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3DI ENS, École Normale Supérieure, PSL, CNRS, INRIA

We study a system of y = 2 coupled copies of a well-known constraint satisfaction problem
(random hypergraph bicoloring) to examine how the ferromagnetic coupling between the copies
affects the properties of the solution space. We solve the replicated model by applying the cavity
method to the supervariables taking 2y values. Our results show that a coupling of strength γ
between the copies decreases the clustering threshold αd(γ), at which typical solutions shatters into
disconnected components, therefore preventing numerical methods such as Monte Carlo Markov
Chains from reaching equilibrium in polynomial time. This result needs to be reconciled with the
observation that, in models with coupled copies, denser regions of the solution space should be more
accessible. Additionally, we observe a change in the nature of the clustering phase transition, from
discontinuous to continuous, in a wide γ range. We investigate how the coupling affects the behavior
of the Belief Propagation (BP) algorithm on finite-size instances and find that BP convergence is
significantly impacted by the continuous transition. These results highlight the importance of better
understanding algorithmic performance at the clustering transition, and call for a further exploration
into the optimal use of re-weighting strategies designed to enhance algorithmic performances.

I. INTRODUCTION

Combinatorial optimization problems are widespread
in real life as well as in many scientific disciplines: from
physics, in the computation of ground-state configura-
tions, to statistical inference with likelihood maximiza-
tion, and in many areas of computer science. Among
the many types of combinatorial optimization prob-
lems, random Constraint Satisfaction Problems (CSPs)
stand out as ideal prototypical problems for studying
the average-case hardness of algorithms. Prominent
examples of CSPs include the q-coloring problem on
graphs, and the Boolean satisfiability problem. In an
instance of CSP, a set of N variables is subjected to
M constraints, and the decision version of this prob-
lem consists in finding an assignment to the variables
satisfying all constraints simultaneously.

The average-case hardness of a CSP can be analyzed
by introducing random ensembles of instances. Thanks
to a formal analogy between CSPs and spin-glasses, the
application of methods coming from statistical physics
of disordered systems, such as the replica and the cav-
ity method, has led to a detailed description of the so-
lution space of random instances [1–6]. Many of these
predictions were later proven rigorously [7–10]. In this
context, a particularly interesting regime is the large
size (or thermodynamic) limit, where both the num-
ber of constraints M and the number of variables N
are sent to ∞, at a fixed ratio α = M/N . Random
CSPs exhibit threshold phenomena (or phase transi-
tions) in this limit, as α increases. The most prominent
of these phase transitions is the SAT/UNSAT one, at
αsat, above which no solutions exists with high probabil-
ity. In the satisfiable phase α < αsat, many other phase

transitions occur, affecting the geometrical structure of
the solution set.

One could hope that this detailed description can
shed light on the average-case algorithmic hardness
of CSPs, helping understanding the behavior of algo-
rithms in the satisfiable phase. However, many of these
phase transitions affect the equilibrium properties of
the solution-set, making difficult the connection with
algorithms – working mostly in the out-of-equilibrium
regime (either because they do not satisfy detailed bal-
ance, or because they are run on time scales shorter
than their relaxation time).

Recently, the line of work on the Overlap Gap Prop-
erty [11–15] could rule out a large class of stable algo-
rithms, for problems exhibiting a strong form of topo-
logical discontinuity in the set of distances between near
optimal solutions. This approach has the advantage
of describing the properties of all solutions, and not
only the typical ones (dominating the uniform measure
over the solution-set). Hence, it does not suffer from
the aforementioned discrepancy between the geometri-
cal structure of equilibrium and out-of-equilibrium so-
lutions. On the other hand, widely used algorithms
such as Simulated Annealing (SA) [16, 17], and Belief-
Propagation guided decimation [18, 19] might fall out
of the class of stable algorithms when used in the regime
such that the number of iterations scale quadratically
in the system size [20].

In this paper, we pay particular attention to the clus-
tering (or dynamic) threshold αd, above which the set of
solutions splits into a large number of distinct groups
of solutions, called clusters, which are internally well
connected but well separated from each other. This
transition is also manifested by the appearance of a spe-
cific form of long-range correlations between variables,
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called point-to-set correlations, in the probability dis-
tribution defined as the uniform measure over the set of
solutions. These correlations prohibit the rapid equili-
bration of stochastic processes that satisfy the detailed
balance condition [21], which justifies the alternative
name “dynamic” for the clustering transition. The clus-
tering threshold αd hence gives a lower bound to the al-
gorithmic threshold αalg above which no algorithm can
find solutions to a typical instance, given that below
αd Monte Carlo based algorithms can sample uniformly
the solution-set in polynomial time down to arbitrarily
small temperatures. Of course, the lower bound is gen-
erally not tight, as e.g., SA is able to find solutions
non-uniformly even before reaching equilibrium [22].

Many structural phase transitions occurring in the
satisfiable regime, and in particular the clustering
threshold αd, depend on correlations between variables
defined over a specific probability distribution over the
configuration space, namely the uniform measure across
solutions. In a series of works [22–28], it was demon-
strated that introducing a re-weighting of the solution
set could significantly move the location of these struc-
tural phase transitions, and that this strategy could be
used to improve the performance of algorithms search-
ing for a solution to a random CSP instance.

Following this line of thought, in this paper, we study
a model of coupled copies (or real replicas) of a CSP in-
stance, where the coupling strength between copies is
an external parameter that can be varied to re-weight
the solution space. The model with coupled replicas has
a deep connection with the local-entropy approach [24]
counting the number of solutions in a given neighbor-
hood: once marginalized over the other copies of the
model, the resulting re-weighted probability distribu-
tion over a single replica favors solutions living in dense
regions (i.e., having a large local entropy).

Our investigation builds upon recent works explor-
ing the effects of coupled copies of CSPs in the planted
q-coloring on graphs [17], and in the binary perceptron
[29] in the teacher-student scenario, where it was shown
that algorithms sampling from the system of interacting
copies (such as replicated SA) outperforms the classical
approach using a single copy of the CSP instance when
one wants to infer the planted known solution. Another
motivation for studying a system of interacting copies
is that it induces long-range interactions between vari-
ables of a single copy (once marginalized over the other
ones), that could be tuned to decrease the long-range
point-to-set correlation between distant variables that
appears in the clustered phase. It was indeed observed
that extending the range of interactions between vari-
ables in the re-weighted distribution over the solution-
set [22, 27] can delay the clustering threshold αd to
higher values, therefore calling for a generic strategy to
extend the interaction range.

In this work, we concentrate our efforts on the bi-

coloring problem on random k-hypergraphs [30], in
which the variables can take two values, and each
constraint acts on a k-uplet of variables, forbidding
monochromatic configurations. We introduce a model
of y copies of the same instance, interacting site-by-site
through a ferromagnetic coupling of strength γ, and ex-
amine how the dynamical phase transition behaves as
a function of γ. Remarkably, we find that turning on
the interaction between copies has the effect of decreas-
ing the dynamical threshold αd(γ), effectively shrinking
the region where algorithms such as SA and message-
passing algorithms can sample instances in polynomial
time. In addition to the characterization of the phase
diagram, we also provide a numerical study of the ef-
fect of the coupling strategy on the Belief Propagation
algorithm run on finite size graph instances, confirming
that in the coupled model the region of convergence of
BP get reduced.
These results are surprising, and challenge prior con-

jectures about the benefits of introducing interacting
copies of a system in optimization problems. They open
the door to further investigations into the optimal use
of re-weighting strategies. However, we will also dis-
cuss the possible beneficial effects of the coupling that,
modifying a discontinuous transition into a continuous
one, can make solution in the clustered phase easier to
approximate.
While in the present work the analysis is limited to

the case of two copies, y = 2, our study can be straight-
forwardly extended to larger values of y.

