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Fig. 1: Our method enables automatic generation of successive long-horizon aerobatic maneuvers, allowing drones to traverse through a
complex industrial factory with dynamically feasible motion.

Abstract— Performing striking aerobatic flight in complex
environments demands manual designs of key maneuvers in
advance, which is intricate and time-consuming as the horizon
of the trajectory performed becomes long. This paper presents
a novel framework that leverages diffusion models to auto-
mate and scale up aerobatic trajectory generation. Our key
innovation is the decomposition of complex maneuvers into
aerobatic primitives, which are short frame sequences that
act as building blocks, featuring critical aerobatic behaviors
for tractable trajectory synthesis. The model learns aerobatic
primitives using historical trajectory observations as dynamic
priors to ensure motion continuity, with additional conditional
inputs (target waypoints and optional action constraints) in-
tegrated to enable user-editable trajectory generation. Dur-
ing model inference, classifier guidance is incorporated with
batch sampling to achieve obstacle avoidance. Additionally, the
generated outcomes are refined through post-processing with
spatial-temporal trajectory optimization to ensure dynamical
feasibility. Extensive simulations and real-world experiments
have validated the key component designs of our method,
demonstrating its feasibility for deploying on real drones to

∗Corresponding Author: Fei Gao.
1Institute of Cyber-Systems and Control, College of Control Science and

Engineering, Zhejiang University, Hangzhou 310027, China.
2Huzhou Institute of Zhejiang University, Huzhou 313000, China.
E-mail:{YuhangZhong, AnkeZhao, tianyueh8erobot, tingruizhang, fgaoaa

}@zju.edu.cn

achieve long-horizon aerobatic flight.

I. INTRODUCTION

Aerobatic freestyle flight in complex environments stands
as one of the most striking and visually impressive drone-
based extreme sports [1]. By planning safe but agile ma-
neuvers and incorporating creative combinations of these
highly dynamic movements, one can enable spectacular flight
effects that captivate spectators alike. However, the design
process can be intricate, as multiple competing requirements
including obstacle avoidance, dynamic feasibility and visual
impact must be simultaneously satisfied. Previous works
address this problem by manually adjusting trajectory param-
eters such as waypoints [2]–[5] with trajectory optimization.
Unfortunately, these methods remain constrained by their
heavy reliance on laborious parameter tuning and domain-
specific expertise in aerobatic flight, creating substantial
barriers for non-expert operators attempting to design even
basic aerobatic maneuvers. To bridge this gap, this paper
introduces an efficient framework for the automatic gen-
eration of diverse aerobatic flights, enabling practitioners
to design complex long-horizon multi-maneuver trajectories
with minimal human intervention.
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Recently, diffusion models have shown remarkable ca-
pacity to capture multi-modal distributions, enabling diverse
generation in human motion synthesis [6]–[8], and trajectory
planning [9]–[11], where models produce realistic motion
sequences with diverse styles and specialized behaviors.
Building on these capabilities, we explore their potential
for aerobatic generation. An intuitive idea is to learn di-
rectly from long-horizon aerobatic demonstrations. However,
such high-quality data remains scarce due to labor-intensive
manual design and time-consuming generation processes.
While some works [12]–[15] attempt to realize long-horizon
generation by combining short-horizon sequences, they face
twofold critical challenges when applied in aerobatic sce-
narios. First, aerobatic maneuvers demand strict sequential
pose transitions (e.g., continuous 360° z-axis rotation in
a loop maneuver). When trajectories are fragmented into
short segments for training, the model fails to capture the
precise timing and coordination between sequential poses,
resulting in incomplete motion generation. Second, unlike
image generation [16] where pixel-level discontinuities are
visually tolerable, aerobatic flight demands strict spatial-
temporal continuity. Naive concatenation of short motion
segments inevitably introduces visible discontinuities, which
is a critical flaw given the highly dynamic nature of ma-
neuvers requiring seamless state evolution. Consequently,
it’s crucial to define a modular yet kinematically consistent
representation for achieving seamless composition of long-
horizon aerobatic maneuvers.

In this paper, we propose to learn from aerobatic primi-
tives to address the aforementioned challenges. An aerobatic
primitive is a sequence of maneuver frames that captures key
attitude changes over time and can be seamlessly combined
with other primitives to achieve successive and arbitrar-
ily long-horizon aerobatic flight. Crucially, these primitives
support explicit conditioning on both maneuver styles and
target waypoints, enabling user-specific trajectory generation
through intuitive parameter adjustment. However, without the
awareness of the previous executed primitives, the continuity
of the aerobatic primitives is hard to guarantee. To mitigate
this, we incorporate historical trajectory observations as
transitional priors into the model architecture, allowing it to
capture the latent dynamics underlying primitive transitions.
While generating high-quality motions, the model is not
trained with environmental information, thus providing no
collision avoidance guarantees in unseen environments. We
address this problem by adopting batch sampling for each
primitive generation with classifier guidance [17], [18], a
widely used technique for steering the generation toward a
specific target distribution. The coarse collision check on the
generated trajectories is applied in each inference to further
improve the obstacle avoidance success rate.

