arXiv:2504.15141v1 [quant-ph] 21 Apr 2025

Breaking Down Quantum Compilation:
Profiling and Identifying Costly Passes

Felix Zilk, Alessandro Tundo, Vincenzo De Maio, Ivona Brandic
HPC Research Group, Faculty of Informatics
TU Wien, Vienna, Austria
{felix.zilk,alessandro.tundo,vincenzo.maio,ivona.brandic } @ tuwien.ac.at

Abstract—With the increasing capabilities of quantum sys-
tems, the efficient, practical execution of quantum programs
is becoming more critical. Each execution includes compilation
time, which accounts for substantial overhead of the overall
program runtime. To address this challenge, proposals that
leverage precompilation techniques have emerged, whereby entire
circuits or select components are precompiled to mitigate the
compilation time spent during execution. Considering the impact
of compilation time on quantum program execution, identifying
the contribution of each individual compilation task to the
execution time is necessary in directing the community’s research
efforts towards the development of an efficient compilation and
execution pipeline. In this work, we perform a preliminary
analysis of the quantum circuit compilation process in Qiskit,
examining the cumulative runtime of each individual compilation
task and identifying the tasks that most strongly impact the
overall compilation time. Our results indicate that, as the desired
level of optimization increases, circuit optimization and gate
synthesis passes become the dominant tasks in compiling a
Quantum Fourier Transform, with individual passes consuming
up to 87% of the total compilation time. Mapping passes require
the most compilation time for a GHZ state preparation circuit,
accounting for over 99% of total compilation time.

Index Terms—quantum computing, quantum programs, quan-
tum circuit compilation, profiling, Qiskit

I. INTRODUCTION

Quantum computing (QC) has gained particular interest in
both academia and industry due to its promise to significantly
speed up certain computational tasks [1]], [2]. Potential appli-
cations include the simulation of physical systems in materials
science and chemistry [3], optimization problems [4], and
machine learning [S[]. Over the last decade, QC has become
particularly popular due to significant advances that brought
early prototype in-lab demonstrations [|6], [[/] to production-
grade systems available as cloud-based services [8||, [9] or
integrated into high-performance computing (HPC) facili-
ties [10], [11f]. To date, researchers have used these state-
of-the-art quantum systems to run computational workloads
involving more than 100 qubits [[12]], [13] and demonstrate
computational advantage for specific problems using different
physical platforms [[14], [[15].

Dedicated software development kits (SDKs), such as
Qiskit [16], are used for developing quantum algorithms and
programming quantum devices. Their current workflow for
the development and execution of quantum programs includes
several steps, including high-level optimization, compilation,
execution on hardware, and post-processing tasks [[17], [18]].

The compilation step, that is, the transformation of abstract
quantum programs into instructions that can be executed on
a quantum computer, involves numerous computationally ex-
pensive tasks, such as mapping logical qubits from an abstract
circuit definition to a physical implementation on the quantum
device and converting high-level circuit operations into native
hardware instructions [17]], [18]. By default, quantum pro-
grams are entirely compiled at each execution. Consequently,
the time spent on compilation has a significant contribution
to the overall runtime of the whole program [9]], [[19], which
leads to a significant runtime overhead, especially as both the
size and complexity of the original circuit scale [|19].

Recently, a number of solutions have been proposed to
address this challenge through the use of precompilation meth-
ods, including [9], [19]-[23]], which involve the compilation
of a portion of the source code to be executed prior to
deployment and stored in advance, rather than being compiled
at runtime. These approaches concentrate on precompiling
specific gates [23]], the logical circuit level [|[19], or the pulse
level [21]], [22]. However, the question of which individual
tasks, so-called passes, and which parameters (e.g., circuit
structure, optimization level, etc.) contribute to compilation
time — and to what extent — has not been addressed.