II. SET-UP OF THE PROBLEM

A. Definition of the model

1. The k-uniform hyper-graph bi-coloring problem

We consider in this paper the k-uniform hyper-graph
bi-coloring problem [30]. An instance of this Constraint
Satisfaction Problem (CSP) is defined by an hyper-
graph G = (V,E), with a set V of N vertices, and
a set E of M hyper-edges, each hyper-edge involving
a subset of k vertices (see Figure 1, top panel (a)).
A set of N spin variables σ1, . . . , σN live on the ver-
tices of the graph, with σi ∈ {−1, 1}. We denote by
σ = (σ1, . . . , σN ) the global configuration of the vari-
ables, and σS the configuration of a subset S ⊆ V of
the vertices. A constraint (or clause) is associated to
each hyper-edge. The a-th constraint is satisfied if and
only if there is at least one +1 and one −1 among the
k variables of σ∂a, where ∂a is the set of vertices con-
tained in an hyper-edge a ∈ E (and similarly ∂i the set
of hyper-edges adjacent to vertex i ∈ V ). A configura-
tion σ is a solution of the CSP if and only if it satisfies
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FIG. 1. Top (a): An instance of the k-uniform hyper-graph
bi-coloring problem with k = 3, N = 8, M = 4. Vertices are
represented by black circles, hyper-edges by white squares.
An edge is drawn between the a-th hyper-edge and the ver-
tex i if and only if i is linked to a (i ∈ ∂a).
Bottom (b): A system of y = 3 interacting copies. Each
pair of copies interact site-by-site with a coupling strength
γ (red edges).

all the M constraints simultaneously.

A convenient way of studying the solution-set S(G)
of a given instance of this problem is to introduce the
uniform probability measure:

µ(σ) =
1

Z(G)

M∏
a=1

ω(σ∂a) (1)

where the normalization factor Z(G) = |S(G)| counts
the number of solutions, and the function ω(σ1, . . . , σk)
is the indicator function of the event “the k variables
σ1, . . . , σk are not all equal”.

2. Interacting copies

In this paper, we introduce y copies of a given in-
stance G = (V,E) of the bicoloring problem. The sys-
tem is represented in Figure 1, bottom panel (b). Each
pair of copies is interacting site-by site, with a coupling
strength γ. The probability measure representing this

system is:

µy(σ
1, . . . , σy) =

1

Zy

M∏
a=1

(
y∏

s=1

ω(σs
∂a)

)
N∏
i=1

e
γ
2y

∑
s ̸=t σ

s
i σ

t
i

(2)

where the spin variables associated with the copy s ∈
{1, . . . , y} are denoted σs = (σs

1, . . . , σ
s
N ). A ferromag-

netic coupling γ > 0 favors copies σ1, . . . , σy in similar
configurations, while an anti-ferromagnetic coupling fa-
vors distant configurations.

The case of a single copy (y = 1) is retrieved from
(2) in the case of independent copies (setting γ = 0),
or when the coupling forces the copies to be identical
(sending γ → ∞).

Our aim is to study the properties of µy for typical
hyper-graphs, by studying random instances. In this
paper, we concentrate our efforts on Erdös Rényi (ER)
random hyper-graphs. An instance of this problem is
generated by drawing, independently for each hyper-
edges a ∈ {1, . . . ,M}, the set of adjacent vertices ∂a

uniformly at random among the
(
N
k

)
possible k-uplets.

We will be interested in the large size (thermodynamic)
limit, where both N and M go to infinity at a fixed
ratio α = M/N (called the density of constraints). In
this limit, ER random hyper-graphs converge locally to
hyper-trees, and the degree distribution follows a Pois-
son law of parameter αk.

B. Belief-Propagation

In order to study the typical properties of the measure
µy (2), we use the cavity method [31, 32], a method effi-
cient on interacting particle models defined on random
sparse structures. The first step of the cavity method
amounts to study the model (2) on finite trees, where
an exact description of µy in terms of marginals and
of the free energy lnZy, can be obtained with Belief
Propagation (BP).

1. Super-spin variables

The factor graph (Fig. 1 bottom panel (b)) repre-
sents the interactions between variables in the measure
µy. It contains small loops due to the on-site interac-

tion term e
γ
2y

∑
s ̸=t σ

s
i σ

t
i (represented by the red edges

on the figure) on each vertex i ∈ V of the hyper-graph
G = (V,E). These small loops forbid a direct use of
the cavity method – which is well-suited for tree-like
problems – on this factor graph. A natural strategy to
circumvent this difficulty is to define super-spin vari-
ables Xi = (σ1

i , . . . , σ
y
i ) on each vertex i ∈ V . The



4

associated probability measure now writes:

µy(X) =
1

Zy

M∏
a=1

Ω(X∂a)

N∏
i=1

ϕ(Xi) with

Ω(X∂a) =

y∏
s=1

ω(σs
∂a) , ϕ(Xi) = e

γ
2y

∑
s ̸=t σ

s
i σ

t
i ,

(3)

and its associated factor graph is the original hyper-
graph G = (V,E).

2. Belief Propagation Equations

For each i ∈ V , a ∈ ∂i, we introduce the variable-
to-factor and factor-to-variable BP messages ηi→a and
η̂a→i, as the marginal probability laws of Xi in the am-
putated graph where some interactions have been dis-
carded: ηi→a is the marginal of Xi when a has been
removed, and η̂a→i is the marginal of Xi when one re-
moves all hyper-edges in ∂i \ a. The BP messages obey
the following set of equations:

ηi→a(Xi) =
ϕ(Xi)

zi→a

∏
b∈∂i\a

η̂b→i(Xi)

η̂a→i(Xi) =
1

ẑa→i

∑
X∂a\i

Ω(X∂a)
∏

j∈∂a\i

ηj→a(Xj)

(4)

where zi→a and ẑa→i are normalization factors. One
can compute the marginal probability of the variable
Xi from the set of incoming messages {η̂a→i}:

µi(Xi) =
ϕ(Xi)

zi

∏
a∈∂i

η̂a→i(Xi) (5)

Note that the size of the super-spin variable Xi =
(σ1

i , . . . , σ
y
i ) grows exponentially with the number of

copies, which represent a limitation for a numerical rep-
resentation of the BP messages with a large number of
copies. For this reason in the following we will concen-
trate our attention to the case y = 2.

C. Ensemble average with the cavity method

The BP equations (4) are exact when the hyper-graph
G is an hyper-tree, and can be used heuristically on
any factor graph, even in the presence of loops. The
message-passing iterative algorithm searching for fixed
point of these equations is called Belief Propagation al-
gorithm. The cavity method is based on the application
of Belief Propagation on random hyper-graphs which
are locally tree-like in the thermodynamic limit (such
as ER random hyper-graphs).

1. Replica Symmetric cavity method

There are different versions of the cavity method, that
rely on self-consistent hypothesis on the effect of the
long loops that are present in random graphs. The
simplest version, called Replica Symmetric (RS), as-
sumes a fast decay of the correlations between distant
variables, in such a way that the probability measure
(3) is correctly described by the tree-like approxima-
tion, and that the BP equations will converge toward a
unique fixed-point on a typical large instance. We give
in appendix A the RS equations (A1) for the interacting
copies of the bi-coloring problem. These equations can
be solved numerically with population dynamics [31],
and provide correct predictions for the typical proper-
ties of the measure µy in the regime of small density of
constraints α = M/N .

2. Replica Symmetry Breaking

As the density of constraint α increases, the hy-
pothesis underlying the RS cavity method must break
down, and a more sophisticated version of the cavity
method can be employed to treat the effect of long
loops. The first non-trivial level is called 1RSB (for
one-step Replica Symmetry Breaking), and postulates
the existence of a partition of the configuration space
into pure states (or clusters) such that the restriction
of the measure to one cluster is accurately described
within the RS formalism.
The dynamical threshold αd separates the regime

where the RS approximation is valid (for α < αd) from
a region where the 1RSB formalism is needed to cor-
rectly describe the typical properties of the measure
µy. Technically, the dynamical threshold can be com-
puted within the 1RSB formalism, by deriving and solv-
ing the 1RSB equations at Parisi parameter x = 1 (see
appendix B, equation (B11)). These equations always
admit a trivial fixed-point: the RS solution given in
equation (B13). In the RS phase, this is the unique
solution to the 1RSB equation, correctly describing the
case of a single cluster. An RSB phase is unveiled by
the appearance of a non-trivial solution different from
the RS one to the 1RSB equation.
Depending on the situation, this RS/RSB dynamical

transition can occur in a continuous or a discontinuous
way. In the continuous case, the dynamical threshold
αd can be computed by studying the local instability of
the RS solution (see eq. B13) under a small perturba-
tion toward the space of 1RSB solutions. It is called
the Kesten-Stigum instability in the context of tree-
reconstruction [33, 34], or the Almeida-Thouless transi-
tion for mean-field spin glasses [35]. The Kesten-Stigum
threshold coincides with the dynamical threshold in the
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continuous case, and provides an upper bound in the
discontinuous case (in which a non-trivial solution to
the 1RSB equations appears while the RS solution is
still stable).
In order to probe the dynamical phase transition, one

can compute the difference between:

• the intra-state overlap q1 (see appendix B, equa-
tions (B23)) measuring the overlap between two
typical configurations sampled from the same
cluster.