While diffusion models can generate robot-executable
trajectories via positional or velocity control [19], [20], they
fail to meet the demands of precise control over actuator-
level commands (e.g., thrust and angular velocities) during
aerobatic flight. Although models implicitly encode such
control signals during training, they lack explicit enforcement

of dynamic feasibility, which is critical for successful flight
in practical deployment. Therefore, post-processing with
trajectory optimization is proposed to ensure the final tra-
jectory stays within dynamic constraints. Notably, due to the
extreme nonlinearity associated with optimizing attitude and
angular velocity in the differential flatness based trajectory
optimization framework [21]–[23], we design a hierarchical
optimization framework to guide the final optimization to
converge to a favorable local optimum, making practical
deployment feasible.

Our contributions are summarized as follows:
1) By learning from aerobatic primitives and incorporating

an additional collision avoidance strategy, our diffu-
sion model is capable of generating arbitrary long-
horizon trajectories in complex environments despite
being trained exclusively on short-horizon demonstra-
tion.

2) Post-processing with hierarchical trajectory optimiza-
tion is designed to guarantee that generated aerobatic
trajectories are physically feasible.

3) The simulation and experimental results demonstrate
that the proposed method exhibits a high capability of
generating a wide variety of aerobatic trajectories in
complex environments.

II. RELATED WORKS

A. Aerobatic Flight Generation for Quadrotors

Generating aerobatic flight presents significant challenges
due to its competing requirements for rapid attitude changes
and dynamic feasibility planning. Current approaches can
be broadly categorized into two paradigms. Rule-based ap-
proaches [2], [4], [24], [25] employ motion decomposition
strategies, in which complex maneuvers are segmented into
different phases. While Kaufmann et al. [2] and Lu et al. [4]
utilize vertical circles or arcs to enable basic 3D aerobatic
motion generation beyond planar constraints, they suffer
from limited adaptability to dynamic environments and re-
quire laborious parameter tuning for each specific maneuver.
As the optimization method demonstrates significant suc-
cess in quadrotor applications [26]–[29], growing research
formulates aerobatic generation as trajectory optimization
problems to leverage their inherent flexibility. The authors in
[3], [5] achieve aerobatic trajectory generation of tail-sitter
by adjusting positional- and temporal-related parameters,
enabling multi-maneuver flights in open indoor and outdoor
environments. However, existing methods primarily focus
on aerobatic trajectory generation in open environments,
neglecting essential obstacle interactions. More critically,
these approaches require meticulously designed initial values
to circumvent suboptimal local minima, a critical limita-
tion stemming from the nonconvex optimization landscape
created by strong nonlinearities in coupled attitude-obstacle
constraints.

B. Diffusion Model for Motion Generation

Diffusion models have emerged as a widely adopted
approach for generating motions across diverse applications.



In motion planning, researchers utilize diffusion models to
produce trajectories characterized by optimal distributions of
positions and velocities. To enforce task-specific constraints,
reinforcement learning (RL) rewards [9] or task-oriented cost
functions [10], [11] are integrated to guide trajectory distri-
bution refinement. For human motion synthesis, the diffu-
sion model’s capacity for modeling high-dimensional spaces
enables learning intricate motion representations. Additional
conditional inputs, such as text-guided motion styles [6] and
partial state constraints [30] for motion generation, further
enhance the editing flexibility of synthesized motions. How-
ever, the above methods primarily focus on generating fixed-
length motion sequences, leaving the potential of diffusion
models for long-horizon tasks underexplored. While recent
studies employ policy-based methods [19], [20] to generate
action sequences in manipulation and visual navigation tasks,
their reliance on the Markov assumption often leads to
myopic generation behaviors. This manifests as delayed
responses to impending obstacles and fragmented execution
of aerobatic maneuvers. In contrast to these approaches,
our work proposes a novel framework that learns aerobatic
primitives that capture key aerobatic maneuver dynamics.
By strategically combining these primitives with guidance
design, we achieve coherent long-horizon aerobatic motion
generation while preserving consistency with physical con-
straints and environmental interactions.