In this work, we perform a preliminary analysis of Qiskit’s
built-in compiler toolchain to identify which of its passes affect
the compilation time for a given circuit with varying opti-
mization levels. Consequently, we aim to help researchers and
developers identify potential bottlenecks in the compilation
process and to effectively use precompilation techniques. In
particular, we comprehensively profile Qiskit’s preset compiler
pipelines, focusing on the cumulative CPU time required for
individual passes and identifying the top 10 most expensive
passes for a Quantum Fourier Transform (QFT) [24] and
a Greenberger-Horne-Zeilinger (GHZ) state [25] preparation
circuit with 100 qubits each. Our results show that while the
contributions of synthesis passes among the top 10 reveal a
comparable trend for both circuits and all optimization levels,
especially for higher optimization levels, the impact of qubit
mapping and circuit optimization passes varies significantly
between the two circuits. For instance, a single mapping pass
accounts for over 99% of the total compilation time when
compiling GHZ with optimization levels 2 and 3. Similarly,
for optimization level 3 and QFT, a single circuit optimization
pass accounts for ~87% of the overall compilation time.

II. BACKGROUND
A. Quantum Program Execution Model

The execution of a quantum program on a quantum com-
puter can be modeled in a workflow consisting of several steps,
as outlined in [18]] and illustrated in Fig. E} First, a suitable
algorithm is selected to solve the problem at hand. Next,
a hardware-independent circuit optimization step is applied,
followed by a hardware selection step [17]. Once a device
has been selected and the physical constraints of the targeted
quantum processing unit (QPU) are known, device-specific
quantum circuit compilation can proceed [17]. In this phase,
the circuit is compiled and optimized for the selected hardware
platform on which it is to be executed. Finally, the compiled
circuit is sent to a quantum computing device for deployment
and execution, which returns the result [18]].

Quantum Hardware-

) Hardware
Algorithm Independent Selecti
Selection Optimization election

Gate
Synthesis

Circuit
Optimization

|
Deployment
& Execution
Qubit
Mapping

Fig. 1: The depicted workflow for quantum program execution
is based on the model in [[18]] and adapted with a more nuanced
view of quantum circuit compilation, as presented in [[17].

Quantum
Circuit
Compilation

Quantum circuit compilation (QCC) — i.e., the transfor-
mation of abstract, hardware-agnostic quantum circuits into a
version optimized for the target hardware — is a non-trivial
procedure involving numerous time- and resource-intensive
tasks. Specifically, the abstract quantum circuit must be trans-
lated into a sequence of instructions that can be executed
natively on the target QPU; a task known as gate synthe-
sis [17]. In addition, the hardware-agnostic qubit layout of the
abstract quantum circuit has to match the specific topology
of the physical device; a process termed qubit mapping, a
known NP-complete problem [26]. Both processes change the
composition of the circuit, leading to further possibilities for
circuit optimization (see Fig. [I).

B. Quantum Circuit Compilation in Qiskit

Qiskit performs QCC by executing a sequence of compi-
lation tasks, referred to as passes. These passes are typically
executed through a PassManager, which arranges and per-
forms a series of circuit inspections and transformations [27]].
Specifically, Qiskit offers four built-in compiler pipelines, each
designed to cater to distinct levels of optimization: 0 (no opti-
mization), 1 (light optimization), 2 (medium optimization), and
3 (high optimization). Each of these built-in compiler pipelines
is organized into multiple stages: initialization, layout, routing,
translation, optimization, and scheduling.

These stages correspond to the steps shown in Figure [T} in
particular, hardware-independent optimization (initialization),
qubit mapping (layout and routing), gate synthesis (transla-
tion), and circuit optimization (optimization).

The pipelines are generated by the
generate_preset_passmanager function, which
creates the respective PassManager. According to the Qiskit
documentation, the standard usage of this method requires at
least a backend instance and an optimization_level
as inputs to generate the pipeline; hence, we will focus on
these two variables in our preliminary analysis. The key
method that executes the logic of each compiler pass is the
run (dag) method, which is implemented by each individual
pass. The execution of the entire chain of compiler passes
is implemented by the pass manager’s run (circuit)
method, which applies all involved passes to the quantum
circuit and returns a compiled circuit that is executable on
the target hardware.

