done as described in SI section
S3.1.1. We used 1000 trajectories of each simulation algorithm to produce the results.

The results in Figure S14 are derived using the same method as used for Figure 3 in the main paper,
except for the LNA simulation where the Algorithm is again Algorithm 3 in the main paper except
omitting the steps A and C.3 (i.e. no phase correction is applied). The computation of the empirical
density functions is done as described in SI section S3.1.1. We used 1000 trajectories of each simulation
algorithm to produce the results.

Table S13: Species in the Genetic Toggle Switch network and their initial concentrations.
Name Description Initial values ODE solution 1 Fig. S13 Initial values ODE solution 2 Fig. S13

1 x1 Repressor 1 0.3067 0.4311
2 x2 Repressor 2 0.4311 0.3067
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Table S14: Parameters used in the Genetic Toggle Switch network.
Parameter Description Value Unit
a1 Activation rate of x1 1.5 s−1

a2 Activation rate of x2 1.5 s−1

b Hill coefficient for x2 regulation of x1 4 –
g Hill coefficient for x1 regulation of x2 4 –
A External activation strength 1 –

Table S15: The RRE ODEs for the mean-field dynamics of the Genetic Toggle Switch in the limit
Ω → ∞.

ẋ1 = a1A
1+xb

2
− x1

ẋ2 = a2

1+xg
1
− x2

Table S16: Reactions and their corresponding propensity functions for SSA simulations.
Reaction Propensity function

X1
a1A−−→ X1 π1 = a1A·Ω

1+Y b
2

X1 −→ ∅ π2 = Y1

X2
a2−→ X2 π3 = a2·Ω

1+Y g
1

X2 −→ ∅ π4 = Y2
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Figure S13: Comparison between SSA (red) and pcLNA (blue) for the Genetic Toggle Switch network
at Ω = 100. Panels (A)–(D) correspond to times t = 0.5006, 2.0024, 5.0059, 9.5051, respectively. Each
panel shows (left) the states recorded at time t of the simulations with solutions of the corresponding
RRE, and (right) the corresponding empirical probability density functions of each system variable. The
initial conditions for the two ODE solutions are provided in Table S13, and the parameter values are
given in Table S14.
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Figure S14: Comparison between SSA (red) and (standard) LNA (blue) for the Genetic Toggle Switch
network at Ω = 100. Panels (A)–(D) correspond to times t = 0.5006, 2.0024, 5.0059, 9.5051, respectively.
Each panel shows (left) the states recorded at time t of the simulations with solutions of the corresponding
RRE, and (right) the corresponding empirical probability density functions of each system variable. The
initial conditions for the two ODE solutions are provided in Table S13, and the parameter values are
given in Table S14.

S3.5 The Cell Cycle reaction network

The system is described in [2]; see section “A Two-Variable Example: The Cdc2-Cyclin B/Wee1 System”.
The tables S17, S18, S19, S20 describe the species and their initial conditions, the parameters, the ODE
system, and the propensity functions of the SSA simulations of this system, respectively. The results in
Figure S15 are derived using the same method as used for Figure 3 in the main paper. The computation
of the empirical density functions is done as described in SI section S3.1.1. We used 1000 trajectories of
each simulation algorithm to produce the results.

Table S17: Species in the Cell Cycle network and their initial concentrations.
Name Description Initial values ODE solution 1 Fig. S15 Initial values ODE solution 2 Fig. S15

1 x1 Cdc2-Cyclin B 0.9300 0.8400
2 y1 Wee1 0.9100 0.9900
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Table S18: Parameters used in the Cell Cycle network.
Parameter Description Value Unit
a1 Production rate of x1 1 s−1

a2 Production rate of y1 1 s−1

b1 Hill coefficient for y1 regulation of x1 200 –
b2 Hill coefficient for x1 regulation of y1 10 –
γ1 Hill exponent for y1 regulation of x1 4 –
γ2 Hill exponent for x1 regulation of y1 4 –
K1 Half-activation constant for x1 regulation of y1 2.3403 –
K2 Half-activation constant for y1 regulation of x1 1 –
A External activation strength 1 –

Table S19: The RRE ODEs for the mean-field dynamics of the Cell Cycle system in the limit Ω → ∞.
ẋ1 = a1 − a1x1 − b1x1((Ay1)

γ1 )

K
γ1
1 +(Ay1)γ1

ẏ1 = a2 − a2y1 −
b2y1(xγ2

1 )
K

γ2
2 +x

γ2
1

Table S20: Reactions and their corresponding propensity functions for SSA simulations.
Reaction Propensity function
X1

a1−→ X1 π1 = a1 · Ω
X1 −→ ∅ π2 = Y1

X2
b1−→ X2 π3 = b1Y1((AY2)