III. AEROBATIC DIFFUSION MODEL

A. Aerobatic Primitive Representation

Aerobatic primitives are expressed as a sequence of states
τ = {x0,x1 · · · ,xNa

}, xi = {s,p, r} ∈ R10 with
a constant time step, where p ∈ R3 is the position of
the quadrotor and r ∈ R6 denotes a continuous 6-DoF
rotation representation [31]. Notably, different maneuvers
possess distinct execution durations, resulting in discrete
state sequences with non-uniform lengths. This conflicts with
the inherent fixed-length requirement of the diffusion model’s
output. To address this, a state flag s ∈ {0, 1} is introduced
to dynamically truncate the results when s transitions from
0 to 1, where s = 0 indicates the confidence that the
current state belongs to the actual maneuver, while s = 1
represents padding states. This simple design allows variable-
length primitive generation while maintaining fixed network
output dimensions. To ensure complete motion generation,
we set the output sequence length Na to accommodate the
maximum primitive duration in our dataset, with shorter
sequences naturally terminated through s-guided truncation.

B. Data Preparation

We generate an expert dataset through an optimization-
based method, focusing on short-horizon aerobatic ma-
neuvers in open space. As Figure 2 demonstrates, given
that the generated trajectory is modeled as a continuous
polynomial, aerobatic primitives are obtained by sampling
from the specific segments of the complete trajectory. To
facilitate dynamic transitions, we strategically prepend or
append redundant trajectory segments to each primitive. This

Fig. 2: Illustration of aerobatic primitive generation, the trajectory
segments containing the aerobatic maneuver are segmented, and
the discretized motion sequences are sampled from it. Redundant
trajectory segments are added to simulate the transition between
aerobatic primitives.

also benefits the model conditioning, as motion sequences
from previous trajectory segments can serve as prior ob-
servations for learning seamless transitions. Additionally,
the end state of aerobatic primitives is treated as a target
waypoint and is incorporated into the model as a condition
to enhance controllability. Different aerobatic maneuvers are
randomly sampled based on predefined maneuver design
rules. Notably, the generated demonstrations are inherently
environment-agnostic by design. During model inference,
we dynamically incorporate environmental context to enable
obstacle-aware trajectory generation, as detailed in Section
III-E.

C. Conditional Diffusion Model for Aerobatic Primitive
Generation

We propose the Aerobatic Diffusion Model (AeroDM), a
conditional diffusion model [17], [18], to generate aerobatic
primitives. This model generates the samples by learning the
denoising process pθ(τ

t−1|τ t, c) from pure Gaussian noise
N (0, I) to the original data distribution p(τ 0|c) under the
special conditions c. In this paper, c contains previous state
observations, target waypoint pt which indicates the terminal
position of τ , and action a that presents the aerobatic
maneuver style. The denoising process is the reverse of
the forward process q(τ t|τ t−1, c), which corrupts the data
structure by gradually adding increasing noise. The predicted
sample distribution can be expressed as:

pθ(τ
0|c) =

∫
p(τT |c)

T∏
t=1

pθ(τ
t−1|τ t, c)dτ 1:T , (1)

where p(τT ) = N (0, I). During training, the gaussian noise
is added in the forward process:

q(τ t|τ t−1, c) = N (
√
αtτ

t−1, (1− αt)I), (2)

where αt ∈ (0, 1) are predefined scheduled parameters.
Instead of predicting diffusion noise ϵ, we choose to directly
predict the original sample τ 0 to facilitate explicit geometric
constraint integration. The reconstruction loss can be written
as:

Lrecon = Eτdata∼p(τdata),t∼[1,T ][
∥∥τdata − τθ(τ

t, t)
∥∥2
2
].
(3)



Fig. 3: The architecture of the diffusion process. (A) Schematic
of the overall process. (B) Detailed structure of the Aerobatic
Diffusion Model.

Inspired by work [30], we introduce velocity loss to encour-
age smooth transition along the primitives:

Lvel =
1

Na − 1

Na−1∑
i=1

∥∥(xθ
i − xθ

i−1)− (xdata
i − xdata

i−1 )
∥∥2
2
.

(4)

The aerobatic generation process, illustrated in Fig. 3(a),
operates iteratively through the aerobatic diffusion model. At
each process step i, the model generates the current aerobatic
primitive τ conditioned on target waypoints, and optional
action signals with environment-related guidance. This pro-
cess continues until the trajectory sequence {..., τi−1, τi}
reaches predefined aerobatic maneuver number Naero. After
generation, the primitives are concatenated and refined in
the post-processing stage. Notably, the action input can be
omitted during inference to enable diverse style generation.

D. Network Architecture

As illustrated in Fig. 3(B), we adopt a Diffusion Trans-
former architecture to model the temporal dependencies in
aerobatic primitive sequences. The model utilizes a decoder-
only transformer backbone where both the denoising trajec-
tory τ t (at diffusion time step t) and historical observations
of previous primitives τ t−1 are jointly processed through
self-attention layers. This design explicitly enforces conti-
nuity between the generated primitive τ t and its predeces-
sors. Additionally, conditional inputs including the denoising
timestamp t, target waypoint pt, and action a, are first
encoded via MLP embeddings (φ) separately and then inte-
grated into the transformer through a cross-attention module.

