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Abstract

This study introduces the Iterative Chainlet Partitioning (ICP) algorithm and its neural

acceleration for solving the Traveling Salesman Problem with Drone (TSP-D). The proposed ICP

algorithm decomposes a TSP-D solution into smaller segments called chainlets, each optimized

individually by a dynamic programming subroutine. The chainlet with the highest improvement

is updated and the procedure is repeated until no further improvement is possible. The number

of subroutine calls is bounded linearly in problem size for the first iteration and remains constant

in subsequent iterations, ensuring algorithmic scalability. Empirical results show that ICP

outperforms existing algorithms in both solution quality and computational time. Tested over

1,059 benchmark instances, ICP yields an average improvement of 2.75% in solution quality

over the previous state-of-the-art algorithm while reducing computational time by 79.8%. The

procedure is deterministic, ensuring reliability without requiring multiple runs. The subroutine is

the computational bottleneck in the already efficient ICP algorithm. To reduce the necessity of

subroutine calls, we integrate a graph neural network (GNN) to predict incremental improvements.

We demonstrate that the resulting Neuro ICP (NICP) achieves substantial acceleration while

maintaining solution quality. Compared to ICP, NICP reduces the total computational time

by 49.7%, while the objective function value increase is limited to 0.12%. The framework’s

adaptability to various operational constraints makes it a valuable foundation for developing

efficient algorithms for truck-drone synchronized routing problems.

Keywords: vehicle routing; traveling salesman problem; drones; deep learning; cost prediction

1 Introduction

Technological advancements have significantly changed various industries in recent years, including

the logistics and supply chain sectors. As the demand for faster and more efficient delivery methods

grows, traditional delivery systems, which rely heavily on trucks and other ground vehicles, face
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increasing challenges, particularly in densely populated urban areas and remote rural regions. This

has led to the exploration and adoption of innovative solutions, among which drones, or unmanned

aerial vehicles (UAVs), have emerged as a promising alternative.

To enable drones to become an integral part of the logistics network, we face new challenges and

opportunities in optimizing their integration with traditional delivery methods. It is rather unlikely

that drones alone will make most deliveries due to short flying ranges. To utilize the full potential

of drones, the concept of drone-assisted delivery has attracted researchers’ attention instead to

emphasize the coordination between traditional delivery vehicles and drones. In drone-assisted

delivery, trucks are responsible for some of the customer demands, while drones launch from and

land on the trucks to make deliveries while preserving the battery.

We emphasize that the significance goes beyond the truck-drone coordination. Autonomous

robots are gradually being introduced in various markets to solve logistics problems such as goods

deliveries, warehouse operations, security, and other tasks. Such autonomous robots will cooperate

with the human workforce, human-driven vehicles, and other autonomous robots. The truck-drone

synchronization problem provides a basis for developing computational methods for coordinated

operations between heterogeneous entities whose functions depend on and complement each other.

Truck-drone combined routing problems vary widely, encompassing different fleet compositions,

operational rules, and optimization objectives. Within this broad domain, our work focuses on the

synchronized operation of a truck and a drone serving customers while minimizing completion time.

For comprehensive reviews of other problem configurations in truck-drone routing, we refer readers

to surveys: Chung et al. (2020), Macrina et al. (2020), and Liang and Luo (2022).

The Flying Sidekick Traveling Salesman Problem (FS-TSP) first formalized single truck-drone

synchronized delivery (Murray and Chu, 2015). The problem introduces the concept of a sortie,

where a unit-capacity drone launches from the truck at one customer location, serves an eligible

customer and returns to the truck at a different customer location. Each sortie requires fixed service

times for launch and rendezvous, and the drone’s flight duration is constrained by battery life until

rendezvous with the truck. The problem prohibits revisiting customer locations, and a drone cannot

be redeployed once it returns to the depot. The objective is to minimize the total time required to

serve all customers and return both vehicles to the depot.

In contrast, the Traveling Salesman Problem with Drone (TSP-D), a variant of the FS-TSP,

captures the essence of the problem’s collaborative nature among heterogeneous vehicles (Agatz

et al., 2018). The TSP-D defines each drone delivery as an operation—analogous to sortie of FS-

TSP—where a drone departs from the truck to serve a customer before returning for rendezvous. The

TSP-D differs from FS-TSP by eliminating all drone-related service times and allowing more flexible

operations: Trucks may revisit customer locations, and drones may execute loops by returning to

their departure location. Additionally, drones may land while awaiting truck rendezvous. Various

operational constraints exist; the variant without truck revisitation, loops, customer eligibility

restrictions, and drone flying range limitations is called the basic TSP-D (Roberti and Ruthmair,

2021; Blufstein et al., 2024), which we will refer to simply as TSP-D throughout this paper.
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Figure 1: Illustration of Node Types in TSP-D Solution

The TSP-D is defined on a complete graph G with node set N = {1, 2, · · · , N}, where node 1

represents the depot. The objective is to determine synchronized truck and drone routes that serve

all N − 1 customer nodes exactly once and return to the depot in a minimal time, where the drone

operates at a relative speed α to the truck. The drone operates under several assumptions:

1. The drone can visit any customer location;

2. The drone has unlimited flying range and has unit capacity requiring return to the truck after

each delivery;

3. Parcel pickup and drone landings are restricted to customer locations or the depot;

4. Loops are prohibited. That is, launch and landing locations are required to be distinct; and

5. All drone-related service times are negligible.

Figure 1 illustrates a TSP-D solution where nodes serve three distinct roles: truck nodes visited

exclusively by the truck, drone nodes serviced solely by the drone, and combined nodes serving as

synchronization points for both vehicles. Each operation consists of exactly two combined nodes

(start and end), at most one drone node, and zero or more truck nodes.

Despite simplification, coordinating the truck and drone on time remains challenging. Its

inherent NP-hardness poses significant scalability challenges for exact algorithms, driving the need

for heuristic solution methods. Researchers have explored a variety of approaches to tackle these

challenges, ranging from dynamic programming (Agatz et al., 2018) to advanced metaheuristic

algorithms (de Freitas and Penna, 2020; Mahmoudinazlou and Kwon, 2024) and machine learning-

based strategies (Bogyrbayeva et al., 2023). While previous approaches have significantly progressed,

challenges remain in balancing solution quality and computational efficiency.

In this paper, we aim to develop an approach that enhances both the quality and efficiency

of solutions, addressing the trade-offs that have limited the performance of existing methods. We

make three main methodological contributions. First, we propose the Iterative Chainlet Partitioning

(ICP) algorithm for the TSP-D that finds solutions superior to the best-known solutions so far

for many instances while reducing computational time significantly. In ICP, the TSP-D route is

divided into smaller segments called chainlets, each optimized individually by a precise subroutine,

namely TSP-ep-all of Agatz et al. (2018). During each iteration, newly generated chainlets are
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evaluated for their potential improvement. The chainlet with the highest potential improvement

is selected to update the corresponding part of the route. Second, we derive the upper bound on

the number of subroutines required for ICP in a closed form. Our theoretical result explains the

computational efficiency of the proposed ICP algorithm. Third, we implement a machine-learning

method to enhance the algorithm’s computational efficiency further. Specifically, we employ a graph

neural network (GNN) that predicts the potential improvement of each chainlet. This reduces the

need for direct executions of subroutines, accelerating the process while maintaining solution quality.

We emphasize two distinctive strengths of ICP. First, unlike many high-quality solution method-

ologies, which incorporate randomness and necessitate multiple trials to achieve reliable results, ICP

is fully deterministic. This deterministic nature ensures stable algorithm performance, yielding consis-

tent high-quality solutions in a single execution. Second, ICP offers flexibility regarding subroutines.

While we demonstrate its effectiveness using TSP-ep-all, the framework readily accommodates

any TSP-D optimization subroutine. This adaptability ensures that future algorithmic advances can

seamlessly integrate into the ICP framework. Furthermore, while ICP inherently supports customer

eligibility constraints and drone range limitations, it can be adapted to other operational settings

with minimal modifications by incorporating targeted subroutines. These characteristics establish

ICP as a robust foundation for developing efficient algorithms across the spectrum of truck-drone

synchronized routing problems.

The rest of this paper is organized as follows. Section 2 briefly summarizes the related literature.

Section 3 proposes the ICP algorithm and provides a theoretical analysis of the algorithm, while

Section 4 further accelerates ICP using a graph neural network. The performance of ICP and its

neural acceleration is tested through extensive numerical experiments in Section 5, and we conclude

the paper in Section 6.

2 Literature Review

This section positions our work within the research landscape by examining three key areas: solution

methodologies for the TSP-D, decomposition-based metaheuristics for large-scale routing problems,

and machine-learning approaches for combinatorial optimization. We first review existing exact and

heuristic approaches for solving the TSP-D, highlighting their capabilities and limitations. We then

discuss how the ICP algorithm relates to an existing method, POPMUSIC, and explain our neural

acceleration techniques in the context of machine learning for routing problems.

2.1 Solution Methodologies for TSP-D

We begin by examining the capabilities of exact methods. A compact formulation without big-M

constraints is known to solve instances with up to 14 customers within an hour using an MILP solver,

while a branch-and-price algorithm with dynamic programming and ng-route relaxation solves

instances of up to 29 customers within an hour (Roberti and Ruthmair, 2021). The algorithm was

recently advanced, extending solvability to instances with up to 59 customers (Blufstein et al., 2024).
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Other exact solution approaches for FS-TSP and TSP-D variants include dynamic programming

(Bouman et al., 2018), branch-and-cut (Van Dijck et al., 2018), branch-and-bound (Poikonen et al.,

2019), Benders decomposition (Vásquez et al., 2021), and a combination of branch-and-cut with

column generation (Boccia et al., 2021). To our best knowledge, the computational capability is

limited to 59 customers regardless of which variant is solved.

Given these computational challenges, several heuristic approaches have been developed. Agatz

et al. (2018) introduced an exact partitioning algorithm, TSP-EP, that uses dynamic programming

to find a minimal TSP-D solution where truck and drone routes are subsequences of an initial TSP

route. They extended TSP-EP to TSP-EP-all by incorporating local search methods sequentially

to perturb the initial TSP route. Although efficient and effective for instances with fewer than

20 customers, TSP-EP-all’s O(N5) complexity—combining O(N3) dynamic programming and

O(N2) local search—limits its scalability, making it more valuable as a subroutine.

Building on this strength, Bogyrbayeva et al. (2023) proposed the Divide-Partition-and-Search

(DPS), inspired by the divide-and-conquer heuristic (DCH) from Poikonen et al. (2019). The DPS25

partitions the problem into subgroups containing 25 nodes each and applies TSP-EP-all to optimize

individual subgroups. It demonstrates moderate solution quality while maintaining computational

efficiency for large-scale instances. Bogyrbayeva et al. (2023) also developed a deep reinforcement

learning approach, proposing a Markov Decision Process formulation and a hybrid model (HM) that

combines an attention encoder with a Long Short-Term Memory decoder. HM4800, leveraging GPU

to sample 4800 solutions in parallel, efficiently and effectively solves large instances, though it is

restricted to predefined problem sizes, distributions, and truck-drone speed ratios.