III. RELATED WORK

Existing work on quantum compilation [9]], [19], [21]-[23]
concentrates primarily on the precompilation of either entire
logical circuits or parts thereof with the objective of reducing
compilation time during execution later on. Kudrow et al. [23]]
propose a method that aims to reduce the compilation time
for arbitrary rotation gates by precompiling a specified set
of rotations. In contrast, Gokhale et al. [22] and Cheng
et al. [21] employ precompilation to mitigate compilation
overhead for approaches that compile abstract circuits directly
to the pulse level. Karelakas et al. [9] have addressed the
runtime bottleneck that arises from QCC in quantum-classical
cloud architectures, focusing on hybrid variational algorithms.
Their proposal includes a compilation method that precompiles
an abstract circuit with placeholders for gate parameters,
bypassing the need to recompile the entire circuit at each
iteration. Finally, the work of Quetschlich et al. [19] has
proposed a compilation approach that precompiles a generic
quantum circuit that represents an entire class of problems.
Their approach adapts the compiled circuit to the specific
problem at runtime by solely subtracting unnecessary gates.
However, while these approaches aim to reduce the required
compilation time during quantum program execution, they do
not consider the contribution of individual compiler passes.

Recently, the Qrisp [28] framework proposed caching for
individual functions of a quantum program. Here, the Python
interpreter traces a decorated function only once, ensuring
that subsequent calls to the same function execute with-
out interpreter-induced delay. However, there is currently no
guideline available to determine which functions are more or
less suitable for this approach.

These contributions underscore the significance of the re-
quired compilation time for quantum programs. Nevertheless,
the existing literature is missing an examination of which in-
dividual passes impact the overall compilation time of a given
circuit, taking into account their dependencies on parameters
such as circuit structure and desired degree of optimization.

IV. PROFILING METHODOLOGY

Figure P]illustrates our profiling methodology to monitor all
compiler passes involved in a Qiskit program execution and
collect their execution proﬁleﬂ We choose Qiskit due to its
wide adoption as an SDK for quantum programs [30], and
both its flexibility and performance, as reported in a recent
benchmark study [31]]. Specifically, we conduct our analysis
using Qiskit SDK v1.3.2 and its preset compilation pipelines.

L

def
program():

¢ >

cProfile.run(func)

qgiskit_script.py

=
Ml

Analysis

Python Profiler Profiler Output

"giskit/transpiler
/passes”

A

Fig. 2: The workflow of our profiling methodology.

We monitor the program execution using the Python pro-
filer cProfile [29]. The profiler output provides a set of
statistics, including the cumulative time spent in a func-
tion and calls to all its sub-functions. From this output,
we filter only for those functions that contain the target
location where Qiskit’s built-in passes are implemented, i.e.,
“giskit\transpiler\passes”, in their respective file
path and the keyword “run” for the respective function name.
Then, we extract the class names for each pass and the
cumulative time spent in its run method and determine the
10 most costly passes with regard to overall runtime.

We categorize passes according to the module they are im-
plemented in, e.g., passes in “. . . \passes\synthesis” as
synthesis passes. To categorize passes in generic modules like
basis or utils, we consider their stage of occurrence. For
instance, MinimumPoint, which is from the utils module,
occurs in the optimization stage; thus, we assign it to the
circuit optimization category. We leave passes from generic
modules that occur in multiple stages uncategorized.

Our preliminary analysis includes two quantum algorithms:
the QFT [24]] and the GHZ state [25] preparation. Both
algorithms are implemented with 100 qubits to make sure that
our test scenarios are representative of current workloads. We
conduct all experiments using QPUs from the IBM platform
to compare compilation times against actual quantum resource
consumption. Specifically, we use the ibm_brisbane QPU,
which is an Eagle r3 processor type. We perform a total of
30 executions per configuration (per circuit and optimization
level). We executed quantum programs using Qiskit v1.3.2 and
Python 3.9.2, and all stages of the Qiskit compiler pipeline are

A profile is a set of statistics that describe how often and for how long
different parts of the program are executed [29].

executed on an HPC node with a total number of 48 available
CPU cores (Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz)
with 250 GB of memory running Debian Linux 11.