• and the inter-state overlap q0 (equation (B22)),
measuring the overlap between two typical config-
urations (in the clustered phase α > αd, two typ-
ical configurations are likely to be in two different
clusters). In the case of the bi-coloring problem,
the inter-state overlap is trivially equal to 0 due
to the spin-flip invariance of the measure (2)

While in the RS phase, q1 − q0 = 0 since the solution
space is correctly described by a single cluster, we have
q1 − q0 > 0 in the 1RSB phase (see e.g. Figure 3 the
evolution of the intra-state overlap as a function of γ).
If the transition is continuous, the value q1 − q0 grows
continuously from 0, otherwise it displays a jump.

III. RESULTS

A. Phase diagram

In this section, we provide a detailed analysis of the
effect of the coupling strength γ on the dynamical phase
transition occurring at αd. We restrict our analysis to
the case of two copies (y = 2), and will treat the case
of a larger number of copies in a future work. We also
fix the number of variable-per-clause to k = 5, which
is a representative value for the bi-coloring problem for
a single copy [30] (the cases k = 3 and k = 4 being
peculiar with a continuous dynamical transition, while
it is discontinuous as soon as k ≥ 5).
We provide our results in the form of a phase diagram

in Fig. 2, in the (α, γ) plane. In the case y = 2, the prob-
ability distribution (2) satisfy the following symmetry:

µy(σ
1, σ2;G, γ) = µy(σ

1,−σ2;G,−γ). (6)

In words, a ferromagnetic system (γ > 0) favoring con-
figurations in which the two copies σ1, σ2 are aligned,
is equivalent to the anti-ferromagnetic system (−γ) fa-
voring the alignment of σ1 and −σ2. This implies that
any average quantity computed from this distribution,
and in particular the intra-state overlap q1 (B23), is in-
variant under the transformation γ → −γ. Therefore,
the dynamical threshold is such that

αd(γ) = αd(−γ) (7)

and we don’t need to explore the region γ < 0. This
symmetry does not hold however for a larger number of
copies y > 2, where both γ > 0 and γ < 0 regions have
to be studied.

The RS phase, painted in gray, is on the left of the
dynamical threshold αd(γ). The blue points correspond
to the Kesten-Stigum threshold αKS(γ), at which a non-
trivial solution to the 1RSB equations emerge contin-
uously from the trivial one upon increasing α. The
orange squares mark the discontinuous appearance (at
αdisc(γ)) of a non-trivial solution to the 1RSB cavity
equations, upon increasing α. Details on the numerical
computation of these thresholds are given in appendix
B 4. The dynamical threshold αd(γ), defined as the ap-
pearance of a non-trivial solution to the 1RSB equations
(B11), is given as:

αd(γ) = min(αKS(γ), αdisc(γ)). (8)

Note that we recover the threshold values for a single

FIG. 2. Phase diagram in the plane (γ, α) for the replicated
bi-coloring problem on random k-hypergraphs, with k = 5
and y = 2 copies. The RS phase is shaded in gray, the RSB
phase is in white. The blue circles correspond to the Kesten-
Stigum threshold αKS(γ). The orange squares correspond
to the discontinuous appearance of a non-trivial solution to
the 1RSB equations at αdisc(γ). For each value of γ, the dy-
namical threshold αd(γ) = min{αKS(γ), αdisc(γ)} separates
the RS phase from the RSB phase. The vertical solid and
dashed lines mark respectively the dynamical and Kesten-
Stigum threshold the for the non-interacting case (γ = 0)
and in the γ → ∞ limit. We identify several RSB phases,
denoted ‘LO/HO’, ‘RS+HO’, ‘LO+HO’ (see Sec. IIIA 1 for
a precise definition).
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copy (y = 1) at γ = 0 and in the large γ limit: αd(y =
1) = 9.465 and αKS(y = 1) = 11.25 (see [22, 30, 36,
37] for numerical values of the hyper-graph bi-coloring
problem’ thresholds).

The main observation to extract from this plot is that
turning on the coupling between copies has the effect of
shrinking the RS phase, for all values of γ ̸= 0. Re-
calling that large instances can be solved in polynomial
time in the RS phase [21], this is a negative result: it in-
dicates that the strategy of introducing coupled copies
of a CSP might not improve the performance of solv-
ing algorithms. This observation is corroborated in the
next section III B, where we will see that the BP algo-
rithm fails at converging on finite size instances above
the Kesten-Stigum threshold αKS(α).

In addition, we observe a change in the nature of
the phase transition, as the coupling strength γ is var-
ied. For values of γ between 0.04 and 0.38, the non-
trivial solution to the 1RSB equation appears continu-
ously (αKS(γ) < αdisc(γ)), and the dynamical transition
is therefore continuous. Outside of this range, we have
αdisc(γ) < αKS(γ), and the dynamical transition is dis-
continuous. In particular, we recover a discontinuous
transition in the non-interacting case (at γ = 0 and in
the large γ limit), as already observed in [22, 30] for
k = 5. On finite-size instances, the effect of a contin-
uous phase transition is more drastic and prevent BP
algorithm to converge above αd (see next section III B).

1. A detailed picture of the phase diagram

In this paragraph, we explain the different regions in
the phase diagram given in Fig. 2. For some values of
the parameters α, γ, there exist (at least) two different
solutions to the 1RSB equations at x = 1 (B11). This
type of behavior was already observed in [37], [22], and
its consequences for inference problems (and planted
CSPs) have been discussed in [38]. We use two different
initial conditions (see appendix B 4) for the iterative
resolution of the 1RSB equations:

• Starting from a high intra-state overlap q1 = 1
and denoted ‘HO’ initial condition

• Starting with a low intra-state overlap q1 = 0.01
and denoted ‘LO’ initial condition

Depending on the parameters (α, γ), the two initial con-
ditions can lead to two different solutions, or not. More
precisely, the different phases illustrated in Fig. 2 are
defined as follows:

• RS: both HO and LO initial conditions lead to the
trivial RS solution (q1 = 0);

• HO/LO: both HO and LO initial conditions lead
to the same non-trivial solution (q1 > 0);

FIG. 3. Evolution of the intra-state overlap as a function of
the coupling strength γ, at y = 2, k = 5, for α = 8.0 (top
panel) and α = 9.24 (bottom panel). The blue dashed line
marks the Kesten-Stigum threshold, and the orange solid
line marks the discontinuous appearance of a non-trivial so-
lution (see Fig. 2).

• LO+HO: LO initial condition leads to a non-
trivial solution, HO initial condition leads to a
different non-trivial solution with a higher over-
lap;

• RS+HO: LO initial condition leads to the trivial
RS solution, while HO initial condition leads to a
non-trivial solution.

The frontiers between these different phases are:

• The Kesten-Stigum line: αKS(γ), the limit of the
stability of the trivial fixed-point under a pertur-
bation toward the space of 1RSB solutions. In the
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unstable phase, the LO initial condition leads sys-
tematically to a non-trivial solution, while in the
stable phase it leads to the trivial RS solution.

• The discontinuous appearance of a high-overlap
(HO) non-trivial solution, at αdisc(γ), reached
from the HO initial condition.

In order to get a better understanding of the various
phases, we show in Fig. 3 the evolution of the intra-
state overlap as a function of the coupling strength γ,
for two values of α.