Metaheuristic approaches have also been developed. The Hybrid General Variable Neighborhood

Search (HGVNS) creates an optimal TSP solution with a MIP solver (de Freitas and Penna,

2020). It implements General Variable Neighborhood Search to obtain truck and drone routes,

addressing FS-TSP and TSP-D. The Hybrid Genetic Algorithm with type-aware chromosomes (HGA-

TAC+) proposed type-aware chromosome encoding that distinguishes truck and drone nodes and

incorporates specialized local search methods (Mahmoudinazlou and Kwon, 2024). It demonstrates

strong performance for FS-TSP and TSP-D with loops, while readily adaptable to TSP-D.

While existing approaches have improved TSP-D solution capabilities, they face inherent limita-

tions. Metaheuristic approaches deliver high-quality solutions, but their probabilistic nature requires

substantial computational time and multiple runs, which introduces variability in solution quality.

An end-to-end learning method offers computational efficiency but is limited to problems that match

their training parameters and still inherits stochastic characteristics.

Our proposed ICP algorithm addresses these limitations by combining deterministic procedures

with high solution quality and computational efficiency. Unlike existing methods, ICP requires

no multiple trials to achieve consistent results and functions effectively across various problem

configurations, even with neural acceleration. This positions ICP as a significant advancement in

solving TSP-D instances, particularly for large-scale applications.
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Figure 2: Conceptual Framework for Understanding TSP-D Tour as a Chain

2.2 Comparison with POPMUSIC

ICP shares methodological similarities with the Partial OPtimization Metaheuristic Under Special

Intensification Conditions (POPMUSIC) framework (Ribeiro et al., 2002). POPMUSIC is a general

framework designed to tackle large-scale combinatorial optimization problems. It has been successfully

applied to various routing problems, including the Location Routing Problem (LRP) by Alvim and

Taillard (2013), Capacitated Vehicle Routing Problem (CVRP) by Li et al. (2021), and TSP by

Taillard and Helsgaun (2019).

POPMUSIC partitions a solution into parts and iteratively refines them through subproblems.

Concretely, one first obtains a feasible solution and decomposes it into multiple parts, each rep-

resenting a subset of the solution. Then, subproblems are formed by aggregating a chosen seed

part with other related parts. Because these subproblems are constructed so that any improvement

remains compatible with the original solution, each local improvement directly translates into a

valid improvement of the global solution. The process repeats until no subproblem can be further

improved.

While the POPMUSIC framework provides a general template, adapting it to the TSP-D requires

addressing specific challenges. Unlike the TSP, which allows natural decomposition into consecutive

segments of cities while preserving feasibility, the TSP-D requires synchronizing truck and drone

routes, necessitating valid launch and rendezvous points for any partial solution. In ICP, we address

this challenge through the concept of a chainlet. Figure 2 illustrates our framework for structuring

TSP-D routes. We define the entire TSP-D tour as a chain, wherein each operation is viewed as

a single ring. By grouping multiple rings, we define a route segment as a chainlet, representing a

“small chain” within the entire route. Since TSP-ep-all naturally preserves the starting and ending

combined nodes (treating them as depots), with careful initial tour construction, we can leverage

this subroutine to optimize each chainlet without compromising the chain’s integrity. Consequently,

improvements in individual chainlets directly translate to improvements in the overall solution.

ICP differs from traditional POPMUSIC implementations in its selection strategy for subproblems.
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While POPMUSIC can be viewed as a gradient method that improves the initial solution until

reaching a local optimum (Taillard and Voss, 2018), ICP implements a steepest descent variant

that always moves toward maximum improvement at each iteration. Specifically, whereas many

POPMUSIC implementations randomly select subproblems or employ simple shifting strategies

after modifications, ICP evaluates all generated chainlets and selects them greedily based on their

potential for improvement.

Research into the influence of selection strategies within the POPMUSIC framework has been

limited (Taillard and Voss, 2018). We identify several advantages of our greedy selection approach:

First, when using only deterministic subroutines, the algorithm becomes deterministic, ensuring

performance stability. Second, we provide theoretical explanation of the algorithm’s scalability,

analogous to POPMUSIC’s empirically observed near-linear scaling when subproblem sizes remain

fixed (Ostertag et al., 2009; Alvim and Taillard, 2013; Taillard and Helsgaun, 2019). Since we

optimize only the chainlet with the highest improvement potential at each iteration, large portions

of the solution remain unchanged between iterations. By storing previous optimization results, we

effectively optimize all subproblems in the first iteration, and then, for subsequent iterations, we

only need to optimize subproblems affected by the previous update. Using this fact with a fixed

subproblem size, we can establish that a constant bounds the number of subproblems to be optimized

after the first iteration. More precisely, we derive an upper bound on the number of subproblems

to be solved that is linear in N for the first iteration and constant thereafter. Consequently, ICP

inherits POPMUSIC’s hallmark of scalability while offering more concrete theoretical foundations,

providing an efficient local search algorithm for large-scale TSP-D instances.

2.3 Learning Approaches for Routing Problems

Based on deep neural networks, machine-learning methods have been applied to solve combinatorial

optimization problems, especially the TSP and other vehicle routing problems. In early developments,

deep reinforcement learning approaches were dominant in solving routing problems in an end-to-end

fashion (Bello et al., 2016; Khalil et al., 2017; Kool et al., 2018; Nazari et al., 2018). While such

approaches have demonstrated that neural networks could learn heuristics for solving NP-hard

combinatorial optimization problems and produce quality solutions quickly, a well-crafted, human-

developed algorithm often outperforms end-to-end learning-based approaches by a large margin. For

instance, the Lin–Kernighan–Helsgaun (LKH) algorithm (Helsgaun, 2017) is reported to outperform

end-to-end neural methods in both solution quality and, in some cases, computational time on

randomly generated TSP instances (Sui et al., 2025).

Consequently, a new strand of hybrid methodologies has emerged to bridge the gap between

purely handcrafted methods and end-to-end learned approaches, Some approaches replace human-

designed subroutines with machine-learned heuristics, such as neural repair in large neighborhood

search (Hottung and Tierney, 2020), neural separation in cutting-plane methods (Kim et al., 2024),

and Language Hyper-Heuristics using large language models for heuristic generations (Ye et al.,

2024). Others enhance search procedures, including neural scoring in the LKH algorithm (Xin et al.,
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2021) and neural fitness prediction in genetic algorithms (Sobhanan et al., 2025). These hybrid

methods have proven highly effective, maintaining the sophisticated structure of classical heuristics

while strategically enhancing specific components through learning.

Our work reinforces this pattern: while the purely end-to-end learning-based approach, HM4800,

performs reasonably well, ICP, a carefully constructed heuristic, surpasses both solution quality

and speed. Therefore, we adopt a hybrid approach that accelerates ICP using a learning model

to predict subproblem solution costs, similar to the strategy used for POPMUSIC in CVRP (Li

et al., 2021). As numerical experiments confirm, our hybrid approach demonstrates that integrating

a learning model can accelerate an already efficient computational method without compromising

solution quality.

3 Solution Methodology

This section presents the methodology developed for solving TSP-D. The first subsection introduces

the Iterative Chainlet Partitioning (ICP) algorithm. The second subsection presents theoretical

insights into the structural properties of the ICP algorithm, establishing formal bounds on the number

of TSP-ep-all runs required per iteration, which demonstrates the scalability and computational

efficiency of ICP.

3.1 The Iterative Chainlet Partitioning Algorithm

We first present the formal definition of ring, chainlet, and chain.

Definition 1. A ring, equivalent to an operation, consists of exactly two combined nodes serving as

the start and end, at most one drone node, and zero or more truck nodes. A chainlet is a sequence

of consecutive rings, and a chain is the complete set of rings forming the TSP-D solution. The size

of each structure is defined as the number of distinct nodes it contains.

Built on this conceptual framework, Figure 3 illustrates the overall iteration process of the ICP

algorithm. The algorithm begins by dividing the current chain into individual rings, which are then

grouped into overlapping chainlets of manageable size. Each chainlet is evaluated using the precise

TSP-ep-all heuristic to determine its potential for improvement. The chainlet with the highest

potential improvement is selected to update the corresponding segment of the chain, and the process

iterates until no further improvements are possible.

The process of the ICP algorithm is detailed in Algorithm 1. The algorithm begins by constructing

an optimal TSP tour T using the Concorde solver (Applegate et al., 1998) (Line 3), which is then

transformed into the initial chain C using the TSP-ep heuristic (Line 4). Rather than grouping a

fixed number of rings into each chainlet, the algorithm dynamically adjusts the number of rings

based on the chainlet’s size, ensuring that each chainlet Cj remains within a maximum size of 20

(Line 7). The Group process begins by sequentially adding rings to the current chainlet Cj until

adding another ring causes the chainlet to exceed the size limit. Once the chainlet reaches this limit,
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Figure 3: Illustrative Example of ICP Iteration

Algorithm 1 Iterative Chainlet Partitioning (ICP)

1: Input: Customer Node Set N
2: Output: Optimized Chain C
3: T ← Concorde(N )
4: C ← TSP-ep(T )
5: Initialize cache for chainlets
6: repeat
7: C1, C2, . . . , Cm ← Group(C) ▷ Group rings into chainlets
8: for j ∈ {1, 2, . . . ,m} do
9: if Hash(Cj) ∈ cache then

10: C′j ,∆j ← cache[Hash(Cj)]
11: else
12: Tj ← FarthestInsertion(Cj) ▷ Farthest insertion with fixed end
13: C′j ← TSP-ep-all(Tj)
14: ∆j ← Cost(Cj)− Cost(C′j)
15: cache[Hash(Cj)]← (C′j ,∆j)
16: cache[Hash(C′j)]← (C′j , 0)

17: k ← arg maxi∈{1,2,...,m} ∆i

18: if ∆k > 0 then
19: Replace Ck in C with C′k
20: until ∆i ≤ 0 ∀i ∈ {1, . . . ,m}
21: return C

9



a new chainlet is initiated. If the newly generated chainlet is a subset of the previously generated

chainlet, it is omitted from further consideration. The process then advances the starting ring to

the next in sequence and continues until all rings have been grouped. Adjusting the number of

rings per chainlet ensures consistent algorithmic performance across various settings, as it controls

the maximum chainlet size regardless of how α affects individual ring sizes. The selection of this

maximum node size balances several factors: grouping too many rings in a chainlet can slow the

algorithm due to the exponential complexity of TSP-ep-all, while grouping too few may reduce

the subroutine’s effectiveness.

We leverage a cache that stores previous TSP-ep-all results to avoid redundant calculations.

Since only the chainlet with the most significant improvement is used to update the corresponding

segment of the chain in each iteration (Lines 17–19), the other non-overlapping chainlets remain

unchanged in subsequent iterations. Therefore, for previously encountered chainlets, the optimized

chainlet C′j and its corresponding improvement ∆j are retrieved directly from the cache, significantly

enhancing the algorithm’s efficiency (Lines 9–10). For chainlets not found in the cache, we construct

an input tour Tj using the FarthestInsertion (FI) heuristic (Line 12). Since altering the chainlet’s

end node would disrupt the chain’s continuity by breaking its connection to subsequent segments,

the FI heuristic preserves the integrity of the overall chain by first connecting the start node to the

end node before inserting the remaining nodes. With the constructed input tour, each chainlet is

then optimized using the TSP-ep-all subroutine (Line 13), and the optimization result is stored in

the cache (Lines 15–16). We hash each chainlet using its node sequence, specifically the intersection

of truck and drone routes. Within each ring, drone nodes always precede truck nodes. While this

hashing approach does not produce a unique identifier for every conceivable chainlet configuration,

it is sufficient to guarantee consistent optimization results when the same hash is encountered.