V. RESULTS & DISCUSSION

Fig. 3] shows a summary of the compilation and QPU
execution time contributions to the total runtime for different
optimization levels. Compilation time for the QFT circuit takes
between 20% and 42% of the total runtime for optimization
levels 0, 1, and 2. Interestingly, we observe a decreasing trend
in the compilation time for the QFT circuit as we increase
the optimization level from 0 to 2, while optimization level 3
increases it up to 47.4 seconds, accounting for 82% of the total
runtime. Notably, the QPU execution time varies between 18.5
and 10.3 seconds, showing a -44% reduction for increasing the
optimization level from 0 to 3. Conversely, the GHZ circuit
compilation time increases with higher optimization levels,
accounting for up to 95% of the total runtime for optimization
level 3. In this case, we observed a reduction of the QPU
execution time of about -27% when comparing optimization
levels 0 (4.1s) and 3 (3s). However, this marginal tradeoff
comes at the expense of substantial compilation time.

B

60
[QFT Compilation
B QFT QPU Execution
50 [GHZ Compilation
[GHZ QPU Execution

404

Time (s)
8

201

10

0 1 2 3
Optimization Level

Fig. 3: Compilation and QPU execution times of the QFT and
GHZ circuits for different optimization levels.

Figures [4] and [3] show the top 10 most costly compilation
passes for the QFT and GHZ circuits, respectively. Both
figures are divided into four sub-figures (a)—(d) for each
optimization level, and each figure presents box plots of the
cumulative time spent executing the corresponding passes.

The results for the QFT circuit (Fig.) show that among the
top 10 costly passes, five are from the optimization category
for optimization levels 1 and 2, and six for optimization
level 3. For optimization level 0, a single pass from the
same category is observed. Passes from the synthesis category
represent two of the top 10 passes for optimization levels 0
and 1, and three of the top 10 for optimization levels 2 and 3.
Mapping passes are represented by five out of the top 10 for
optimization level 0, but with an increasing optimization level,
they are replaced by passes from the optimization category.

Top 10 passes in descending order
749 8 a) high_level_synthesis (synthesis)
724 b) gate_direction (utils)
70 c) basis_translator (basis)
68 d) convert_conditions_to_if_ops (utils)
= B e) check_durations (scheduling) -
o 175 4 %) sabre_swap (routing)
E [e) g) apply_layout (layout)
E 1.50 h) filter_op_nodes (utils)
= i) trivial_layout (layout)
T 1254 === . ; . .
= j) barrier_before_final_measurements (utils)
§ 1.00 -
0.75 4 ==
0.50
0.25 4 e -
0.00 . . T T T T - . :
a b c d e f g h i j
Passes
(a) Optimization Level 0
09 Top 10 passes in descending order
a) high_level_synthesis (synthesis)
08 4 i%s b) unitary_synthesis (synthesis)
c) gate_direction (utils)
074 & d) sab_re_layout (Iayout).
e) basis_translator (basis)
0 06 4 % f) consolidate_blocks (optimization)
g [¢] g) commutative_cancellation (optimization)
if) 05 ° h) optimize_1q_decomposition (optimization)
2 ’ i) vf2_post_layout (layout)
]
= j) depth (analysis;
R ° i) depth (analysis)
3 = =2 8
0.3 ==
= =
0.2 o A
——
0.1 —
2 o
0.0 T T T T T T T T T T
a b c d e f g h i j
Passes

(c) Optimization Level 2

16 Top 10 passes in descending order
8 a) gate_direction (utils)
144 b) high_level_synthesis (synthesis)
c) basis_translator (basis)
1.2 1 [o] d) sabre_layout (layout)
@ e) optimize_1q_decomposition (optimization)

o 10 f) inverse_cancellation (optimization)
© .
£ 08 4 g) depth (analy.5|s) .
z L 2 B h) check_durations (scheduling) L
= o 5:_’ i) vf2_post_layout (layout) -
é ’ o j) gates_basis (utils)
= 0.4 -
3 ==