B. Results on large graph instances

In this section, we compare the results obtained in
the large size limit from the cavity method in IIIA,
with numerical results on finite size instances.
We start by comparing the BP marginals µi(σ

1
i , σ

2
i )

found on finite size instances, with the RS solution in
the large size limit. In Fig. 4 we report this compar-
ison at γ = 0.2, for two values of α, one below the
dynamical threshold αd(γ = 0.2) = 7.654 (top panel)
and one above αd (bottom panel). We compute the BP
marginals in Eq. (5) for each value of Xi = (σ1

i , σ
2
i ) ∈

{(+1,+1), (+1,−1), (−1,+1), (−1,−1)}, and average
over the vertices of the graph, and over 50 graph in-
stances of size N = 104. The error bars reported in
Fig. 4 represent the standard deviation of µi(Xi) over
the population for the RS solution (in black) and over
the instances and the vertices of the graph for the BP
solutions (in orange and blue).
For any number of copies y, a simple criterion for

distinguishing between a ferromagnetic (polarized) and
a paramagnetic BP fixed-point is given by the following
quantity

FP =
1

N

N∑
i=1

FPi with

FPi =
1

y

y∑
s=1

(
µs
i (1)

2 + µs
i (−1)2

)
,

(9)

where µs
i (σ) = P[σs

i = σ] is the single variable marginal
on site i in replica s. In a paramagnetic solution, we
have µs

i = 1/2 for each vertex i ∈ {1, . . . , N} and for
each copy s ∈ {1, . . . , y}, and therefore FP = 0.5, while
FP > 0.5 for a ferromagnetic solution.
At α = 7.5, we observe two types of BP fixed-points,

ferromagnetic (in blue) and paramagnetic (in orange).
At α = 7.7, a ferromagnetic BP fixed-point is always
found on all instances. Furthermore, there is a good
compatibility between the paramagnetic BP marginal
found on finite size-instances at α = 7.5 (Fig. 4, top
panel, in orange), and the RS prediction in the large size

FIG. 4. Comparison of the BP marginal averaged over the
vertices and over 50 instances of size N = 104, with BP
marginals predicted by the RS formalism. Here y = 2, k = 5,
γ = 0.2. Top panel: for α = 7.5, a paramagnetic BP solu-
tion is found on a large fraction (0.84) of instances, and the
corresponding paramagnetic BP marginals (in orange) are
comparable with the RS prediction (in black). A ferromag-
netic BP solution is found only on a small fraction (0.16)
of instances, and their BP marginals (in blue) are quanti-
tatively different from RS. Bottom panel: for α = 7.7, BP
marginals are ferromagnetic for all instances (in blue), and
quantitatively different from the RS predictions (in black)

limit (in black). The small error on the BP marginals
is a finite size effect that should go to zero for larger
graphs.

Instead, the ferromagnetic BP marginals
are quantitatively different from the RS pre-
diction. Although, for each value of X ∈
{(+1,+1), (+1,−1), (−1,+1), (−1,−1)} the aver-
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FIG. 5. Histogram of the quantity µi(+1,+1)− µi(−1,−1)
for each site of a given instance of size N = 104. Here y = 2,
k = 5, γ = 0.2, α = 7.7.

age value of µ(X) is remarkably close to the RS
prediction, the fluctuations of µ(1, 1) and µ(−1,−1)
over the graph sites and over the instances are much
larger. In practice the population representing the
RS solution is much more homogeneous that the BP
marginals on given large graphs.

Given that the largest fluctuations are in values of
µ(1, 1) and µ(−1,−1), and are highly anti-correlated
(i.e., the sum of the two values remains almost constant,
close to 0.68), we report in Fig. 5 the histogram of the
difference µ(1, 1)− µ(−1,−1). We see such a difference
span the whole possible range, and gives evidence that
on a given large graph the BP solution predicts the
presence of strongly polarized vertices, that is vertices
whose marginal probability is concentrated on a single
value (1, 1) or (−1,−1).
The presence of these polarized vertices is a clear sign

of an RSB phase transition, as already found for spin
glass models at low temperatures [39]. Indeed, due to
the global spin-flip invariance of the probability measure
(3), we have µy(X) = µy(−X), and also the marginal
probability on any vertex i ∈ V is also invariant under
spin-flip, µi(Xi) = µi(−Xi). As a consequence, on each
vertex i, the marginal probability µi is not polarized,
and one should always observe a paramagnetic solution
with FP = 0.5.
Therefore, a ferromagnetic BP fixed-point with FP >

0.5 is not describing correctly the full probability distri-
bution (3). This ferromagnetic solution rather describe
a restricted part of the probability distribution, that is a
cluster), in which some vertices are polarized toward one
specific value (while all vertices should be not polarized
once averaged over the clusters). Finding a ferromag-

netic BP fixed-point on some instances therefore could
be a signal of the RSB phase transition occurring at the
dynamical threshold αd = 7.654, and the appearance of
glassy states even below this value could be understood
as a finite-size effect (on some graph instances, a polar-
ized solution might naturally appear).

We want to stress that standard BP with a single
replica never finds ferromagnetic fixed points, neither
in the clustered phase, nor in the paramagnetic phase.
These ferromagnetic FPs are only found by the repli-
cated BP: it could be possible that the replicated mea-
sure enlarges the basin of attraction of the glassy states
with larger entropy that become thus accessible for the
replicated BP.

Fig. 6 illustrates the appearance of the ferromag-
netic solution as α approaches the dynamical threshold
αd(γ), for two values of γ:

(a) γ = 0.2: at which the dynamical phase transi-
tion is continuous (see phase diagram Fig. 2 and
explanations in Sec. III A).

(b) γ = 0.01: at which the dynamical phase transition
is discontinuous.

We considered two graph sizes (N = 104, 105), and
run BP on 50 random graphs for each size. We show
in Fig. 6 the fraction of graphs for which BP iterations
converged towards a fixed-point (squares), and among
the converged runs, the fraction of ferromagnetic BP
fixed-points (circles). In general, at the BP algorithmic
transition, the fraction of converged BP runs drastically
decreases and the few converged runs achieve a ferro-
magnetic fixed point.

In the case of a continuous dynamical transition at
γ = 0.2 (top panel), we observe the BP algorithmic
transition to take place slightly below the dynamical
threshold αd(γ = 0.2) = αKS(γ = 0.2) = 7.65, the
small difference being possibly a finite size effect.

In the case of a discontinuous transition at γ = 0.01,
the dynamical threshold coincides with the discontinu-
ous appearance of a non-trivial RSB solution at αd(γ =
0.01) = αdisc(γ = 0.01) = 9.46, but it does not af-
fect the behavior of BP. The BP algorithmic behavior is
again ruled by the Kesten-Stigum threshold: only when
the paramagnetic fixed point becomes locally unstable,
BP fails to converge or converges to a ferromagnetic
fixed point.

We recall that the Kesten-Stigum threshold decreases
as soon as the coupling between copies is turned on with
γ ̸= 0 (see the phase diagram in Fig. 2, blue dashed
line). Introducing a coupling between copies has there-
fore the effect of shrinking the range of α for which BP
can converge on finite size instances.

The above results may be interpreted as an indication
that the coupling strategy can not increase the perfor-
mance of message-passing algorithms in solving an in-
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FIG. 6. Solutions found by BP on finite-size instances, for
y = 2, k = 5, at γ = 0.2 (top panel) and γ = 0.01 (bot-
tom panel), for two graph sizes: N = 104 (gray points),
and N = 105 (black points). We display the fraction of
instances, over 50 runs, for which BP converged (squares),
and, among converged instances, the fraction of ferromag-
netic BP fixed-points (circles). The vertical lines corre-
spond to the thresholds computed in Sec. IIIA: αKS(γ) (blue
dashed line), αdisc(γ) (orange solid line). The last threshold
is not displayed on the top panel, as it occurs at larger val-
ues αdisc(γ = 0.2) = 9.01.

stance of CSP. However, we have to remind that the
BP algorithm by itself does not output a solution, but
only a set of marginal probability distributions (5). In
order to obtain a solution to a given instance of CSP,
the BP algorithm should be followed by a decimation
procedure. An analysis of the convergence of BP dur-
ing the decimation procedure can be made following the
steps of [18, 19], and we plan to do it in a future work.

IV. DISCUSSION AND PERSPECTIVES

We have introduced a model of y interacting copies
of a constraint satisfaction problem, the bi-coloring
problem on k-hyper-graphs, and studied the effect of
the coupling strength between copies on the dynamical
phase transition. We focused on the case of two copies
(y = 2), and leave for future work the analysis of this
model for a larger (but finite) number of copies, as well
as an analytical study in the large y limit.