The following proposition formalizes the behavior of the ICP algorithm, highlighting its deter-

ministic structure, monotonic decrease in solution cost, and termination within a finite number of

iterations. These properties are direct consequences of the algorithm’s design, which ensures a strict

reduction in cost at each step through a greedy selection strategy and deterministic subroutines,

with revisitation of prior configurations inherently ruled out by the update mechanism.

Proposition 1. The ICP algorithm terminates in finite time, and the cost of the solution monoton-

ically decreases throughout the iterations. In addition, if the instance has a unique TSP optimal

solution, the ICP algorithm is deterministic; that is, every run of ICP for any given TSP-D instance

results in the same solution.

We provide all proofs in the Appendix A. The choice of the maximum node size and the exclusive

employment of the Concorde solver and FI heuristic for input tour construction is based on the

experimental results outlined in Appendix B. The procedures of the Group and FarthestInsertion

heuristics are detailed in Appendix C.

10



Ring of size 2
(straight ring)

Ring of size 3
(triangle ring)

Ring of size > 3

⋯

Figure 4: Illustration of Different Rings in a Chain

3.2 Theoretical Insights

This section presents theoretical results that quantify the efficiency of the ICP algorithm by formal-

izing its structural properties, particularly in the formation and partitioning of rings and chainlets.

These results demonstrate ICP’s capability to handle large-scale TSP-D problems effectively, with

specific bounds established for the number of TSP-ep-all runs required per iteration.

Definition 2. A ring of size 2 is called a straight ring. A ring of size 3 is called a triangle ring.

First, we distinguished different rings based on the number of drone and truck nodes. A ring of

size 2, which does not utilize the drone and consists solely of two combined nodes, is called a straight

ring. A ring of size 3, which utilizes the drone but contains no intermediate truck nodes—meaning

the truck directly traverses to the rendezvous point without visiting other nodes—is termed a

triangle ring. Naturally, as the effectiveness of deploying the drone decreases with lower α, larger

rings containing additional truck nodes become more prevalent. This consequently reduces the total

number of rings within a TSP-D chain.

Lemma 1. Suppose a TSP-D instance where α > 1 and no nodes are collinear. Then, no two

consecutive straight rings can appear in an optimal TSP-D solution. The same holds for exact

partitioning solutions for any given TSP tour.

Lemma 1 shows that for α > 1 and non-collinear nodes, two consecutive straight rings do not

appear in an optimal solution, as a single triangular ring provides a lower-cost alternative. The

result also holds for exact partitioning solutions, as exact partitioning guarantees optimality within

the current TSP sequence.

The structural property given by Lemma 1 enables the calculation of the maximum number of

rings in a chain. Each ring must contain minimal nodes, achieved by maximizing the alternation

between straight and triangular rings as shown in Figure 5. The following lemma formalizes this

idea.

Lemma 2. Suppose a chain is constructed from a TSP-D instance where α > 1 and no nodes are

collinear. Then, for any chainlet with n ≥ 3 nodes, the maximum number of rings is

2n− 3 + (n mod 3)

3
. (1)
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Figure 5: Chainlet with 20 nodes exhibiting the maximum number of rings

Lemma 2 provides the maximum number of rings in any chainlet. Together with the caching

mechanism—which only treats chainlets containing at least one ring from a modified chainlet as

new—this result bounds the number of TSP-ep-all subroutine runs necessary per ICP iteration.

Proposition 2. Suppose a chain constructed from a TSP-D instance with N total nodes where

α > 1, no nodes are collinear, and N is sufficiently large. The maximum node size per chainlet in

ICP is denoted as ℓ. Then, in the first iteration of ICP, the maximum number of TSP-ep-all runs

is
2N − 1 +

(
(N + 1) mod 3

)
3

. (2)

In each subsequent iteration, the maximum number of TSP-ep-all runs is

4ℓ− 9 + 2(ℓ mod 3)

3
. (3)

Proposition 2 indicates that in the initial iteration, the number of TSP-ep-all runs is linear in

N . However, this number remains constant in subsequent iterations, regardless of the instance size.

With ℓ = 20 in ICP, the necessary TSP-ep-all runs do not exceed 25 in later iterations.

Our analysis in Section 5.1 substantiates and extends these theoretical bounds. We establish that

TSP-ep-all constitutes the computationally dominant component of ICP’s runtime, particularly

at higher α values. Our empirical results further confirm that the number of iterations grows

linearly with N . Note that each TSP-ep-all execution requires constant time due to the fixed

maximum chainlet size of 20 nodes. Combining the linearity of iterations with our theoretical

bound on subroutine calls per iteration, we conclude that the bound of the total number of TSP-

ep-all executions scales as O(N). This linear scaling property is instrumental in ensuring ICP’s

computational efficiency for large-scale instances.

4 Neural Acceleration

This section details constructing a neural network model to predict the outcomes of the TSP-ep-all

heuristic and its integration into the ICP algorithm to enhance computational efficiency.

Despite the efficiency gained from caching in the ICP algorithm, a significant computational

burden persists due to the need to compute TSP-ep-all for multiple chainlets in each iteration.

To address this issue, we propose the integration of a neural cost predictor. This neural network

estimates the cost increment, allowing the algorithm to bypass the direct execution of TSP-ep-all

except for the chainlet with the highest predicted improvement. By leveraging GPU parallelization,
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Figure 6: The neural cost predictor

the neural network can rapidly process multiple chainlets simultaneously, ensuring efficient prediction

of potential improvements. Consequently, this approach effectively reduces computational demands

while preserving the integrity of the solution.

4.1 Neural Cost Predictor

Figure 6 depicts the overall neural network architecture. A GNN is utilized, specifically chosen for

its capability to effectively process input sizes that vary, such as the chainlets generated within the

ICP algorithm. Let graph G = (V, E), where V is the set of nodes with |V| = n, and E is the set of

edges. Each node v ∈ V is associated with an initial feature vector Xv, and each edge e ∈ E has a

corresponding feature vector Xe. In a GNN, the representation of each node hv evolves through the

network layers, starting with hv = Xv. The GNN iteratively updates these representations into h′
v

through message passing, wherein each node aggregates information from its neighbors, thereby

capturing k-hop neighborhood interactions within the graph. The task is to learn the parameters

θ of the cost prediction GNN fθ, which estimates the TSP-ep-all cost ŷ for a given chainlet Cj
based on its graph representation Gj .

Gj
graph←−−−−−−−

construction
Cj

ŷ = fθ(Gj) := Decoder(Encoder(Gj)),

The details of the graph construction, Encoder(·), and Decoder(·) are described in the following

paragraphs.

Graph Construction The graph construction encapsulates the TSP tour sequence and truck and

drone costs, precisely embedding the key inputs TSP-ep-all needs. We construct a complete graph

Gj for each chainlet Cj , with a node for each node in the chainlet, ensuring all possible connections

are considered. From the initial TSP tour generated by the FI heuristic, node features Xv are
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derived using sinusoidal positional encoding, which embeds the positional sequence of nodes within

the tour. Each node v in the graph is assigned a feature vector Xv that captures its position in the

sequence, using trigonometric functions to encode relative and absolute positions in a manner that

preserves order information. Edge features Xe include truck and drone costs, normalized by dividing

each cost by the maximum truck cost across all edges, ensuring the costs are scaled between 0 and 1.

Encoder The Encoder(·) transforms the input graph Gj into latent vectors H′ := {h′
1,h

′
2, . . . ,h

′
n} ∈

Rn×d, where d is the hidden dimension. It consists of a stack of alternating graph transformer layers

and graph normalization layers. The graph transformer layer, based on (Shi et al., 2020), is a graph

adaptation of the multi-head attention mechanism of the transformer (Vaswani et al., 2017), chosen

for its ability to incorporate edge features into the attention process and its support for parallel

multi-head processing for improved computational efficiency. Each GT layer computes multiple

heads to transform the node feature hv to h′
v, updating the representation through a combination

of residual connections and message passing from connected nodes. Specifically, each head computes

the following transformation:

h′
v = Wrhv +

 ∑
u∈V\{v}

auv (Wvhu + Weeuv)


︸ ︷︷ ︸

mv

,

where the aggregated message mv reflects the combined influence of connected nodes within the

graph. Matrices Wr, Wv, and We are learnable, with Wr handling the residual connection, Wv

performing value transformations to messages from other nodes and We processing the edge features

euv. The attention coefficient auv quantifies the importance of the message from node u to node v

and is computed as:

auv = softmax

(
(Wqhv)⊤

(
Wkhu + Weeuv

)
√
d

)
,

where Wq and Wk are learnable weight matrices for the query and key transformations, respectively.

Each head’s results are independently calculated and concatenated, enabling the model to capture

diverse interactions and enhance its expressive capabilities.

After passing through each GT layer, the node states are processed by a graph normalization

(GraphNorm) layer (Cai et al., 2021). Normalization layers improve training stability and convergence

by shifting and scaling input features, with a specific set of features for normalization depending

on the type. Instance normalization for graph data treats each graph as an individual instance,

normalizing the node features based on their mean and variance across all nodes within that

graph. However, this standard mean shift can inadvertently discard structural information, as the

aggregated mean of node features often captures unique patterns intrinsic to each graph. GraphNorm

addresses this issue by introducing a learnable vector λ, which directly controls the extent of the

mean shift applied during normalization. By allowing the model to adjust the degree to which the
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mean is subtracted, λ enables the preservation of critical structural information embedded in the

mean of the node features while still achieving the benefits of normalization. GraphNorm for h′
v can

be expressed as:

GraphNorm(h′
v) = diag

(√
Var[h′

v − λ⊤E[H′]]

)−1 (
h′
v − λ⊤E[H′]

)
diag(γ) + β,

where E[H′] and Var[H′] denote the element-wise mean and variance of the features across all nodes

in the graph, γ is a learnable scaling vector represented as a diagonal matrix, and β is a learnable

shifting vector.

After the GraphNorm layer, an Exponential Linear Unit (ELU) activation function is applied

to introduce non-linearity, mitigating the vanishing gradient problem and accelerating learning by

pushing the mean activations closer to zero and providing noise-robust representations (Clevert,

2015). To summarize, the Encoder(·) consists of a stack of four components, each sequentially

applying a GT layer followed by a GraphNorm and ELU activation, thereby transforming the input

graph representation Gj into its latent representation.

h′
v = ELU(GraphNorm(GT(hv))).

Decoder The Decoder(·) maps the latent vectors H′ to the predicted TSP-ep-all cost ŷ as:

ŷ = W

(∑
v∈V

softmax
(
h′
v

)
h′
v︸ ︷︷ ︸

graph readout

)
+ b.