=

0.2

= 2 8
0.1 = = -
0.0 T T T T T T T T T T
a b c d e f h i j
Passes
(b) Optimization Level 1
80 Top 10 passes in descending order
a) minimum_point (utils)
60 1 b) consolidate_blocks (optimization)

c) unitary_synthesis (synthesis)
d) high_level_synthesis (synthesis)
20 e) gate_direction (utils)

j) depth (analysis)

f) commutative_cancellation (optimization) z
% <
-
=

g) sabre_layout (layout)
h) optimize_1q_decomposition (optimization)
0.00 T T T T T T T T T T
g h i i

40 -

A}

“
2.00
1.75 4
150 4 i) basis_translator (basis)

1.25

Cumulative Time (s)

1.00

0.75 1

0.50

0.25 1

e f
Passes

(d) Optimization Level 3

Fig. 4: Boxplots of the top 10 most expensive Qiskit preset compiler passes for the QFT circuit and optimization levels O
(a), 1 (b), 2 (c), and 3 (d). Passes from the gate synthesis category are marked blue, qubit mapping passes are pink, and
circuit optimization passes are orange. Scheduling passes are displayed in dark blue, while uncategorized passes remain white.
Right-diagonal hatching (/) indicates passes that occur in two stages, and cross-hatching (X) indicates passes that occur in more

than two stages.

The results for the GHZ state preparation circuit (Fig. [5)
reveal a comparable trend to that observed in QFT for syn-
thesis passes, with two among the top 10 for optimization
levels O and 1, and three among the top 10 for optimization
levels 2 and 3. The number of optimization passes among the
top 10 also increases with respect to the optimization level,
as is the case with QFT. Specifically, we observe one, three,
four, and five passes for GHZ with optimization levels O, 1,
2, and 3, respectively. Furthermore, mapping passes consume
a substantial portion of the overall runtime in comparison to
QFT. In particular, for the GHZ circuit and optimization levels
1, 2, and 3, the VF2Layout pass requires several orders of
magnitude longer execution times (up to 61.6s) compared to
all other passes. With optimization levels 2 and 3, this pass
even accounts for over 99% of total compilation time.

A notable observation for both circuits is the significantly
higher cumulative time for HighLevelSynthesis for optimiza-
tion level 0, which is ~21x higher in the case of GHZ (up to
0.168s) and ~7x higher in the case of QFT (up to 7.43s) when
compared to other optimization levels with the same circuit.
Optimization level 0 does not perform high-level optimizations
prior to QCC, which is why gate synthesis may require more
time. However, it is also important to note that the runtime of
synthesis passes is approximately 100x less for GHZ than for
the same passes in QFT, which is likely due to the different
circuit depths.

The MinimumPoint pass, which occurs only in optimization
level 3, consumes a significant amount of time compared to
other passes for both circuits, although its impact is stronger
with QFT. It is worth noting that for QFT this procedure

Top 10 passes in descending order
a) high_level_synthesis (synthesis)
b) gate_direction (utils)
c) basis_translator (basis)
d) sabre_swap (routing)
e) convert_conditions_to_if_ops (utils) =
8 B f) check_durations (scheduling)
g) apply_layout (layout)
h) trivial_layout (layout)
i) filter_op_nodes (utils)
j) full_ancilla_allocation (layout)

0.12 4
0.1 4

0.10

A}

0.07 o

0.06

0.05 o

Cumulative Time (s)
o

0.04

0.03 1

0.02

0.01 o

0.00 o o

e f
Passes

(a) Optimization Level 0

Top 10 passes in descending order
a) vf2_layout (layout)
9.2 8 b) unitary_synthesis (synthesis)
9.0 c) high_level_synthesis (synthesis)
L

9.4

o

d) apply_layout (layout)
e) consolidate_blocks (optimization)

0 86 f) basis_translator (basis)
2 = g) gate_direction (utils) s
if) 0.012 h) commutative_cancellation (optimization)
= Q i) optimize_1q_decomposition (optimization)
t—; 0010 7 I j) check_durations (scheduling)
§ 0.008