We showed that turning on the coupling strength has
the effect of shrinking the Replica Symmetric phase,
where algorithms exist that can sample solutions in
polynomial time. This result is quite surprising, be-
cause it was conjectured that a re-weighting strategy
favoring solutions living in dense clusters (i.e., with a
large local entropy [24]) should enhance algorithmic per-
formances [25]. This conjecture was further confirmed
by numerical investigations mainly in inference prob-
lems, with a planted solution [17, 29]. However, the
conjecture was not tested at large in optimization prob-
lems, as in the present case. Only in Ref. [40] it was
shown that for the largest independent set optimization
problem, introducing coupled replicas does not improve
standard algorithms such as Simulated Annealing.

An interesting feature that we have observed is the
change of the nature of the clustering phase transi-
tion, from discontinuous to continuous (in the range
γ ∈ [0.04, 0.38]). This may have important algorith-
mic consequences. Indeed, in a continuous phase tran-
sition, we expect that approximating the RSB solution
slightly beyond the phase transition is easier than find-
ing the RSB solution that appears in a discontinuous
phase transition. It would be very interesting to check
whether a Monte Carlo based algorithm, like SA, could
work around the continuous phase transition, while we
expect it to fail dramatically at a discontinuous phase
transition.

We also studied the effect of the re-weighting strategy
induced by the coupling on the behavior of the BP algo-
rithm on finite-size instances, and find that the conver-
gence of BP is strongly affected by the continuous tran-
sition occurring at the Kesten-Stigum threshold. These
findings call for a better understanding of the behavior
of algorithms at the clustering transition. A promis-
ing direction could be to perform an analysis of the BP
plus the decimation procedure, following the formalism
developed in [18, 19], adapting it to the case of y inter-
acting copies.

Another interesting direction will be to consider the
associated planted problem (or inference problem), as
it was shown [17] that an algorithmic strategy based on
replicated interacting copies of the problem (replicated
SA) could outperform classical SA and reach the Bayes
optimal threshold.
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In addition, we also plan to extend our results when
finite temperature is added to the problem. This should
be particularly useful to explain the behaviour of algo-
rithms, such as Simulated Annealing, that do not work
directly at zero temperature.
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[3] M. Mézard, G. Parisi, and R. Zecchina. Analytic and
Algorithmic Solution of Random Satisfiability Prob-
lems. Science, 297, 812–815 (2002).
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D. Machado, R. Mulet, and F. Ricci-Tersenghi.
Algorithmic thresholds in combinatorial optimiza-
tion depend on the time scaling. arXiv preprint
arXiv:2504.11174, (2025).

[21] A. Montanari and G. Semerjian. Rigorous Inequalities
Between Length and Time Scales in Glassy Systems.
Journal of Statistical Physics, 125(1), 23–54 (2006).



11

[22] L. Budzynski, F. Ricci-Tersenghi, and G. Semerjian.
Biased landscapes for random constraint satisfaction
problems. Journal of Statistical Mechanics: Theory and
Experiment, 2019(2), 023302 (2019).

[23] A. Braunstein, L. Dall’Asta, G. Semerjian, and L. Zde-
borová. The large deviations of the whitening pro-
cess in random constraint satisfaction problems. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2016(5), 053401 (2016).

[24] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and
R. Zecchina. Local entropy as a measure for sampling
solutions in constraint satisfaction problems. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2016(2), 023301 (2016).

[25] C. Baldassi, C. Borgs, J. T. Chayes, A. Ingrosso, C. Lu-
cibello, L. Saglietti, and R. Zecchina. Unreasonable
effectiveness of learning neural networks: From acces-
sible states and robust ensembles to basic algorithmic
schemes. Proceedings of the National Academy of Sci-
ences, 113(48), E7655–E7662 (2016).

[26] T. Maimbourg, M. Sellitto, G. Semerjian, and F. Zam-
poni. Generating dense packings of hard spheres by soft
interaction design. SciPost Phys., 4, 39 (2018).

[27] L. Budzynski and G. Semerjian. Biased measures for
random constraint satisfaction problems: larger inter-
action range and asymptotic expansion. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2020(10),
103406 (2020).

[28] H. Zhao and H.-J. Zhou. Maximally flexible solutions of
a random K-satisfiability formula. Phys. Rev. E, 102,
012301 (2020).

[29] G. Catania, A. Decelle, and B. Seoane. Copycat per-
ceptron: Smashing barriers through collective learning.
Phys. Rev. E, 109, 065313 (2024).

[30] T. Castellani, V. Napolano, F. Ricci-Tersenghi, and
R. Zecchina. Bicolouring random hypergraphs. Journal
of Physics A: Mathematical and General, 36(43), 11037
(2003).
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Appendix A: Cavity method under the Replica
Symmetric ansatz

In the RS formalism, one assumes that the effect of
long loops in a sample of the hyper-graph ensemble
is negligible, and that the BP equations (4) admit a
unique fixed-point that correctly describes the proba-
bility distribution (3). We consider a uniformly cho-
sen directed edge i → a on a random hyper-graph G,
and let PRS(η) be the probability distribution of the
fixed-point variable-to-factor BP message ηi→a thus ob-

tained. Similarly, we define the distribution P̂RS(η̂) of
the factor-to-variable BP message η̂a→i. Then, under
the RS hypothesis, the incoming messages on a given
variable node i ∈ V (resp. a factor node a ∈ E) are

i.i.d. with the law P̂RS (resp. PRS). This implies that

the laws PRS and P̂RS must obey the following equa-
tions:

PRS(η) =

∞∑
d=1

rd

ˆ d∏
a=1

dP̂RS(η̂a)δ[η − fBP(η̂1, . . . , η̂d)]

P̂RS(η̂) =

ˆ k−1∏
i=1

dPRS(ηi)δ[η̂ − f̂BP(η1, . . . , ηk−1)]

(A1)

where η = fBP(η̂1, . . . , η̂d) and η̂ = f̂BP(η1, . . . , ηk−1)
are shorthand notations for the BP equations (4), and
where rd is the residual degree distribution:

rd =
(d+ 1)pd∑
d(d+ 1)pd

(A2)

with pd the degree distribution. For the Erdös Rényi
ensemble, the degree distribution follows a Poisson law
of mean αk, and the residual distribution therefore fol-
lows the same law.
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1. RS Overlap

We define the following component-wise overlap be-
tween two super-spin configurations X,X ′ for each s ∈
{1, . . . , y}:

Os(X,X ′) =
1

N

N∑
i=1

σs
i σ

′s
i (A3)

where X = (X1, . . . , XN ), and Xi = (σ1
i , . . . , σ

y
i ) ∈

{−1,+1}y. The averaged overlap over the super-spin
probability distribution (3) writes:

⟨Os(X,X ′)⟩µy
=
∑
X

∑
X′

µy(X)µy(X
′)Os(X,X ′)

=
1

N

N∑
i=1

(∑
Xi

µi(Xi)σ
s
i

)2

(A4)

with µi the marginal probability distribution of Xi.
In order to compute the overlap averaged over the

random ensemble of hyper-graph instances, we need to
average over the distribution of BP marginals µi. In
the RS formalism, we obtain (with X = (σ1, . . . , σy) ∈
{−1, 1}y):

qRS
s =

ˆ
dQRS(µ)

(∑
X

µ(X)σs

)2

(A5)

with QRS probability distribution for the BP marginal
µi, for a uniformly chosen node i on a random hyper-
graph G, satisfying the equation:

QRS(µ) =
∑
d

pd

ˆ d∏
a=1

dP̂RS(η̂a)δ[µ− gBP(η̂1, . . . , η̂d)]

(A6)

with µ = gBP(η̂1, . . . , η̂d) a shorthand notation for equa-
tion (5).

2. Invariances of the RS solution

Note that the probability distribution (3) is invariant
under a global spin-flip symmetry. The RS prediction

for the overlap qRS
s is therefore trivially equal to 0.5. It

is however a useful sanity check to compute this quan-
tity in order to verify the correctness of the RS solution
found numerically with population dynamics.

Similarly, the probability distribution (3) is invari-
ant is invariant under a permutation of the y copies
X1, . . . , Xy:

µy(X
1, . . . , Xy) = µy(X

π(1), . . . , Xπ(y)) ∀π ∈ S(y)
(A7)

As a result, the marginal probabilities µi(Xi) are also
invariant under a permutation of its components. This
is verified for instance in Fig. 4, and it is also a good
sanity-check for the RS solution found numerically.