The graph readout module calculates attention weights for each node’s features using a softmax

function, assigning higher weights to more critical features. The weights are applied element-wise

to the node features, amplifying significant information while diminishing less relevant features.

The weighted features are then summed across all nodes to obtain the global graph representation

hG ∈ Rd, capturing the key characteristics of the graph. Finally, hG passes through a linear layer

with a learnable weight matrix W and bias term b, producing the predicted TSP-ep-all cost ŷ.

4.2 The Neuro Iterative Chainlet Partitioning Algorithm

We denote the ICP integrated with the neural cost predictor as Neuro Iterative Chainlet Partitioning

(NICP). The process of NICP is detailed in Algorithm 2. The initial steps—constructing the optimal

TSP tour T using the Concorde solver (Line 3), transforming it into the chain C using the TSP-ep

heuristic (Line 4), and grouping rings into chainlets Cj with a maximum size of 19 (Line 7)—are

identical to those in ICP. NICP diverges from ICP by incorporating a neural network to predict the

TSP-ep-all cost for each chainlet before applying the heuristic. While substituting direct TSP-

ep-all executions with neural predictions could diminish the benefit of caching, NICP maintains

efficiency through a two-level caching mechanism that uses separate stores for optimized results
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Algorithm 2 Neuro Iterative Chainlet Partitioning (NICP)

1: Input: Customer Node Set N
2: Output: Optimized Chain C
3: T ← Concorde(N )
4: C ← TSP-ep(T )
5: Initialize cache.optimized and cache.predicted

6: repeat
7: C1, C2, . . . , Cm ← Group(C) ▷ Group rings into chainlets
8: for j ∈ {1, 2, . . . ,m} do
9: if Hash(Cj) ∈ cache.optimized then

10: C′j ,∆j ← cache.optimized[Hash(Cj)]
11: ∆̂j ← ∆j

12: else if Hash(Cj) ∈ cache.predicted then

13: Tj , ∆̂j ← cache.predicted[Hash(Cj)]
14: else
15: Tj ← FarthestInsertion(Cj) ▷ Farthest insertion with fixed end

16: ∆̂j ← Predictor(Tj)
17: cache.predicted[Hash(Cj)]← (Tj , ∆̂j)

18: k ← arg maxi∈{1,2,...,m} ∆̂i

19: if Hash(Ck) /∈ cache.optimized then
20: C′k ← TSP-ep-all(Tk)
21: ∆k ← Cost(Ck)− Cost(C′k)
22: cache.optimized[Hash(Ck)]← (C′k,∆k)
23: cache.optimized[Hash(C′k)]← (C′k, 0)

24: if ∆k > 0 then
25: Replace Ck in C with C′k
26: until ∀i ∈ {1, . . . ,m} : ∆i ≤ 0 and Hash(Ci) ∈ cache.optimized

27: return C
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(cache.optimized) and prediction data (cache.predicted).

The caching mechanism in NICP operates as follows: First, the algorithm checks if the results

from a previous TSP-ep-all run, ∆j and C′j , are already available (Line 9). These actual results

take precedence when available, bypassing neural prediction (Lines 10–11). Otherwise, the algorithm

searches for existing neural predictions. If found, it retrieves the cached input tour Tj and prediction

∆̂j (Lines 12–13). For chainlets without any cached information, Tj is constructed using the FI

heuristic. The neural network predicts the TSP-ep-all cost ŷj using GPU parallelization for efficient

processing of multiple chainlets, and the predicted cost is rescaled by multiplying the maximum

truck cost across all edges to restore it to the original scale. The expected improvement ∆̂j is

subsequently derived from this rescaled cost, and cached along with the input tour (Lines 14–17).

The chainlet Ck with the highest improvement, whether actual or predicted, is selected for

updating (Line 18). If TSP-ep-all has not yet been applied to Ck, it is executed using the cached

input tour Tk, and both the actual improvement ∆k and the optimized chainlet C′k are cached (Lines

19–23). The chain is updated only if an improvement is confirmed (Lines 24–25). The iterative process

continues until all chainlets have been processed by TSP-ep-all and no further improvements are

possible, ensuring comprehensive exploration of the chain.

Proposition 3. The NICP algorithm terminates in finite time, and the cost of the solution

monotonically decreases throughout the iterations. Given that the instance has a unique TSP

optimal solution, the NICP algorithm is deterministic.

The key arguments in Proposition 1 for the ICP algorithm also apply to NICP. Although the

neural predictor may yield imprecise estimates, every update is finalized only after TSP-ep-all

confirms a strict improvement, ensuring finite termination. Moreover, for a given set of parameters

θ, neural inference is deterministic, and hence NICP remains deterministic.

5 Computational Study

This section presents a computational study, including a performance evaluation of the ICP algorithm,

neural network training, and a comparison between the ICP and NICP algorithms. All experiments

were conducted on a workstation featuring an AMD Ryzen 9 5900X 12-Core Processor (3.7 GHz, 24

logical processors), 64 GB of DDR4 RAM at 3200 MT/s, and an NVIDIA GeForce RTX 4070 GPU

with 12 GB of memory, running Ubuntu 22.04.3 LTS. The neural network was implemented and

trained in Python 3.10, and the algorithms were developed in Julia 1.10.0, utilizing PyCall for cost

predictions. The code is publicly available at https://github.com/0505daniel/TSPDroneICP.jl.

The evaluation utilized two benchmark sets. Set A comprises 759 instances selected from Agatz

et al. (2018), divided into three subsets based on distribution: uniform, 1-center, and 2-center.

Each subset includes node sizes N ∈ {50, 75, 100, 175, 250, 375, 500} and truck–drone speed ratios

α ∈ {1, 2, 3}. In the uniform subset, each customer’s (x, y) coordinate is independently sampled

from {0, 1, . . . , 100}, and the depot is chosen from [0, 1]. The 1-center subset simulates a circular

city center by drawing points from a radial distribution with mean 0 and standard deviation 50
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around the origin. In contrast, the 2-center subset shifts each point by 200 units along the x-axis

with probability 0.5, thus creating two clusters centered at (0, 0) and (200, 0). For the 1-center and

2-center subsets, the first generated location serves as the depot.

Set B, generated by Bogyrbayeva et al. (2023), consists of 300 instances at α = 2, split into two

subsets based on distribution: random and Amsterdam. The random subset contains 200 instances,

with 100 each at N = 50 and N = 100. Each coordinate is drawn from [1, 100], and the first sampled

location is designated as the depot. The Amsterdam subset comprises 100 instances with N = 50,

constructed using real-world electric vehicle (EV) parking locations in Amsterdam (Haider et al.,

2019), thus reflecting more realistic spatial conditions. All instances used have at least 50 nodes,

ensuring sufficient chainlets for evaluation. This comprehensive composition covers a range of node

sizes, distributions, and truck-drone speed ratios, allowing thorough investigation of ICP and NICP

under diverse problem settings.

Collectively, these benchmark sets enable comprehensive evaluation: Set A provides systematic

coverage of varying problem dimensions (node sizes, truck-drone speed ratios, and spatial distribu-

tions), while Set B incorporates realistic urban spatial patterns. All instances contain at least 50

nodes, ensuring sufficient chainlet generation for thorough algorithmic evaluation.

We evaluated our algorithms against four benchmark methods: TSP-ep-all (dynamic program-

ming), DPS25 (divide-and-conquer), HM4800 (end-to-end learning), and HGA-TAC+ (metaheuris-

tic)1. Due to computational constraints, TSP-ep-all is applied only to Set B. HM4800, though its

high solution quality and computational efficiency, was specifically trained for instances with α = 2

and N ∈ {11, 15, 20, 50, 100} in random and Amsterdam distributions, limiting its applicability to

these particular problem configurations. Consequently, it is applied exclusively for Set B. All bench-

mark algorithms were implemented in Julia and executed in the same computational environment.

For Set A, we compare against DPS25 and HGA-TAC+, while for Set B, we include all benchmark

algorithms. The following subsections present summary results, with detailed outcomes provided in

Appendix E.

5.1 ICP performance

This subsection presents ICP’s performance from multiple perspectives, offering a comprehensive

view of its behavior across the benchmark instances in Set A and Set B. For Set A, we used DPS25

as the baseline algorithm, while for Set B, we employed HM4800 as the baseline algorithm. We select

HGA-TAC+ as our primary benchmark due to its established record of high-quality solutions in the

literature. For HGA-TAC+, we report the Best, Mean, and Worst values from 10 independent runs.

Objective values are presented as relative gaps to the corresponding baseline algorithm.

Overall, ICP achieves an average solution quality improvement of 2.75% compared to mean

performance of HGA-TAC+ while reducing computation time by 79.8%. It consistently outperforms

existing algorithms on both the parameter variations in Set A and the realistic urban distributions

1Implementations for these benchmark algorithms are publicly available at https://github.com/chkwon/TSPDrone.
jl (TSP-ep-all, DPS25, HM4800) and https://github.com/Sasanm88/TSPDroneHGATAC.jl (HGA-TAC+).
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Table 1: A summary of results for ICP for all sets of instances. † is reported by Bogyrbayeva et al.
(2023). Times are in seconds.

Baseline HGA-TAC+ ICP

Instance Set Total Time Best Mean Worst Time Gap Time

Set A DPS25

- Uniform 255 3.81 -0.64% 0.49% 1.70% 69.02 -2.50% 10.87
- 1-center 252 3.10 -1.32% 0.07% 1.58% 65.91 -3.39% 10.28
- 2-center 252 3.04 -0.98% 0.32% 1.71% 66.62 -2.87% 9.56

Set B HM4800

- Random 200 8.96 -1.46% 0.30% 2.11% 7.59 -1.32% 2.60
- Amsterdam 100 1.41† -1.54% 0.64% 3.07% 4.02 -0.74% 1.18

Table 2: A summary of results for ICP with varying parameters α and N for Set A (Agatz et al.,
2018) instances. Times are in seconds.

DPS25 HGA-TAC+ ICP

Set A Total Time Best Mean Worst Time Gap Time

α
1 253 2.42 -0.51% -0.11% 0.22% 49.12 -1.02% 3.52
2 254 3.37 -0.07% 1.38% 3.02% 67.42 -2.97% 10.19
3 252 4.17 -2.74% -0.44% 2.08% 85.10 -5.53% 17.03

N

50 90 0.47 -3.51% -1.78% 0.04% 4.63 -1.96% 1.25
75 90 0.68 -3.24% -1.36% 0.66% 8.65 -2.32% 2.37
100 90 0.85 -1.82% -0.13% 1.55% 13.12 -2.56% 3.28
175 90 2.06 -1.76% -0.13% 1.52% 31.97 -2.91% 6.59
250 180 2.73 -0.62% 0.53% 1.78% 60.56 -3.00% 10.32
375 127 5.73 -0.48% 0.56% 1.71% 122.63 -3.32% 17.29
500 92 10.17 0.10% 1.18% 2.44% 209.45 -3.25% 27.20
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Table 3: Computational profile of ICP across main subroutines, averaged over 10 instances generated
under Set A’s (Agatz et al., 2018) uniform distribution scheme, for varying α and N . Times are in
seconds.