0.006

o = 2o 8
0.004 s
=W
0.002 4 o
et
0.000 T T T T T T T T T T
a b c d e f g h i j
Passes

(c) Optimization Level 2

0.13 Top 10 passes in descending order
e a) vf2_layout (layout)
0.12 7 b) high_level_synthesis (synthesis)
011 4 c) gate_direction (utils)
d) apply_layout (layout)
0101 o e) basis_translator (basis)
2 5004 = f) trivial_layout (layout)
g 0007:: g) optimize_1q_decomposition (optimization) =
E h) inverse_cancellation (optimization)
=2 0.006 o M i) check_durations (scheduling)
% [©] j) full_ancilla_allocation (layout)
£ 0005 - =
3
© 0.004 i
=
0.003
0.002
—_
0.001 o
0.000 T T T T T T T T T T
a b c d e f h i j
Passes
(b) Optimization Level 1
24 o Top 10 passes in descending order
0 4 a) vf2_layout (layout)
b) minimum_point (utils)
5 7 c) unitary_synthesis (synthesis)
56 d) consolidate_blocks (optimization)
54 e) high_level_synthesis (synthesis)
© o4 = f) apply_layout (layout)
2 =- g) basis_translator (basis) =
E 0187 o :
'; 8 h) gate_direction (utils)
2 o464 i) commutative_cancellation (optimization)
(—é j) optimize_1q_decomposition (optimization)
S 0144
O
0.12 1 %
= =
001 4 0=
-o- o 8 8

0.00 T T T T T T T
a b c d e f g h i j
Passes

(d) Optimization Level 3

Fig. 5: Boxplots of the top 10 most expensive Qiskit preset compiler passes for the GHZ state preparation and optimization
levels O (a), 1 (b), 2 (c), and 3 (d). Passes from the gate synthesis category are marked blue, qubit mapping passes are pink,
and circuit optimization passes are orange. Scheduling passes are displayed in dark blue, while uncategorized passes remain
white. Right-diagonal hatching (/) indicates passes that occur in two stages, and cross-hatching (X) indicates passes that occur

in more than two stages.

accounts for about 87% of total compilation time and can
even take up to 72 seconds, the highest cumulative value for
an individual pass across all executions. The data used for all
figures and results in this work is available via Zenodd?]

VI. CONCLUSIONS AND FUTURE WORK

The primary contribution of this work is a preliminary
analysis of the execution profile of the Qiskit built-in compiler
toolchain, with the goal of examining the cumulative time
spent on each individual pass. Our results represent the first
step in our profiling approach to identifying costly passes,
which helps researchers and developers detect potential bottle-
necks in the compilation process and supports the effective use
of precompilation techniques. Our current profiling pipeline

Zhttps://doi.org/10.5281/zenodo. 15255700

measures the cumulative time of a given pass across all stages
in which it may occur. As the built-in PassManager from
Qiskit executes stages sequentially with no overlap between
stages, stage-aware profiling could offer more profound in-
sights into the contributions of each pass per stage. Currently,
our analysis is SDK dependent, but similar examinations for
other SDKs seem worthwhile. In the future, we aim to extend
our analysis to a more extensive set of circuits along with
stage-aware profiling and include the actual outcome of the
quantum computation in our analysis.

ACKNOWLEDGMENTS

This work is funded by the Internet Stiftung through the
Netidee scholarship ID 7413 (Optimizing Hybrid Workflows
for Cloud-Based Quantum Computation).

https://doi.org/10.5281/zenodo.15255700

We acknowledge the use of IBM Quantum Credits for this
work. The views expressed are those of the authors and do
not reflect the official policy or position of IBM or the IBM
Quantum team. In this paper, we used ibm_brisbane, which is
of the IBM Quantum Eagle r3 processor type.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

REFERENCES

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

A. Bayerstadler, G. Becquin, J. Binder, T. Botter, H. Ehm, T. Ehmer,
M. Erdmann, N. Gaus, P. Harbach, M. Hess, J. Klepsch, M. Leib, S. Lu-
ber, A. Luckow, M. Mansky, W. Mauerer, F. Neukart, C. Niedermeier,
L. Palackal, R. Pfeiffer, C. Polenz, J. Sepulveda, T. Sievers, B. Standen,
M. Streif, T. Strohm, C. Utschig-Utschig, D. Volz, H. Weiss, and
F. Winter, “Industry quantum computing applications,” EPJ Quantum
Technology, vol. 8, no. 1, Nov. 2021.