Appendix B: One-step Replica Symmetry Breaking
cavity method

1. 1RSB cavity equations

Under the 1RSB hypothesis, one assumes that the
probability distribution (3) is partitioned into clusters
(or pure states):

µy(X) =
∑
γ

p(γ)µy,γ(X) (B1)

with p(γ) the distribution over the clusters. The re-
striction of the distribution µy to one cluster can be
described by the RS formalism, i.e. can be described
by a fixed-point of the BP equations.

We define Pi→a (resp. P̂a→i) as the probability law
of the message ηγi→a (resp η̂γa→i), for a cluster γ be-
ing chosen randomly with probability p(γ). Then the

1RSB messages Pi→a, P̂a→i satisfy the following self-
consistent equations:
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Pi→a(ηi→a) =
1

Z1RSB
i→a

ˆ ∏
b∈∂i\a

dP̂b→i(η̂b→i)δ
(
ηi→a − fBP({η̂b→i}b∈∂i\a)

)
zi→a({η̂b→i}b∈∂i\a)

x

P̂a→i(η̂a→i) =
1

Ẑ1RSB
a→i

ˆ ∏
j∈∂a\i

dPj→a(ηj→a)δ
(
η̂a→i − f̂BP({ηj→a}j∈∂a\i)

)
ẑa→i({{ηj→a}j∈∂a\i})x

(B2)

where x is the Parisi parameter, allowing to weight
differently the various clusters according to their size.

In the above equation, Z1RSB
i→a and Ẑ1RSB

a→i are nor-

malization factors for Pi→a and P̂a→i. The terms
zi→a({η̂b→i\a}b∈∂i) and ẑa→i({ηj→a}j∈∂a\i) are the
normalization factors in equations (4).
In order to average over the disorder, one introduces

the probability distributions over the 1RSB messages:

P1RSB(P ) and P̂1RSB(P̂ ). They obey the 1RSB equa-
tions (similar to the RS equations (A1)):

PRSB(P ) =
∑
d

rd

ˆ d∏
a=1

dP̂1RSB(P̂a)δ(P − F (P̂1 . . . P̂d))

P̂RSB(P̂ ) =

ˆ k−1∏
i=1

dP1RSB(Pi)δ(Q− F̂ (P1, . . . , Pk−1))

(B3)

where P = F (P̂1, . . . , P̂d) and P̂ = F̂ (P1, . . . , Pk−1) are
shorthand notations for the equations (B2).

2. RS trivial fixed-point

On a given graph, in the Replica Symmetric phase,
there is only one fixed point to the BP equation (4),
that we denote {η̄i→a, ¯̂ηa→i}i∈V,a∈∂i. The solution to
the equations (B2) is therefore a trivial Dirac delta:

Pi→a(ηi→a) = δ(ηi→a, η̄i→a)

P̂i→a(η̂a→i) = δ(η̂a→i, ¯̂ηa→i)
(B4)

Once averaged over the disorder, we can see that the
1RSB equations (B3) always admit the RS trivial fixed-
point:

P∗(P ) =

ˆ
dPRS(η̄)δ[P (η)− δ(η, η̄)]

P̂∗(P̂ ) =

ˆ
dP̂RS(¯̂η)δ[P̂ (η̂)− δ(η̂, ¯̂η)]

(B5)

For small values of the density of constraints α, this
trivial solution is the only one, and the predictions given

by the RS and 1RSB cavity method coincide: we are in
the RS phase. Increasing α, non-trivial solutions of (B3)
can appear. The clustering threshold αd(y, γ) is defined
as the smallest value of α for which the 1RSB equations
at x = 1 admit a non-trivial solution.

3. Simplifications of the 1RSB equations at Parisi
parameter x = 1

The complete 1RSB equations (B3) can be simpli-
fied for the special value of x = 1. As explained in
[41], the first step is to note that the normalization

factor Z1RSB
i→a (resp.Ẑ1RSB

a→i ) depend only on the distri-

butions {P̂b→i}b∈∂i\a (resp. on {Pj→a}j∈∂a\i) through

their mean value. One defines η̄[P ], ¯̂η[P̂ ] as the aver-
ages:

η̄[P ](X) =

ˆ
dP (η)η(X)

¯̂η[P̂ ](X) =

ˆ
dP̂ (η̂)η̂(X)

(B6)

Then, one can check that Z1RSB
i→a depends on the

distributions P̂1, . . . , P̂d only through the averages
¯̂η[P̂1], . . . , ¯̂η[P̂d] (and similarly for Ẑ1RSB

a→i ):

Z1RSB
i→a (P̂1, . . . , P̂d) = zi→a(¯̂η[P̂1], . . . , ¯̂η[P̂d])

Ẑ1RSB
a→i (P1, . . . , Pk−1) = ẑa→i(η̄[P1], . . . , η̄[Pk−1])

(B7)

Then, one can check that the random variables

η̄[P ], ¯̂η[P̂ ] obtained by drawing P (resp P̂ ) from

P1RSB(P ) (resp P̂1RSB(P̂ )) satisfy the RS equations
(A1), and therefore are distributed according to the RS

distributions PRS, P̂RS. One defines the conditional av-
erages:

P̄ (η|η̄) = 1

PRS(η̄)

ˆ
dP1RSB(P )P (η)δ(η̄, η̄[P ])

¯̂
P (η̂|¯̂η) = 1

P̂RS(¯̂η)

ˆ
dP̂1RSB(P̂ )P̂ (η̂)δ(¯̂η, ¯̂η[P̂ ])

(B8)

We can get closed equations for these distributions:
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P̄ (η|η̄)PRS(η̄) =
∑
d

rd

ˆ d∏
a=1

dP̂RS(¯̂ηa)δ[η̄ − fBP(¯̂η1, . . .
¯̂ηd)]

ˆ d∏
a=1

d
¯̂
P (η̂a|¯̂ηa)δ[η − fBP(η̂1, . . . η̂d)]

zi→a(η̂1, . . . η̂d))

zi→a(¯̂η1, . . .
¯̂ηd))

¯̂
P (η̂|¯̂η)P̂RS(¯̂η) =

ˆ k−1∏
i=1

dPRS(η̄i)δ[¯̂η − f̂BP(η̄1, . . . η̄k−1)]

ˆ k−1∏
i=1

dP̄ (ηi|η̄i)δ[η̂ − f̂BP(η1, . . . ηk−1)]
ẑa→i(η1, . . . ηk−1))

ẑa→i(η̄1, . . . η̄k−1))

(B9)

These equations are simpler than equations (B3): the
distribution P̄ (η|η̄)PRS(η̄) can be seen as a joint dis-
tribution over η, η̄, and can be represented by a pop-
ulation of couples ({ηi, η̄i}Ni=1). However, the factor
zi→a(η̂1,...η̂d))

zi→a(¯̂η1,...
¯̂ηd))

is still hard to represent with a population.

To get rid of it, we can define the following distributions
(following the steps of [41]):

PX(η|η̄) = η(X)

η̄(X)
P̄ (η|η̄)

P̂X(η̂|¯̂η) = η̂(X)
¯̂η(X)

¯̂
P (η̂|¯̂η)

(B10)

One can check that these distributions now satisfy the
following self-consistent equations:

PX(η|η̄)PRS(η̄) =
∑
d

rd

ˆ d∏
a=1

dP̂RS(¯̂ηa)δ[η̄ − fBP(¯̂η1, . . .
¯̂ηd)]

ˆ d∏
a=1

dP̂X(η̂a|¯̂ηa)δ[η − fBP(η̂1, . . . η̂d)]

P̂X(η̂|¯̂η)P̂RS(¯̂η) =

ˆ k−1∏
i=1

dPRS(η̄i)δ[¯̂η − f̂BP(η̄1, . . . η̄k−1)]
∑

{Xi}k
i=1

ν({Xi}k−1
i=1 |X, {η̄i}k−1

i=1 )

ˆ k−1∏
i=1

dPXi
(ηi|η̄i)

× δ[η̂ − f̂BP(η1, . . . ηk−1)]

(B11)

with the probability distribution:

ν({Xi}k−1
i=1 |X, {η̄i}k−1

i=1 ) =
Ω(X, {Xi}k−1

i=1 )
∏k−1

i=1 η̄i(Xi)∑
{Xi}k−1

i=1
Ω(X, {Xi}k−1

i=1 )
∏k−1

i=1 η̄i(Xi)
. (B12)

Equations (B11) can be solved with popu-
lation dynamics. One employs a popula-
tion of tuples {η̄i, {ηXi }X∈{+1,−1}y}Ni=1s and