Concorde TSP-ep TSP-ep-all

α N Time % Time % |Cj | I # Avg. Time % %

1

100 0.08 12.42 0.01 0.82 18.25 6.1 31.2 0.016 0.49 76.59 89.83
200 0.51 32.60 0.08 5.28 18.18 11.9 63.5 0.015 0.95 60.92 98.80
300 2.24 54.10 0.42 10.09 18.10 19.2 101.8 0.014 1.47 35.54 99.74
400 3.45 52.59 1.33 20.20 18.07 23.1 126.7 0.014 1.77 26.98 99.77
500 8.39 59.86 3.23 23.07 18.04 30.7 166.4 0.014 2.37 16.88 99.81

2

100 0.16 4.30 0.01 0.14 19.37 9.0 96.7 0.037 3.56 95.47 99.91
200 0.36 4.88 0.08 1.13 19.35 17.2 195.4 0.035 6.85 93.79 99.80
300 2.66 18.49 0.42 2.93 19.37 27.1 320.1 0.035 11.25 78.34 99.76
400 5.49 25.92 1.32 6.25 19.35 34.5 416.0 0.034 14.30 67.55 99.72
500 8.68 28.59 3.23 10.64 19.37 44.3 536.3 0.034 18.35 60.46 99.69

3

100 0.14 2.15 0.01 0.08 19.43 11.6 136.2 0.048 6.58 97.69 99.92
200 0.63 4.67 0.08 0.61 19.44 20.1 266.3 0.048 12.70 94.57 99.85
300 0.82 3.90 0.42 2.00 19.45 29.6 411.8 0.048 19.69 93.87 99.77
400 3.29 10.54 1.33 4.24 19.45 41.4 566.6 0.047 26.52 84.95 99.73
500 7.11 16.31 3.24 7.44 19.46 50.2 702.9 0.047 33.11 75.95 99.70

in Set B, requiring significantly less computation time.

Table 1 summarizes the results by distribution type. In Set A, ICP achieves average improvements

of 2.50–3.39% over DPS25 in objective value. When compared against HGA-TAC+, ICP not only

outperforms its average solutions but also surpasses the best solutions obtained across multiple

runs, with an average improvement of 1.94%. These superior results are achieved while reducing

computation time by 84.8%. In Set B, ICP demonstrates the advantages of a well-structured

heuristic approach over end-to-end learning, achieving superior results in both solution quality and

computational efficiency compared to HM4800. Compared to HGA-TAC+, ICP improves by 1.54%

over HGA-TAC+ mean while maintaining competitive performance against its best solutions, with

66.8% less computation time.

Table 2 examines ICP’s performance with respect to the truck–drone speed ratio α and the

instance size N for Set A. ICP consistently outperforms even the best results from HGA-TAC+

across all α values. The algorithm’s effectiveness becomes particularly evident with increasing

instance sizes. The gap compared to HGA-TAC+ best widens from 1.55% at N = 50 to -3.35% at

N = 500, while computational efficiency shows remarkable scalability. While HGA-TAC+ exhibits

steep runtime growth as N increases, ICP maintains more moderate scaling, with time savings

increasing from 73.0% to 87.0%. These results validate the robustness and scalability of ICP. Its

deterministic nature, superior solution quality, and efficient computation times make it well-suited

for large-scale TSP-D instances.
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Figure 7: Linear growth patterns in ICP.

We conclude our analysis of ICP by examining its computational characteristics through Table 3.

The table presents a detailed breakdown of runtime across the algorithm’s three principal subroutines:

Concorde, TSP-ep, and TSP-ep-all. The data represent averages from ten instances generated

under Set A’s uniform distribution scheme. The columns detail the runtime components (Time)

and the percentage contributions (%) for each subroutine. Additionally, for TSP-ep-all, we report

the average chainlet size (|Cj |), the number of iterations (I), the total number of executions (#),

and the mean execution time per call (Avg.). The final column (%) presents the total percentage

contributions of these three subroutines, confirming that they account for nearly all of ICP’s total

runtime.

The results reveal several key patterns. Higher α values correspond to increased average chainlet

sizes and more frequent executions of TSP-ep-all, as faster drone speeds produce smaller rings

and thus generate more chainlets per iteration. Moreover, since TSP-ep-all is inherently faster

for lower α, the average time per call and its share of total runtime rise significantly at higher α.

Finally, as N increases, Concorde and TSP-ep exhibit rapidly growing runtimes, reflecting their

exponential and O(N3) complexity.

In Figure 7a, we plot the average number of iterations versus N for each value of α and perform

linear regression analysis. The results demonstrate a strong linear relationship between the number

of iterations and N . Let Iα(N) denote a function representing the number of iterations over N for

a given α. Then, by Proposition 2, the bound on the total number of TSP-ep-all executions is:

2N − 1 +
(

(N + 1) mod 3
)

3
+ 25(Iα(N)− 1) (4)

Now we substitute Iα(N) = δα0 +δα1N , which represents the linear regression equation of the number

of iterations over N for a given α, into Equation (4). This yields:

(
2

3
+ 25δα1

)
N +

(
(N + 1) mod 3

)
− 1

3
+ 25(δα0 − 1) (5)
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which is linear in N . We visualize this theoretical bound in Figure 7b as solid lines. Notably, not

only the theoretical bound but also the actual number of TSP-ep-all executions, shown as dashed

lines, exhibits linear growth in N . Consequently, as N increases, the asymptotic complexity of

ICP is dominated by the initial chain generation using Concorde and TSP-ep. Despite this

favorable scaling, TSP-ep-all remains the dominant component of total runtime for large instances,

particularly at higher α values, underscoring the potential benefits of replacing TSP-ep-all with

efficient neural predictions.

5.2 Neural Network Training

Figure 8: Distribution of nodes within chainlets
from ICP algorithm runs.

Figure 9: Training progress of the neural network
model.

Creating training data that accurately reflects the structure of the chainlets in ICP is challenging.

Chainlets are segments partitioned from a chain during the optimization process, which typically

causes the nodes within each chainlet to be close to one another. Therefore, we generated training data

by collecting samples during actual ICP algorithm runs, ensuring the data reflects the distributional

characteristics that arise in practice.

In this context, individual instances were generated with N randomly chosen from [50, 500]

matching the uniform distribution scheme of Set A. The ICP algorithm was then run on these

instances to collect training data, including the initial TSP tour, the truck and drone costs for each

edge, and the corresponding TSP-ep-all cost. 384,000 data points were generated, with 128,000

for each α ∈ {1, 2, 3}, and split 80:20 for training and validation. The neural network model was

trained for 100 epochs to minimize the mean squared error (MSE) loss between the predicted and

normalized TSP-ep-all costs:

L(θ) = (fθ(Gj)−TSP-ep-all(Cj))2 .

The trained neural network models were evaluated using an independently generated test set of

38,400 data points. To assess the model’s out-of-distribution capabilities, test sets were generated for

the uniform distribution and additional sets for the 1-center, 2-center, and Amsterdam distributions.
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Figure 10: Scatter plot showing predicted versus
actual TSP-ep-all costs for test set with uni-
form distribution.

α Uniform 1-Center 2-Center Ams.

1 3.33 4.64 4.96 4.24
2 2.95 3.34 3.65 3.74
3 3.75 5.01 5.40 4.80

Avg. 3.34 4.33 4.67 4.26

Table 4: MAPE (%) for test sets with different
distributions.

Test data for the uniform distribution was generated following the same methodology as in the

training phase. For the 1-center and 2-center distributions, while the coordinate generation adhered

to their respective schemes as defined in Set A, the subsequent processes mirrored those of the

training phase. For the Amsterdam distribution, coordinates were utilized from the dataset generated

by Bogyrbayeva et al. (2023), derived from the probability density functions of customer node

coordinates estimated using Gaussian kernel density estimation (KDE). To generate test data, the

process of randomly selecting 100 coordinates to create individual instances and executing the

ICP algorithm on these instances was repeated until the desired data size was achieved. For all

distributions, 12,800 data points were generated for each value of α ∈ {1, 2, 3}, resulting in 38,400

test data points.

The scatter plot in Figure 10 compares predicted costs against actual TSP-ep-all costs for the

uniform distribution test set. The x-axis represents the actual TSP-ep-all cost, while the y-axis

shows the predicted cost. The dashed orange line represents equal predicted and actual costs, serving

as a reference for perfect prediction. The close alignment of points along this line demonstrates the

model’s high accuracy in predicting TSP-ep-all costs for uniform instances.

Table 4 shows the Mean Absolute Percentage Error (MAPE) across different distributions and α

values. The model exhibits robust performance for the uniform distribution with an average MAPE

of 3.34%. Notably, it demonstrates solid out-of-distribution performance, yielding average MAPEs of

4.33%, 4.67%, and 4.26% for the 1-center, 2-center, and Amsterdam distributions, respectively. The

slight increase in MAPE for non-uniform distributions indicates a minor impact of distributional

shifts on prediction accuracy. Additionally, examining performance across α values reveals consistent

results, with average MAPEs of 4.29%, 3.42%, and 4.74% for α values of 1, 2, and 3, respectively,

suggesting that the model effectively captures the relationship between the relative speeds of trucks

and drones and the TSP-ep-all costs. The overall low MAPE values, with an average of 4.15%,

demonstrate the model’s effectiveness in diverse scenarios, ensuring reliable cost predictions for the

ICP algorithm across varying distributions and truck-drone speed configurations. Detailed results of
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Table 5: A summary of results for ICP and NICP for all sets of instances. † is reported by Bogyrbayeva
et al. (2023). Times are in seconds.

Baseline ICP NICP Comparison (%)

Instance Set Total Time Gap Time Gap Time Obj Time

Set A DPS/25

-Uniform 255 3.81 -2.50% 10.87 -2.43% 6.48 0.07% -40.33%
-1-center 252 3.10 -3.39% 10.28 -3.22% 6.00 0.17% -41.68%
-2-center 252 3.04 -2.87% 9.56 -2.71% 5.42 0.17% -43.28%

Set B HM (4800)

-Random 200 8.96 -1.32% 2.60 -1.26% 1.22 0.07% -52.97%
-Amsterdam 100 1.41† -0.74% 1.18 -0.46% 0.55 0.29% -53.33%

the neural predictor’s performance on these out-of-distribution datasets are provided in Appendix D.

5.3 Comparison of ICP and NICP

In this subsection, we compare the performance of NICP with ICP, using the same baselines as before:

DPS25 for Set A and HM4800 for Set B. As in prior subsections, objective values are reported as

gaps relative to these baselines. NICP demonstrates the strength of neural acceleration in improving

efficiency without compromising performance. Overall, NICP reduces computation time by 49.7%

while increasing objective values by only 0.12% compared to ICP. NICP achieves this acceleration

by replacing direct execution of TSP-ep-all with efficient neural predictions leveraging GPU

parallelization while maintaining ICP’s core structure and characteristics.