B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, “Quantum algorithms
for quantum chemistry and quantum materials science,” Chemical Re-
views, vol. 120, no. 22, p. 12685-12717, Oct. 2020.

. Abbas, A. Ambainis, B. Augustino, A. Birtschi, H. Buhrman,
Coffrin, G. Cortiana, V. Dunjko, D. J. Egger, B. G. Elmegreen,
. Franco, F. Fratini, B. Fuller, J. Gacon, C. Gonciulea, S. Gribling,
Gupta, S. Hadfield, R. Heese, G. Kircher, T. Kleinert, T. Koch,
. Korpas, S. Lenk, J. Marecek, V. Markov, G. Mazzola, S. Mensa,
. Mohseni, G. Nannicini, C. O’Meara, E. P. Tapia, S. Pokutta,
. Proissl, P. Rebentrost, E. Sahin, B. C. B. Symons, S. Tornow, V. Valls,
S. Woerner, M. L. Wolf-Bauwens, J. Yard, S. Yarkoni, D. Zechiel,
S. Zhuk, and C. Zoufal, “Challenges and opportunities in quantum
optimization,” Nature Reviews Physics, vol. 6, no. 12, p. 718-735, Oct.
2024.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, p.
195-202, Sep. 2017.

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Hiffner,
F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the
deutsch—jozsa algorithm on an ion-trap quantum computer,” Nature, vol.
421, no. 6918, p. 48-50, Jan. 2003.

L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson,
D. L. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, “Demonstration of two-qubit algorithms with a supercon-
ducting quantum processor,” Nature, vol. 460, no. 7252, p. 240-244,
Jun. 2009.

N. Maring, A. Fyrillas, M. Pont, E. Ivanov, P. Stepanov, N. Margaria,
W. Hease, A. Pishchagin, A. Lemaitre, I. Sagnes, T. H. Au, S. Boissier,
E. Bertasi, A. Baert, M. Valdivia, M. Billard, O. Acar, A. Brieussel,
R. Mezher, S. C. Wein, A. Salavrakos, P. Sinnott, D. A. Fioretto,
P-E. Emeriau, N. Belabas, S. Mansfield, P. Senellart, J. Senellart,
and N. Somaschi, “A versatile single-photon-based quantum computing
platform,” Nature Photonics, vol. 18, no. 6, p. 603—609, Mar. 2024.

P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva,
and R. S. Smith, “A quantum-classical cloud platform optimized for
variational hybrid algorithms,” Quantum Science and Technology, vol. 5,
no. 2, p. 024003, Apr. 2020.

T. Beck, A. Baroni, R. Bennink, G. Buchs, E. A. C. Pérez, M. Eisenbach,
R. F. da Silva, M. G. Meena, K. Gottiparthi, P. Groszkowski, T. S.
Humble, R. Landfield, K. Maheshwari, S. Oral, M. A. Sandoval,
A. Shehata, I.-S. Suh, and C. Zimmer, “Integrating quantum computing
resources into scientific hpc ecosystems,” Future Generation Computer
Systems, vol. 161, p. 11-25, Dec. 2024.

M. Ruefenacht, B. Taketani, M. Weber, P. Lahteenmiki, V. Bergholm,
D. Kranzlmiiller, L. Schulz, and M. Schulz, “Bringing quantum accel-
eration to supercomputers,” 05 2022.