γ1 )
(K1Ω)γ1+(AY2)γ1

X2 −→ ∅ π4 = Y2

Y1
a2−→ Y1 π5 = a2 · Ω

Y1 −→ ∅ π6 = Y2

Y2
b2−→ Y2 π7 = b2Y2((Y1)

γ2 )
(K2Ω)γ2+(Y1)γ2

Y2 −→ ∅ π8 = Y3
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Figure S15: Comparison between SSA (red) and pcLNA (blue) for the Cell Cycle network at Ω = 100.
Panels (A)–(D) correspond to times t = 0.5000, 9.9999, 49.9996, 100.0000, respectively. Each panel
shows (left) the states recorded at time t of the simulations with solutions of the corresponding RRE,
and (right) the corresponding empirical probability density functions of each system variable. The initial
conditions for the two ODE solutions are provided in Table S17, and the parameter values are given in
Table S18.

S3.6 The Somitogenesis Switch reaction network

The system is described in [19]. The tables S21, S22, S23, S24 describe the species and their initial
conditions, the parameters, the ODE system, and the propensity functions of the SSA simulations of this
system, respectively. The results in Figure S16 are derived using the same method as used for Figure 3
in the main paper. The computation of the empirical density functions is done as described in SI section
S3.1.1. We used 1000 trajectories of each simulation algorithm to produce the results.

Table S21: Species in the Somitogenesis Switch network and their initial concentrations.
Name Description Initial values ODE solution 1 Fig. S16 Initial values ODE solution 2 Fig. S16

1 R Retinoic Acid (RA) 1.1500 1.2000
2 MC cyp26 mRNA 1.7467 1.7067
3 C CYP26 protein 6.2333 6.0900
4 F FGF8 protein 0.4933 0.4800
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Table S22: Parameters used in the Somitogenesis Switch network.
Parameter Description Value Unit
ks1 RA synthesis rate via RALDH2 1 s−1

RALDH2 RA synthetase concentration 7.1 –
kd1 RA degradation via CYP26 1 s−1

kd5 Basal RA degradation 0 s−1

V0 Basal transcription of MC 0.365 s−1

Vsc Activated transcription of MC 7.1 s−1

Ka Activation constant for MC production 0.5 –
n Hill coefficient for FGF activation of MC 2 –
kd3 mRNA degradation rate 1 s−1

ks2 Translation rate of CYP26 1 s−1

kd2 CYP26 degradation rate 0.28 s−1

ks3 FGF8 synthesis rate 1 s−1

M0 Baseline activator level for FGF synthesis 5 –
KI Inhibition constant for RA effect on FGF 0.5 –
m Hill coefficient for RA inhibition of FGF 2 –
kd4 FGF degradation rate 1 s−1

L Normalization constant for spatial scaling 50 –
A External activation strength 1 –

Table S23: The RRE ODEs for the mean-field dynamics of the Somitogenesis Switch in the limit
Ω → ∞.

Ṙ = ks1 · RALDH2− kd1RC − kd5R

ṀC = V0 +
VscF

n

Kn
a +Fn − kd3MC

Ċ = ks2MC − kd2C

Ḟ = ks3 · M0A/L·Km
I

Km
I +Rm − kd4F

Table S24: Reactions and their corresponding propensity functions for SSA simulations.
Reaction Propensity function
R

syn−−→ R π1 = Ω · ks1 · RALDH2

R+ C
deg−−→ ∅ π2 = kd1RC

Ω

R
deg−−→ ∅ π3 = kd5R

MC
basal−−−→ MC π4 = Ω · V0

MC
FGF act−−−−−→ MC π5 = Ω·VscF

n

(ΩKa)n+Fn

MC
deg−−→ ∅ π6 = kd3MC

C
trans−−−→ C π7 = ks2MC

C
deg−−→ ∅ π8 = kd2C

F
syn−−→ F π9 = Ω·ks3·(M0A/L)·(ΩKI)

m

(ΩKI)m+Rm

F
deg−−→ ∅ π10 = kd4F
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Figure S16: Comparison between SSA (red) and pcLNA (blue) for the Somitogenesis Switch network
at Ω = 300. Panels (A)–(D) correspond to times t = 2, 5, 20, 99, respectively. Each panel shows (left)
the states recorded at time t of the simulations with solutions of the corresponding RRE, and (right) the
corresponding empirical probability density functions of each system variable. The initial conditions for
the two ODE solutions are provided in Table S21, and the parameter values are given in Table S22.
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