Table 5 presents NICP’s performance across different distribution types compared to ICP. The

comparison columns quantify percentage differences between NICP and ICP, with positive values

indicating NICP’s increase over ICP. The results demonstrate that NICP successfully maintains

solution quality while substantially reducing computation time. Notably, NICP’s performance

remains robust across various spatial distributions, preserving ICP’s advantage in handling clustered

and realistic scenarios while significantly improving computational efficiency. Across all distributions,

the degradation in objective values remains minimal, ranging from 0.07% to 0.29%. NICP achieves

consistent computational savings ranging from 40.33% to 53.33%.

Table 6 examines NICP’s performance across varying values of α and N . The slight increase in

objective gap with α from 0.06% to 0.36% suggests a minor trade-off between computation time and

solution quality at higher drone speeds. The impact of neural acceleration becomes more pronounced

as α increases, with time reductions growing from 9.84% at α = 1 to 47.58% at α = 3. This pattern

aligns with our earlier analysis where TSP-ep-all’s computational burden increases significantly

with α, making neural prediction particularly effective for higher drone speeds. Regarding instance

size, NICP maintains stable solution quality across all values of N , with objective gaps ranging from

0.03% to 0.27%. The computational advantage decreases slightly as N grows, with time reductions
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Table 6: A summary of results for ICP and NICP with varying parameters α and N for Set A
(Agatz et al., 2018) instances. Times are in seconds.

DPS/25 ICP NICP Comparison (%)

Set A Total Time Gap Time Gap Time Obj Time

α
1 253 2.42 -1.02% 3.52 -0.96% 3.17 0.06% -9.84%
2 254 3.37 -2.97% 10.19 -2.89% 5.82 0.08% -42.89%
3 252 4.17 -5.53% 17.03 -5.19% 8.93 0.36% -47.58%

N

50 90 0.47 -1.96% 1.25 -1.91% 0.61 0.05% -51.06%
75 90 0.68 -2.32% 2.37 -2.30% 1.10 0.03% -53.64%
100 90 0.85 -2.56% 3.28 -2.40% 1.53 0.16% -53.40%
175 90 2.06 -2.91% 6.59 -2.65% 3.41 0.27% -48.27%
250 180 2.73 -3.00% 10.32 -2.81% 5.64 0.20% -45.39%
375 127 5.73 -3.32% 17.29 -3.25% 10.25 0.08% -40.72%
500 92 10.17 -3.25% 27.20 -3.08% 17.56 0.18% -35.43%

(a) Objective Value over Time (b) Objective Value over Iteration

Figure 11: Comparison of average ICP and NICP results for 10 randomly generated uniform instances
with N = 100.

declining from 53.64% at N = 75 to 35.43% at N = 500. This trend reflects the diminishing share

of TSP-ep-all in total runtime as N increases, where the polynomial complexity of TSP-ep and

exponential nature of Concorde become more dominant factors. Nevertheless, NICP consistently

achieves substantial time savings while maintaining solution quality across all instance sizes.

We conclude by illustrating the characteristics of neural acceleration through Figure 11, which

compares ICP and NICP across ten uniformly generated instances with N = 100. The left figure

presents the gap between ICP’s final objective value over computation time, where the shaded regions

represent standard deviations. NICP exhibits faster convergence, achieving greater reductions within

the same time frame while closely tracking ICP’s solution quality. Complementing this time-based

analysis, the right figure shows the gap over iterations, demonstrating that NICP follows ICP’s

solution trajectory per iteration despite its faster execution. Together, these results validate that
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NICP achieves actual neural acceleration - maintaining ICP’s solution patterns while significantly

reducing computation time through efficient neural prediction.

6 Conclusion

In this work, we developed the Iterative Chainlet Partitioning (ICP) algorithm for solving the

TSP-D and its neural acceleration framework (NICP). ICP proposes a framework for tackling

large-scale TSP-D instances. It decomposes a TSP-D solution into groups of consecutive rings called

chainlets and optimizes them using the precise TSP-ep-all subroutine. By greedily selecting the

chainlet with the highest improvement and caching previous optimization results, ICP achieves

both deterministic behavior and theoretical tractability. Its deterministic nature ensures reliability,

eliminating the need for repeated runs to achieve high-quality solutions. The number of subroutine

calls is bounded linearly in N for the first iteration and remains constant, ensuring computational

efficiency. Extensive computational experiments showed that ICP outperforms the existing state-of-

the-art algorithm, improving solution quality by 2.75% while reducing computation time by 79.84%.

For further acceleration, we integrated a GNN to predict improvement, allowing ICP to prioritize

promising chainlets without exhaustive evaluation. Our targeted application of neural prediction

preserves the algorithmic guarantees while reducing computational time by 49.7%. The framework’s

adaptability to various operational constraints makes it a valuable foundation for developing efficient

algorithms for truck-drone synchronized routing problems.

Future work will focus on improving methods for initial chain generation, which currently

dominates computational complexity for larger instances. Additionally, extending neural prediction

capabilities to handle various operational constraints such as customer eligibility and drone range

limitations offers promising avenues for expansion.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by

the Korean government (MSIT) (RS-2023-00259550).

References

Agatz, N., Bouman, P., and Schmidt, M. (2018). Optimization approaches for the traveling salesman

problem with drone. Transportation Science, 52(4):965–981.
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Appendices

A Proofs of Propositions and Lemmas

Proof of Proposition 1. The ICP algorithm ensures that in each iteration, the chainlet with the

highest positive improvement is selected and updated. This guarantees that the cost of the solution

monotonically decreases over iterations, as no update can increase the cost. Moreover, cycling

cannot occur in ICP. Once a chainlet is updated, each modified ring within the chainlet is an exact

partitioning solution for the current tour sequence. For any chainlet containing these modified rings

in subsequent iterations, the result of applying TSP-ep-all will remain unchanged unless the

tour sequence itself is modified. Thus, rings modified during previous updates cannot appear in

their original configuration in subsequent iterations. As a result, the algorithm progresses without

revisiting prior configurations. Since the number of possible configurations of chainlets is finite, and

each iteration guarantees a strict cost improvement, the ICP algorithm must terminate in a finite

number of iterations.

Additionally, ICP is a deterministic procedure. This follows from the deterministic nature of

subroutines: the Concorde solver is deterministic given that the TSP instance has a unique optimal

solution, and both TSP-ep and TSP-ep-all are deterministic. Therefore, with the consistent

greedy selection of chainlets, the sequence of chainlet updates depends only on the input instance

and the deterministic subroutines, ensuring the final solution is uniquely determined.

a b

c

𝑎
𝛼

𝑏
𝛼

Figure 12: Two Consecutive Straight Rings and an alternative Triangular Ring

Proof of Lemma 1. Consider two consecutive straight rings with arc costs a and b connecting three

consecutive combined nodes, illustrated in Figure 12. The corresponding triangular ring can be

formed where a drone serves the middle node, and the truck directly connects the first and third

combined nodes. Let c denote the cost of the arc directly connecting these two combined nodes in

the triangular ring. The total cost of the two consecutive straight rings is a + b, while the total cost

of the triangular ring is max
{
a+b
α , c

}
. If a+b

α ≥ c, the cost of the triangular ring is a+b
α , and since

α > 1, it follows that a+b
α < a+ b. If a+b

α < c, the cost of the triangular ring is c, and by the triangle

inequality, c < a + b. Thus, the cost of the triangular ring is strictly less than the cost of the two

consecutive straight rings when α > 1.

Proof of Lemma 2. The maximum number of rings in a chainlet occurs when there is a minimal

number of nodes in each ring, which is achieved by maximizing the alternation between a straight
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ring and a triangular ring. Three cases are considered:

(i) If n ≡ 1 (mod 3), the maximum number of rings results from alternating between straight

and triangular rings. Starting from a start node, a straight ring followed by a triangular ring

yields 2 rings for every 3 nodes, so the total number of rings is 2(n−1)
3 . An equivalent number

of rings is obtained by initiating the sequence with a triangular ring.

(ii) For a chainlet with one additional node than case (i), i.e., n ≡ 2 (mod 3), adding a straight

ring maximizes the number of rings, giving 2(n−2)
3 + 1.

(iii) For a chainlet with one fewer node than case (i), i.e., n ≡ 0 (mod 3), attempting to change a

triangular ring into a straight ring would always result in two consecutive straight rings. Thus,

the only choice is to delete a straight ring, yielding 2n
3 − 1.

Altogether, the maximum number of rings in a chainlet can be universally stated as 2n−3+(n mod 3)
3 .

Proof of Proposition 2. The maximum number of rings in a chain sets an upper bound on the

number of chainlets generated, as each chainlet created by Group must contain at least one ring

that has not been grouped into any chainlet. Unlike the count established in Lemma 2 for chainlets,

a chain includes a dummy node representing the depot, which increases the overall node count by

one. Therefore, plugging in N + 1 into the formula from Lemma 2, we obtain

2(N + 1)− 3 + ((N + 1) mod 3)

3

or (2) as the maximum number of rings in the chain. This number also bounds the maximum

number of chainlets in the first iteration. It is also the maximum number of TSP-ep-all runs

required in the first iteration where every chainlet is initially new.

In subsequent iterations, TSP-ep-all is executed only on chainlets containing rings modified

by the updated chainlet. Consider an updated chainlet Ck with r rings. Define the prefix set as

the collection of all consecutive subsequences starting from the first ring, and the suffix set as the

collection of all consecutive subsequences ending with the last ring. Each set contains exactly r

sequences, with the full sequence appearing in both sets. The union of the chainlet’s prefix and suffix

sets contains at most 2r − 1 unique sequences. The maximum number of new chainlets arises when

Ck contains the maximum number of rings and each element in this union forms a distinct chainlet.

By Lemma 2, the maximum number of rings in the updated chainlet is 2ℓ−(3−ℓ mod 3)
3 . Conse-

quently, the maximum number of new chainlets is 2
(
2ℓ−(3−ℓ mod 3)

3

)
− 1 or (3), which is also the

maximum number of TSP-ep-all runs required in subsequent iterations.
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B Selection of ICP Configurations
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Figure 13: Linear regression analysis of
TSP versus TSP-D costs across different
α values.

Method TSP TSP-D1 TSP-D2 TSP-D3

Concorde 769.89 633.84 524.22 478.77
FI 828.44 657.75 535.60 486.99
NN 954.80 731.43 608.23 565.05
CI 917.94 688.24 559.63 511.17
Random 5125.81 1280.58 939.69 830.64

Table 7: Average costs for initial TSP construction
methods. Subscript denotes α values.

This section presents an empirical analysis for determining optimal configurations of the ICP

algorithm. We first investigate various approaches for constructing the initial TSP tour for chain

generation, presented in Figure 13 and Table 7. The analysis compares five methods: Concorde, an

exact TSP solver that guarantees optimal solutions; Farthest Insertion (FI), a construction heuristic

that iteratively inserts the node farthest from the current tour; Nearest Neighbor (NN), a greedy

construction heuristic that sequentially adds the closest unvisited node; Closest Insertion (CI), a

construction heuristic that iteratively inserts nodes with minimal insertion cost; and Random, which

generates a random permutation of nodes.