{¯̂ηi, {η̂Xi }X∈{+1,−1}y}Ni=1s. As each tuple contains
2y + 1 elements, this representation can become too
heavy to be implemented numerically with a large
value of y. We will see in the following (see section
B 3 b) how to decrease the number of elements to be
stored by using the symmetries of the model.

a. RS trivial fixed-point

The RS trivial fixed-point (B5) can be written in
terms of the distributions (B10):

PX(η|η̄)PRS(η̄) = δ(η, η̄)PRS(η̄)

P̂X(η̂|¯̂η)P̂RS(¯̂η) = δ(η̂, ¯̂η)P̂RS(¯̂η) .
(B13)
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b. Further simplifications using symmetries

Let π : {1, . . . , y} → {1, . . . , y} be a permutation of
the super-spin components. Let X = (σ1, . . . , σy) ∈
{+1,−1}y be a super-spin vector. We will use the no-
tation π(X) = (σπ(1), . . . , σπ(y)). Furthermore, let ηπ

be the BP message η after permutation of the compo-
nents:

ηπ(X) = η(π(X)) . (B14)

Starting from equations (B8) one can check that the
probability distribution P̄ (η|η̄) satisfies the following in-
variance:

P̄ (η|η̄) = P̄ (ηπ|η̄π) (B15)

(and similarly for
¯̂
P (η̂|¯̂η)).

Using the definitions (B10) for the distributions PX

and P̂X , this invariance translates into the relations:

PX(η|η̄) = Pπ−1(X)(η
π|η̄π)

P̂X(η̂|¯̂η) = P̂π−1(X)(η̂
π|¯̂ηπ)

(B16)

One can use this relation to decrease the number of
distributions involved in the self-consistent equations
(B11).
For each n ∈ {0, 1, . . . , y}, let

Un = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
y−n

) (B17)

be the configuration with the n first components being
1, the remaining components being −1. For each X ∈
{+1,−1}y, define πX such that:

πX(X) = Un(X) (B18)

where n(X) = |{s ∈ {1, . . . , y} : σ(X)s = 1}| is
the number of components equal to 1 in X. In other
words, πX is the permutation of the components such
that, when applied to the vector X, it places all the
1-components first.

Define the y + 1 distributions, for each n ∈
{0, 1, . . . , y}:

Pn = PUn
(and similarly: P̂n = P̂Un

) (B19)

Then, the invariance relation (B16) applied to π = πX

gives:

PX(η|η̄) = Pn(X)

(
η(πX)−1

|η̄(πX)−1
)

(B20)

Inserting this relation into the second equation of
(B11), this allows us to write a set of self consis-
tent equations only between the 2(y + 2) distributions

{P̂n}n∈{0,...,y}, {P̂n}n∈{0,...,y},PRS, and P̂RS:

Pn(η|η̄)PRS(η̄) =
∑
d

rd

ˆ d∏
a=1

dP̂RS(¯̂ηa)δ[η̄ − fBP(¯̂η1, . . .
¯̂ηd)]

ˆ d∏
a=1

dP̂n(η̂a|¯̂ηa)δ[η − fBP(η̂1, . . . η̂d)]

P̂n(η̂|¯̂η)P̂RS(¯̂η) =

ˆ k−1∏
i=1

dPRS(η̄i)δ[¯̂η − f̂BP(η̄1, . . . η̄k−1)]
∑

{Xi}k
i=1

ν({Xi}k−1
i=1 |X, {η̄i}k−1

i=1 )

ˆ k−1∏
i=1

dPn(Xi)(ηi|η̄i)

× δ[η̂ − f̂BP(η
πX1
1 , . . . η

πXk−1

k−1 )]

(B21)

We solved these equations iteratively with popula-
tion dynamics, see appendix B 4 for more details on the
numerical resolution.

c. Inter-state and intra-state overlap

The inter-state overlap q0 and intra-state overlap q1,
defined in section IIC 2 can be written in terms of the

1RSB distributions. Starting from the definition of the
component-wise overlap (A3) and its average (A4) over
the super-spin probability distribution (3), we obtain:

• the (component-wise) inter-state overlap between
two configurations sampled independently from
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(3):

qs0 =

ˆ
dP1RSB(P )


ˆ dP (η)

∑
X∈{±1}y

σsη(X)

2


(B22)

with X = (σ1, . . . , σy) ∈ {+1,−1}y.

• the (component-wise) intra-state overlap between
two configurations sampled from the same cluster:

qs1 =

ˆ
dP1RSB(P )

ˆ dP (η)

 ∑
X∈{±1}y

σsη(X)

2


(B23)

The intra-state and inter-state overlap q0 and q1 are
simply q0 =

∑y
s=1 q

s
0, q1 =

∑y
s=1 q

s
1. In particular, q1 is

the quantity plotted in Fig. 3.
One can check that the inter-state overlap is trivially

equal to the RS overlap qRS
s . Using the definition of η̄[P ]

(B6), and recalling that η̄[P ] satisfies the RS equations
(A1), therefore is distributed according to PRS, one ob-
tains:

qs0 =

ˆ
dP1RSB(P )

 ∑
X∈{±1}y

σsη̄[P ](X)

2

=

ˆ
dPRS(η)

 ∑
X∈{±1}y

σsη(X)

2

= qRS
s .

(B24)

Furthermore, one can express the intra-state overlap
in terms of the distribution PX :

qs1 =

ˆ
dPRS(η̄)

[∑
X

σsη̄(X)

ˆ
dPX(η|η̄)

(∑
X′

η(X ′)σ′s

)]

=

ˆ
dPRS(η̄)

[∑
X

σsη̄(X)

ˆ
dPn(X)(η|η̄)

(∑
X′

ηπX (X ′)σ′s

)]
.

(B25)

With X = (σ1, . . . , σy) and X ′ = (σ′1, . . . , σ′y). In
the second equation, we used the invariance relations
(B16) to write the intra-state overlap only in terms of
the distributions {Pn}n∈{0,...,y}.

4. Numerical resolution of the 1RSB equations

The numerical resolution of the 1RSB equations
(B21) can be done with population dynamics. A
first possibility is to represent both the distributions

{P , P0, . . . , Py} and {P̂ , P̂0, . . . , P̂y}, with two popula-

tion of tuples: {(η̄(i), η(i)0 , . . . , η
(i)
y ) : i ∈ {1, . . . ,N}}

and {(¯̂η(i), η̂(i)0 , . . . , η̂
(i)
y ) : i ∈ {1, . . . ,N}}. How-

ever, an iterative solution using this implementation
suffers from oscillations that prevent convergence to
a fixed point. We therefore preferred to use a sin-

gle population of elements {(η̄(i), η(i)0 , . . . , η
(i)
y ) : i ∈

{1, . . . ,N}}. This implementation amounts to solve
the set of self-consistent equations on the distributions
{P , P0, . . . , Py} only (that can be obtained by plugging
the second equation of (B21) into the first one).

At each iteration, one constructs a new population
of elements by repeating for i ∈ {1, . . . ,N}, indepen-
dently, the following steps:

• draw a random number d from the residual distri-
bution rd (in the case of ER graphs, it is a Poisson
law of parameter αk).

• draw d(k − 1) indices {ji,a}i∈{1,...,k−1},a∈{1,...,d}
i.i.d. from {1, . . . ,N}

• Compute the new message:

η̄(i) = f̃BP({η̄(ji,a)}i∈{1,...,k−1},a∈{1,...,d}) (B26)

with f̃BP a shorthand notation for the BP equa-
tion on the η messages only (obtained by plugging
the second equation of (4) in the first one). This
can be done efficiently with convolutions, see next
section B 4 a for more details.

• For each n ∈ {0, . . . , y}:

– Sample, for each a ∈ {1, . . . , d} inde-
pendently, the super-spin configurations:
{Xi,a}i∈{1,...,k−1} from the distribution (cf.
equation (B12))

ν(·|Un, {η̄ji,a}i∈{1,...,k−1})

with Un = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
y−n

) be the con-

figuration with the n first components being
1, the remaining components being −1 (see
section B 4 b. for an efficient implementa-
tion).