E. Pelofske, A. Birtschi, L. Cincio, J. Golden, and S. Eidenbenz,
“Scaling whole-chip qaoa for higher-order ising spin glass models on
heavy-hex graphs,” npj Quantum Information, vol. 10, no. 1, Nov. 2024.
R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage, “Scalable
circuits for preparing ground states on digital quantum computers: The
schwinger model vacuum on 100 qubits,” PRX Quantum, vol. 5, no. 2,
Apr. 2024.

2ZOrzZ0p

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
(28]

[29]

[30]

(31]

L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent,
J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins,
A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand,
Z. Vernon, N. Quesada, and J. Lavoie, “Quantum computational advan-
tage with a programmable photonic processor,” Nature, vol. 606, no.
7912, p. 75-81, Jun. 2022.

Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung,
H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han,
L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang,
C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang,
S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying,
J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao,
Y. Zhao, L. Zhou, Q. Zhu, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W.
Pan, “Strong quantum computational advantage using a superconducting
quantum processor,” Physical Review Letters, vol. 127, no. 18, Oct.
2021.

A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R.
Johnson, and J. M. Gambetta, “Quantum computing with qiskit,” 2024.
N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt predictor: Automatic
device selection with device-specific circuit compilation for quantum
computing,” ACM Transactions on Quantum Computing, vol. 6, no. 1,
p. 1-26, Jan. 2025.

F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder, and
K. Wild, “Quantum in the cloud: Application potentials and research
opportunities,” in Proceedings of the 10th International Conference on
Cloud Computing and Services Science. SCITEPRESS - Science and
Technology Publications, 2020.

N. Quetschlich, L. Burgholzer, and R. Wille, “Reducing the compilation
time of quantum circuits using pre-compilation on the gate level,”
in 2023 IEEE International Conference on Quantum Computing and
Engineering (QCE), vol. 01, 2023, pp. 757-767.
“Qaching - documentation.” [Online]. Available:
reference/Jasp/qache.html

J. Cheng, H. Deng, and X. Qia, “Accqoc: Accelerating quantum opti-
mal control based pulse generation,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp.
543-555.

P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. ACM, Oct. 2019.

D. Kudrow, K. Bier, Z. Deng, D. Franklin, Y. Tomita, K. R. Brown, and
F. T. Chong, “Quantum rotations: a case study in static and dynamic
machine-code generation for quantum computers,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ser. ISCA’13. ACM, Jun. 2013, p. 166-176.

S. Pattanayak, Quantum Fourier Transform and Related Algorithms.
Apress, 2021, p. 151-220.

D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going Beyond Bell’s
Theorem. Springer Netherlands, 1989, p. 69-72.

A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of quan-
tum circuit compilation,” Proceedings of the International Symposium
on Combinatorial Search, vol. 9, no. 1, p. 138-142, Sep. 2021.
[Online]. Available: https://docs.quantum.ibm.com/api/qiskit/transpiler
R. Seidel, S. Bock, R. Zander, M. Petri¢, N. Steinmann, N. Tcholtchev,
and M. Hauswirth, “Qrisp: A framework for compilable high-level
programming of gate-based quantum computers,” 2024.

Python Software Foundation, “The python profilers,” 2025, accessed
on: 26.03.2025. [Online]. Available: https://docs.python.org/3/library/
profile.html

“2023 quantum open source survey.’
//unitaryfund.github.io/survey-website/

P. D. Nation, A. A. Saki, S. Brandhofer, L. Bello, S. Garion, M. Treinish,
and A. Javadi-Abhari, “Benchmarking the performance of quantum
computing software for quantum circuit creation, manipulation and
compilation,” Nature Computational Science, Apr. 2025.

https://qrisp.eu/

[Online]. Available: |https:

https://qrisp.eu/reference/Jasp/qache.html
https://qrisp.eu/reference/Jasp/qache.html
https://docs.quantum.ibm.com/api/qiskit/transpiler
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://unitaryfund.github.io/survey-website/
https://unitaryfund.github.io/survey-website/

	Introduction
	Background
	Quantum Program Execution Model
	Quantum Circuit Compilation in Qiskit

	Related Work
	Profiling Methodology
	Results & Discussion
	Conclusions and Future Work
	References