For this analysis, we generated 10 uniform instances with 100 nodes and executed ICP with

each TSP construction method for chain initialization. The results, averaged across all instances,

demonstrate that the quality of the initial TSP tour significantly influences the final TSP-D

solution quality. Concorde consistently produces superior results across all values of α, achieving

improvements of 3.6–7.7% over FI, the second-best performing method. As shown in Figure 13,

where Random method is excluded from the regression analysis, TSP and TSP-D costs demonstrate

an apparent linear relationship. However, this correlation diminishes as α increases, evidenced by

the decreasing R² values from 0.743 at α = 1 to 0.504 at α = 3. Based on these results, we selected

Concorde for the initial chain construction in ICP despite its higher computational overhead.

We then analyze methods for constructing chainlet input tours, with results presented in Table

8. For this analysis, we used LKH-3 (Helsgaun, 2017) instead of Concorde, as LKH-3 empirically

achieves optimal solutions for instances of chainlet size while requiring less computational time.

The other methods (FI, NN, CI, and Random) remain identical to those used in the initial chain

construction analysis but are slightly modified to avoid altering the chainlet’s end node.
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Table 8: Performance comparison of chainlet input tour construction methods with varying maximum
node sizes. Results are averaged over 10 uniform instances with 100 nodes. Times are in seconds.

LKH-3 FI NN CI Random

α Size Obj Time Obj Time Obj Time Obj Time Obj Time

1

18 680.76 0.96 678.44 0.52 680.39 0.54 680.45 0.44 681.41 1.16
19 677.86 0.56 676.08 0.57 678.43 0.73 677.03 0.72 679.87 1.64
20 677.20 0.70 676.60 0.61 676.79 0.96 677.21 0.77 675.71 2.49
21 675.32 0.92 675.19 0.95 676.42 1.04 676.51 0.92 676.27 3.31
22 674.76 1.12 674.77 1.16 675.83 1.46 675.71 1.20 677.49 4.09
23 673.57 1.58 673.72 1.35 674.21 2.30 677.06 1.71 672.84 6.52

2

18 560.62 2.50 562.37 2.17 561.61 2.68 562.13 2.08 560.57 6.48
19 561.83 2.91 561.93 2.61 560.29 3.53 559.49 3.04 555.93 8.25
20 560.31 3.91 559.54 3.60 560.25 4.57 562.71 3.81 555.75 11.80
21 557.59 5.78 560.59 4.82 558.05 6.78 558.96 5.31 555.61 16.14
22 557.66 6.65 557.02 6.70 557.38 8.01 558.47 7.11 554.11 19.81
23 553.85 9.59 558.55 8.16 558.63 9.74 557.39 9.91 554.50 27.18

3

18 519.30 4.22 518.73 3.51 517.57 4.76 513.36 4.29 511.81 8.54
19 515.54 5.87 515.56 5.15 515.95 5.91 515.83 5.60 506.45 12.58
20 515.71 7.47 512.53 7.04 518.18 7.58 517.18 7.04 504.16 17.59
21 516.96 8.99 513.36 8.99 518.18 9.90 515.03 9.43 503.07 23.24
22 516.30 11.71 512.79 12.09 511.50 15.00 512.90 13.76 501.83 29.06
23 516.36 14.79 513.43 15.45 513.12 18.92 509.41 19.98 502.03 40.96

For the experiment, we again generated 10 uniform instances with 100 nodes. The experimental

results demonstrate that FI consistently produces competitive solutions while maintaining efficient

computation times across all tested configurations. While the Random method occasionally discov-

ers good solutions, it exhibits significantly longer computation times and introduces undesirable

non-deterministic behavior. Regarding the maximum node size for chainlets, our analysis indicates

that size 20 provides an optimal balance between solution quality and computational efficiency.

While larger sizes occasionally yield marginally better solutions, they incur substantially increased

computation times due to the exponential complexity of TSP-ep-all. Conversely, though compu-

tationally faster, smaller sizes often result in inferior solutions as they constrain the optimization

capabilities of TSP-ep-all. Based on these comprehensive results, we configured ICP to employ

FI for input tour construction with a maximum node size of 19, ensuring consistent, high-quality

solutions while maintaining computational efficiency.
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C Pseudo Codes for ICP Modules

This appendix provides the pseudocode for two auxiliary procedures used in ICP: (i) grouping

rings into chainlets (Group), and (ii) the Farthest Insertion (FI) heuristic with fixed end nodes

(FarthestInsertion).

Algorithm 1-1 Group rings into chainlets (Group)

1: Input: Chain C with r rings
2: Output: Sequence of chainlets
3: S ← ∅ ▷ Empty sequence of chainlets
4: i← 1 ▷ Starting position of the chainlet
5: repeat
6: Ccurr ← ∅ ▷ Empty sequence of rings
7: j ← 0 ▷ Number of rings in the chainlet
8: while |Ccurr| ≤ 19 and i + j < r do
9: Ccurr.append(Ccurr) ▷ Add next ring

10: j ← j + 1

11: if j > 0 and not Ccurr ⊂ S[i− 1] then
12: S.append(Ccurr) ▷ Add new chainlet

13: i← i + 1
14: until i + j = r
15: return S

Algorithm 1-2 Farthest Insertion with fixed endpoints (FarthestInsertion)

1: Input: chainlet Cj
2: Output: tour T
3: N ←

⋃
i:Ri∈Cj Ri ▷ Identify node set

4: s← Cj [1][start], t← Cj [end][end]
5: T ← [s, t] ▷ Initialize tour with endpoints
6: U ← N \ {s, t} ▷ Set of unvisited nodes
7: while U ̸= ∅ do
8: v∗ ← arg maxv∈U minu∈T cost(v, u) ▷ Find farthest unvisited node
9: (i∗, cost∗)← (0,∞)

10: for i ∈ {1, . . . , |T | − 1} do
11: cost← cost(Ti, v∗) + cost(v∗, Ti+1)− cost(Ti, Ti+1)
12: if cost < cost∗ then
13: (i∗, cost∗)← (i, cost)

14: Insert v∗ into T after position i∗

15: U ← U \ {v∗}
16: return T
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D Results of Out-of-distribution Data

(a) Scatter plot for 1-center (b) Error analysis for 1-center

(c) Scatter plot for 2-center (d) Error analysis for 2-center

(e) Scatter plot for Amsterdam (f) Error analysis for Amsterdam

Figure 14: Neural cost predictor performance on out-of-distribution data

Figures 14a–14f illustrate the neural cost predictor’s performance on out-of-distribution data. The

scatter plots compare predicted versus actual TSP-ep-all costs, while the corresponding figures show

prediction error percentages relative to actual costs. Complementing Table 4, these visualizations

confirm the neural model’s robustness across diverse spatial distributions not represented in the

training data.
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E Detailed Results of Computational Experiments

Table 9: (Set A, uniform) Results of ICP and NICP for Agatz et al. (2018) uniform instances. Comparison (%) represents the relative
difference of NICP compared to ICP. Times are in seconds.

DPS25 HGA-TAC+ ICP Gap Over (%) NICP Gap Over (%) Comparison (%)

N Obj Time Best Mean Worst Time Obj Time DPS HGA Obj Time DPS HGA Obj Time

α = 1

50 498.07 0.25 493.89 496.86 500.10 4.52 494.46 0.31 -0.73 -0.48 494.84 0.22 -0.65 -0.41 0.08 -29.10
75 569.16 0.32 571.55 574.71 577.13 8.12 573.29 0.40 0.73 -0.25 573.82 0.30 0.82 -0.16 0.09 -24.43
100 646.48 0.44 650.58 655.64 658.95 13.08 649.27 0.56 0.43 -0.97 649.18 0.43 0.42 -0.99 -0.01 -22.40
175 837.70 1.62 837.84 840.99 843.45 24.14 830.40 2.14 -0.87 -1.26 832.10 1.69 -0.67 -1.06 0.20 -20.76
250 993.68 2.11 993.01 997.25 1000.40 49.48 984.93 2.34 -0.88 -1.24 985.40 2.08 -0.83 -1.19 0.05 -10.85
375 1191.77 5.76 1194.45 1197.97 1201.18 83.83 1181.00 7.08 -0.90 -1.42 1181.22 5.71 -0.89 -1.40 0.02 -19.34
500 1369.08 9.91 1373.84 1377.19 1380.63 147.90 1355.57 14.09 -0.99 -1.57 1355.62 12.26 -0.98 -1.57 0.00 -12.98

Avg. 872.28 2.91 873.59 877.23 880.26 47.30 866.99 3.84 -0.61 -1.17 867.45 3.24 -0.55 -1.11 0.05 -15.64

α = 2

50 417.55 0.52 405.51 411.32 418.69 3.84 409.26 1.60 -1.99 -0.50 408.23 0.84 -2.23 -0.75 -0.25 -47.64
75 481.55 0.72 469.76 478.32 488.55 7.65 474.19 2.56 -1.53 -0.86 474.53 1.28 -1.46 -0.79 0.07 -50.17
100 552.96 0.89 547.03 557.58 567.52 10.58 539.22 3.66 -2.49 -3.29 540.99 1.53 -2.16 -2.98 0.33 -58.29
175 708.88 2.51 704.67 713.47 724.89 29.63 693.79 6.91 -2.13 -2.76 692.52 3.96 -2.31 -2.94 -0.18 -42.67
250 839.82 2.96 841.12 851.06 861.29 56.93 815.75 10.53 -2.87 -4.15 817.38 5.68 -2.67 -3.96 0.20 -46.05
375 1013.79 6.39 1020.97 1031.93 1045.06 132.25 985.78 18.39 -2.76 -4.47 984.71 10.93 -2.87 -4.58 -0.11 -40.58
500 1163.42 12.02 1172.79 1183.38 1196.83 217.18 1124.62 29.50 -3.33 -4.97 1125.18 19.42 -3.29 -4.92 0.05 -34.17

Avg. 739.71 3.72 737.41 746.72 757.55 65.44 720.37 10.45 -2.61 -3.53 720.51 6.23 -2.60 -3.51 0.02 -40.35

α = 3

50 391.64 0.66 368.30 377.67 387.06 3.88 369.52 2.90 -5.65 -2.16 368.65 1.18 -5.87 -2.39 -0.23 -59.26
75 451.68 0.82 428.26 441.22 454.44 7.25 430.14 5.22 -4.77 -2.51 432.25 2.01 -4.30 -2.03 0.49 -61.51
100 521.06 1.14 502.36 514.75 529.76 12.55 497.57 6.35 -4.51 -3.34 499.29 2.72 -4.18 -3.00 0.35 -57.17
175 666.64 3.71 643.46 656.85 673.25 37.53 638.12 12.09 -4.28 -2.85 640.12 6.57 -3.98 -2.55 0.31 -45.63
250 792.11 3.62 776.54 790.88 808.40 72.61 756.38 18.09 -4.51 -4.36 757.17 8.83 -4.41 -4.26 0.10 -51.22
375 951.19 7.90 947.01 962.95 977.51 169.22 908.52 29.14 -4.49 -5.65 908.73 17.11 -4.46 -5.63 0.02 -41.29
500 1093.30 13.44 1088.59 1107.08 1125.27 284.97 1038.23 44.22 -5.04 -6.22 1040.29 26.23 -4.85 -6.03 0.20 -40.68

Avg. 695.38 4.47 679.22 693.06 707.96 84.00 662.64 16.86 -4.71 -4.39 663.79 9.24 -4.54 -4.22 0.17 -45.22
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Table 10: (Set A, 1-center) Results of ICP and NICP for Agatz et al. (2018) 1-center instances. Comparison (%) represents the relative
difference of NICP compared to ICP. Times are in seconds.