– Apply the permutation to each incoming
message:

η
′(ji,a)
n(Xi,a)

=
(
η
(ji,a)

n(Xi,a)

)πXi,a

– Compute the new message:

η(i)n = f̃BP({η′(ji,a)n(Xi,a)
}i∈{1,...,k−1},a∈{1,...,d}) (B27)

– Fill the population with the new element

{(η̄(i), η(i)0 , . . . , η
(i)
y ) : i ∈ {1, . . . ,N}}.

Iterating these steps many times, one converges to a
fixed point solution of (B21).
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a. Convolutions

In this sub-section, one explains how to compute a

new message η̂ = f̂BP({ηi}i∈{1,...,k−1}) from equation
(4) efficiently using convolutions.
For this purpose, we adopt the binary representa-

tion of a super-spin variable X = (x1, . . . , xy) ∈ {0, 1}y
(where one uses the spin-bit correspondence σ = 2x−1).
We re-write the second BP equation (4) here for con-

venience:

η̂(X) =
1

ẑ

∑
X1,...,Xk−1

Ω(X,X1, . . . , Xk−1)

k−1∏
i=1

ηi(Xi)

(B28)

with

Ω(X,X1, . . . , Xk−1) =

y∏
s=1

I[xs, xs
1, . . . , x

s
y not all equal]

(B29)

with I[A] the indicator function of the event A. The sum∑
X1,...,Xk−1

contains 2y(k−1) terms. Using convolution

allows to decrease the number of operations needed in
order to compute this sum.
Let X,X ′ ∈ {0, 1}y be two super-bit configurations,

and let X ⊕ X ′ be the result of the XOR operation
applied component-wise. Similarly, let X ∨ X ′ be the
result of OR operation applied component-wise.
Let h1 : {0, 1}y → R, h2 : {0, 1}y → R be a pair of

discrete functions, and define the convolution as follows:

h1 ⊛ h2 : {0, 1}y → R

h1 ⊛ h2(X) =
∑

X1,X2

h1(X1)h2(X2)I[X = X1 ∨X2]

(B30)

At fixed X, one can define the super-spin configura-
tions Wi = X ⊕Xi, that stores the super-spin compo-
nents that are satisfied by Xi. One can re-write the

function Ω in terms of W1, . . . ,Wk−1:

Ω(X,X1, . . . , Xk−1) = I[W1 ∨W2 ∨ · · · ∨Wk−1 = Uy]
(B31)

with Uy = (1, . . . , 1) the super-spin variable with all
components equal to 1.

With these notations, one defines recursively the
functions {gi : {0, 1}y → R}i∈{0,...,k−1} as follows:

gi(X) = (gi−1 ⊛ ηi(X ⊕ ·))(X)

=
∑
Wi

∑
X′

ηi(Wi ⊕X)gi−1(X
′)I[X = X ′ ∨Wi]

(B32)

With the initialisation

g0(X) = I[X = U0] (B33)

with U0 = (0, . . . , 0).
One can check that:

η̂(X) =
1

ẑ
gk−1(Uy) (B34)

Computing each function gi requires a sum over two
super-spin variables, therefore leading to a total cost of
22y(k − 1) operations.

b. Sampling super-spin configurations

In this sub-section, one explains how to sam-
ple efficiently the super-spin configurations
X1, . . . , Xk−1 from the probability distribution
ν(X1, . . . , Xk−1|X, η̄1, . . . , η̄k−1) given in equation
(B12). Being a distribution over k − 1 super-spins, it
is a function of 2y(k−1) variables. However, one can
avoid to compute and store the joint probability over
X1, . . . , Xk−1, by sampling them iteratively.

Using the notations introduced in appendix B 4 a, one
write the probability distribution of Xk−1 (marginal-
ized over the remaining super-spin configurations)
X1, . . . , Xk−2) as:

Pν(Xk−1) =
η̄k−1(Xk−1)

∑
Z gk−2(Z)I[(Z ∨Wk−1) = Uy]

gk−1(Uy)
(B35)

with the functions g0, . . . , gk−1 defined in the previous section, and with Wi = X ⊕Xi. Similarly, the conditional
probability distribution of Xk−i given Xk−i+1, . . . , Xk−1 is, for each i ∈ {1, . . . , k − 2}:

Pν(Xk−i|Xk−i+1, . . . , Xk−1) =
η̄k−i(Xk−i)

∑
Z gk−i−1(Z)I[Z ∨Wk−i ∨ · · · ∨Wk−1]∑

Z gk−i(Z)I[Z ∨Wk−i+1 ∨ · · · ∨Wk−1]
(B36)

Therefore, in order to sample the super-spin variables X1, . . . , Xk−1, one can store the functions g1, . . . gk−1
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computed during the update of η̄, instead of the full
probability distribution ν.

c. Choice of the initial condition

FIG. 7. Intra-state overlap q1 reached from two initial con-
ditions: HO (white circles) and LO (black stars), see B 4 c,
at γ = 0.01, with population size N = 105.

In section IIIA 1, we unveil the existence of (at least)
two different non-trivial solutions to the 1RSB equation
(B21). In order to reach numerically these solution, we
ran population dynamics with the following initializa-
tion:

P (0)
n (η|η̄) = (1− ϵ)PRS(η̄) + ϵδ[η(·), δ(·, Un)] (B37)

with Un defined in (B17). In other words, with proba-
bility ϵ, the message η is polarized on the configuration
Un corresponding to the index of the probability dis-
tribution Pn = PUn , and with probability 1 − ϵ it is
sampled from the RS distribution PRS.
For each choice of the parameters we ran twice the

population dynamics algorithm, once with ϵ = 1, and
once with a small value of ϵ > 0 (in practice we used ϵ =
0.01). We call HO, for high overlap, the initialization
with ϵ = 1, and LO (low overlap) the small ϵ one.

d. Numerical determination of the thresholds

In this sub-section, we give details on the numerical
computation of the two thresholds αKS, αdisc defined in
section IIIA.

We recall that αdisc marks the discontinuous ap-
pearance of a non-trivial solution to the 1RSB equa-
tion (B21). Such transition is depicted in figure 7, at
γ = 0.01, where the intra-state overlap obtained with
the HO initial condition abruptly jumps from zero to
a positive value at αdisc(γ = 0.01) = 9.461. The pre-
cise numerical determination can be obtained in several
ways (see e.g. [22], section III.) by looking at the evolu-
tion of q1 under iterations (see figure 8, top left panel).
As α is growing towards αdisc, the time t∗(α) needed for

q
(t)
1 to leave the plateau at positive value increases. The

time t∗ can be computed as the first time q
(t)
1 crosses

an arbitrary value between 0 and the plateau. Plotting
t∗ as a function of α (figure 8 (top right panel)), one
observes a dependence of the form:

t∗(α) ≃ K(αdisc − α)−1/2 when α → αdisc (B38)

with K a finite constant. (as already observed in [22],
see [21] for more details on scaling functions describ-
ing the overlap evolution). The discontinuous threshold
αdisc is then obtained from a fit of the data using this
scaling function.

The numerical determination of the continuous ap-
pearance of a non-trivial solution (or Kesten-Stigum
threshold) can be obtained by studying the stability of
the trivial RS solution (B5) under the 1RSB equations
(B3). Here, we adopted a simpler strategy and observed
that the evolution of the intra-state overlap q1 under it-
erations is decaying exponentially to 0 for α < αKS (see
figure 8, bottom left panel), i.e.:

q1(t) ≃ Aδt∗ (B39)

The parameter δ∗ is extracted from the data q1(t) with
the above scaling function, and is plotted as a function
of α in the bottom right panel. Its value is approaching
1 as α increases towards the threshold αKS. A simple
linear fit of δ∗(α) gives the value of the threshold αKS.
We checked that this method gives indeed the correct
Kesten Stigum threshold at γ = 0 (i.e. in the non-

interacting case): αKS(k, γ = 0) = (2k−1−1)2

k(k−1) = 11.25 at

k = 5.
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FIG. 8. Numerical determination of the thresholds αdisc(γ) (top panels), and αKS(γ) (bottom panels), for γ = 0.01.
Top: the discontinuous transition is computed from the time t∗ at which the overlap q1 leaves the plateau and reaches 0
(left panel). A fit using the scaling function (B38) is used to compute the threshold αdisc(γ = 0.01) = 9.461 (right panel).
Bottom: the continuous transition is computed from the intra-state overlap q1 exhibiting an exponential decay for α < αKS

(left panel). A fit using the scaling function (B39) is used to compute the threshold αKS(γ = 0.01) = 10.294.
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