DPS25 HGA-TAC+ ICP Gap Over (%) NICP Gap Over (%) Comparison (%)

N Obj Time Best Mean Worst Time Obj Time DPS HGA Obj Time DPS HGA Obj Time

α = 1

50 657.31 0.23 646.59 651.98 656.09 6.76 654.15 0.13 -0.48 0.33 654.71 0.09 -0.40 0.42 0.09 -30.19
75 888.22 0.43 876.09 880.90 884.57 9.74 880.45 0.40 -0.88 -0.05 880.52 0.38 -0.87 -0.04 0.01 -6.37
100 1058.68 0.45 1052.06 1058.34 1062.76 14.98 1059.42 0.41 0.07 0.10 1058.14 0.33 -0.05 -0.02 -0.12 -18.79
175 1421.35 1.01 1410.81 1418.24 1424.51 27.13 1406.90 1.05 -1.02 -0.80 1407.08 0.90 -1.00 -0.79 0.01 -14.19
250 1656.60 1.65 1645.01 1650.35 1655.24 51.58 1635.99 7.15 -1.24 -0.87 1636.93 6.83 -1.19 -0.81 0.06 -4.49
375 2062.26 4.34 2050.70 2055.59 2059.87 81.79 2024.05 5.41 -1.85 -1.53 2027.52 4.84 -1.68 -1.37 0.17 -10.53
500 2407.56 6.40 2418.79 2425.96 2431.75 126.34 2384.15 10.03 -0.97 -1.72 2385.36 9.60 -0.92 -1.67 0.05 -4.23

Avg. 1450.28 2.07 1442.86 1448.77 1453.54 45.47 1435.02 3.51 -1.05 -0.95 1435.75 3.28 -1.00 -0.90 0.05 -6.53

α = 2

50 524.30 0.51 502.17 514.49 526.36 3.97 507.24 0.99 -3.25 -1.41 507.50 0.44 -3.20 -1.36 0.05 -55.95
75 709.39 0.76 696.37 709.96 724.82 7.67 686.93 2.27 -3.17 -3.24 684.36 1.04 -3.53 -3.61 -0.37 -54.46
100 867.45 0.88 847.06 866.86 885.33 12.12 825.84 3.40 -4.80 -4.73 827.82 1.52 -4.57 -4.50 0.24 -55.44
175 1165.13 1.75 1142.29 1169.39 1190.52 29.75 1115.37 6.71 -4.27 -4.62 1121.20 3.07 -3.77 -4.12 0.52 -54.27
250 1362.44 2.83 1359.25 1376.64 1397.85 59.30 1315.32 9.25 -3.46 -4.45 1315.67 4.92 -3.43 -4.43 0.03 -46.80
375 1702.34 5.63 1712.47 1730.77 1759.36 118.96 1646.24 17.65 -3.30 -4.88 1650.12 10.30 -3.07 -4.66 0.24 -41.68
500 1998.51 9.05 2028.21 2052.34 2090.54 218.78 1930.14 26.20 -3.42 -5.95 1932.69 16.59 -3.29 -5.83 0.13 -36.70

Avg. 1189.94 3.06 1183.97 1202.92 1224.97 64.36 1146.73 9.50 -3.63 -4.67 1148.48 5.41 -3.48 -4.53 0.15 -43.05

α = 3

50 460.63 0.64 428.69 445.88 463.91 3.90 445.65 2.00 -3.25 -0.05 445.97 0.95 -3.18 0.02 0.07 -52.49
75 649.63 1.08 601.89 626.00 656.16 8.31 605.71 4.11 -6.76 -3.24 607.30 1.86 -6.52 -2.99 0.26 -54.66
100 779.61 1.20 741.45 765.61 790.62 12.68 728.89 6.24 -6.50 -4.80 734.35 2.47 -5.80 -4.08 0.75 -60.36
175 1055.32 2.41 1002.35 1040.68 1075.74 37.56 988.79 11.50 -6.30 -4.99 994.78 5.42 -5.74 -4.41 0.61 -52.85
250 1252.08 3.62 1213.35 1242.29 1274.78 71.08 1175.36 17.32 -6.13 -5.39 1178.72 7.94 -5.86 -5.12 0.29 -54.14
375 1582.35 7.49 1542.09 1574.58 1605.24 158.38 1487.23 29.74 -6.01 -5.55 1489.69 15.66 -5.86 -5.39 0.17 -47.33
500 1863.35 10.70 1846.44 1885.92 1934.25 274.46 1737.63 42.31 -6.75 -7.86 1747.16 23.95 -6.24 -7.36 0.55 -43.40

Avg. 1091.86 3.88 1053.75 1082.99 1114.39 80.91 1024.18 16.17 -6.20 -5.43 1028.28 8.32 -5.82 -5.05 0.40 -48.54
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Table 11: (Set A, 2-center) Results of ICP and NICP for Agatz et al. (2018) 2-center instances. Comparison (%) represents the relative
difference of NICP compared to ICP. Times are in seconds.

DPS25 HGA-TAC+ ICP Gap Over (%) NICP Gap Over (%) Comparison (%)

N Obj Time Best Mean Worst Time Obj Time DPS HGA Obj Time DPS HGA Obj Time

α = 1

50 1010.83 0.26 988.61 998.38 1005.84 6.49 1003.95 0.20 -0.68 0.56 1005.32 0.17 -0.54 0.70 0.14 -12.88
75 1246.14 0.35 1225.86 1235.82 1242.53 11.53 1239.83 0.25 -0.51 0.32 1240.31 0.23 -0.47 0.36 0.04 -8.36
100 1401.25 0.47 1378.95 1388.68 1396.80 15.06 1391.07 0.38 -0.73 0.17 1392.14 0.36 -0.65 0.25 0.08 -5.74
175 1903.41 1.25 1891.53 1902.59 1911.47 33.51 1897.55 1.00 -0.31 -0.26 1897.83 0.89 -0.29 -0.25 0.01 -11.31
250 2262.14 1.53 2248.26 2255.10 2260.93 52.09 2233.64 1.80 -1.26 -0.95 2236.04 1.74 -1.15 -0.85 0.11 -3.44
375 2842.35 3.47 2826.84 2833.70 2840.19 78.46 2797.78 4.02 -1.57 -1.27 2798.29 4.04 -1.55 -1.25 0.02 0.55
500 3308.88 7.38 3300.02 3309.00 3315.30 130.59 3267.43 10.57 -1.25 -1.26 3269.46 9.43 -1.19 -1.19 0.06 -10.78

Avg. 1996.43 2.10 1980.01 1989.04 1996.15 46.82 1975.89 2.60 -1.03 -0.66 1977.06 2.41 -0.97 -0.60 0.06 -7.47

α = 2

50 819.73 0.48 791.23 806.81 823.82 4.32 811.35 0.96 -1.02 0.56 805.72 0.53 -1.71 -0.14 -0.69 -44.38
75 1021.36 0.74 976.31 1005.04 1032.75 8.75 1000.69 2.18 -2.02 -0.43 1000.41 0.88 -2.05 -0.46 -0.03 -59.58
100 1128.40 0.92 1129.89 1148.79 1169.96 12.75 1105.91 2.97 -1.99 -3.73 1108.29 1.53 -1.78 -3.53 0.21 -48.39
175 1572.17 1.79 1563.52 1587.98 1618.15 29.89 1520.66 6.03 -3.28 -4.24 1524.29 2.74 -3.05 -4.01 0.24 -54.55
250 1843.45 2.77 1870.08 1895.13 1919.31 58.19 1799.38 9.18 -2.39 -5.05 1799.82 4.64 -2.37 -5.03 0.02 -49.50
375 2347.51 4.70 2354.47 2386.57 2421.52 124.52 2265.22 16.24 -3.51 -5.08 2264.11 9.01 -3.55 -5.13 -0.05 -44.51
500 2723.67 9.73 2771.37 2801.04 2839.97 205.81 2651.61 26.91 -2.65 -5.33 2659.25 16.57 -2.37 -5.06 0.29 -38.41

Avg. 1636.61 3.02 1636.70 1661.62 1689.36 63.46 1593.55 9.21 -2.63 -4.10 1594.55 5.13 -2.57 -4.04 0.06 -44.30

α = 3

50 755.96 0.68 716.57 734.25 756.19 3.95 731.94 2.16 -3.18 -0.31 739.17 1.08 -2.22 0.67 0.99 -49.84
75 928.67 0.91 874.92 899.11 930.49 8.80 893.24 3.91 -3.81 -0.65 892.68 1.91 -3.88 -0.72 -0.06 -51.24
100 1039.73 1.27 1000.70 1028.62 1057.56 14.30 994.15 5.54 -4.38 -3.35 993.47 2.86 -4.45 -3.42 -0.07 -48.40
175 1443.36 2.53 1388.12 1430.19 1475.94 38.56 1369.12 11.93 -5.14 -4.27 1378.94 5.46 -4.46 -3.58 0.72 -54.26
250 1692.75 3.49 1669.52 1703.91 1742.72 73.77 1597.10 17.21 -5.65 -6.27 1610.94 8.05 -4.83 -5.46 0.87 -53.19
375 2174.17 5.80 2141.77 2181.41 2228.38 155.59 2044.64 27.88 -5.96 -6.27 2047.97 14.61 -5.80 -6.12 0.16 -47.62
500 2555.13 12.80 2499.33 2559.20 2620.79 284.39 2389.57 42.07 -6.48 -6.63 2396.71 24.36 -6.20 -6.35 0.30 -42.09

Avg. 1512.83 3.92 1470.13 1505.24 1544.58 82.77 1431.39 15.82 -5.38 -4.91 1437.13 8.33 -5.00 -4.53 0.40 -47.31
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Table 12: (Set B) Results of ICP and NICP for Bogyrbayeva et al. (2023) instances. Average cost and time values are reported on 100
problem instances for each size N . † is reported by Bogyrbayeva et al. (2023). Comp. (%) represents the relative difference of NICP
compared to ICP. Times are in seconds.

TSP-ep-all DPS25 HM4800 HGA-TAC+ ICP NICP Comp. (%)

Dataset N Obj Time Obj Time Obj Time Best Mean Worst Time Obj Time Obj Time Obj Time

Random
50 397.59 18.05 404.99 0.46 396.26 3.80 391.49 398.64 406.71 3.85 394.32 1.50 394.85 0.72 0.13 -51.56
100 535.94 2088.34 548.04 1.14 544.58 14.13 535.57 545.02 554.03 11.34 534.07 3.70 534.18 1.72 0.02 -53.54

Avg. 466.77 1053.19 476.51 0.80 470.42 8.96 463.53 471.83 480.37 7.59 464.20 2.60 464.52 1.22 0.08 -52.55

Amsterdam 50 3.26 18.00 3.37 0.46 3.31† 1.41† 3.26 3.33 3.41 4.02 3.29 1.18 3.29 0.55 0.29 -53.33
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