E. Collision Avoidance Strategy

The generated aerobatic primitives have no guarantee of
collision avoidance in the cluttered environment. We mitigate
this problem by adding cost guidance for obstacle avoidance
when doing model inference. This technique is derived from
the conditional probability with Bayes Rule:

p(τ t−1|τ t, O) ∝ p(τ t−1|τ t)p(O|τ t−1), (5)

where p(τ t−1|τ t) is the denoising process, and p(O|τ t−1)
is the likelihood of achieving collision avoidance. By fol-
lowing the derivation in the work of [10], the result can be
approximated as Gaussian:

p(τ t−1|τ t, O) ≈ N (τ t−1, µ+Σg,Σ), (6)

where µ and Σ are mean and variance of p(τ t−1|τ t), g
denotes an energy function:

g = ∇τ t−1 log p(O|τ t−1)|τ t−1=µ (7)

=
∑
i

λi∇τ t−1ci(τ
t−1)|τ t−1=µ.

The collision cost function is calculated with precomputed
sign distance field sdf(x) from the original map, where the
penalty is added when the sdf(x) is smaller than d:

gc(τ ) =

{
−sdf(τ ) + d sdf(τ ) ≤ d

0 sdf(τ ) > d
. (8)

While cost guidance enhances collision avoidance rates, it
cannot guarantee absolute collision-free operations. Thus,
the collision probability gradually diminishes as multiple
aerobatic primitives are iteratively generated from preceding
ones. To address this, we implement batch sampling followed
by an additional coarse collision check step for each gener-
ated outcome τ . The coarse collision check module identifies
τi violating the safety condition ( sdf(τi) < 0 ), then
iteratively modifies them by replacing colliding trajectories
with randomly selected collision-free alternatives in samples.
This redundant procedure effectively improves the overall
success rate of aerobatic flight.

IV. POST-PROCESSING WITH TRAJECTORY
OPTIMIZATION

In this section, we propose to leverage spatial-temporal
trajectory optimization to transform the discrete aerobatic
primitives into dynamically feasible trajectories. As the sec-
tion III suggests, the aerobatic diffusion model generates
a dense sequence of frames capturing the spatial-attitude
dynamics throughout the maneuvers while providing explicit
topological information with collision-free properties.

Building on this output, the waypoints presenting key
attitude changes and a lightweight safety flight corridor
defining free space are extracted, serving as critical inputs
and constraints for trajectory optimization. We employ an
iterative way to sample sparse waypoints from key frames
which present the key flight maneuvers. A key frame is
identified when its angular deviation in the body z-axis from
its predecessor exceeds a preset threshold α, initialized with



Fig. 4: Five different maneuver styles of aerobatic trajectories: (a) the Power Loop, (b) the Barrel Roll, (c) the Split-S, (d) the Immelmann
Turn, (e) the Wall Ride.

the first frame as the reference seed. The corresponding body
z-axis zref along the waypoints serves as the maneuver
reference for optimization. For safe corridor generation, we
utilize the method in [32] to efficiently generate polyhedrons
covering the whole primitive while providing sufficient free
space. Additionally, the sequence generated by the diffusion
model contains the optimal temporal information learned
from the dataset. We directly derive inter-waypoint times-
tamps from it as the initial time guess for optimization.

With the aforementioned preparations, we construct the
trajectory optimization problem as the following formulation:

min
p(t),T

J = Ls + LT + Latt, (9)

s.t. p(i)(0) = x
(i)
0 , i = 0, ..., s− 1, (10)

p(i)(T ) = x
(i)
f , i = 0, ..., s− 1, (11)

G⋆ ≤ 0, ⋆ = v, ft, ω (12)
Gsafe ≤ 0, (13)

where the MINCO class [33] is used as the trajectory
representation, and the waypoints p(t) and time segment T
are optimization variables. In the cost function, Ls and LT

denote the smooth cost and time cost in normal planning
problems. Latt is the cost to align the flight maneuver with
the key frame reference as it is expressed as:

Latt =

n∑
i=0

− cos(
ft(Ts(i))

⊤zref
i

∥ft(Ts(i))∥
), (14)

where Ts(i) =
∑i

j=0 Tj , and ft denotes the net thrust in
the world frame, which can be calculated based on differ-
ential flatness. Kinodynamic constraints G⋆ are introduced
on velocity v, net thrust ft and angular velocity ω, detailed
in work [23]. To ensure safety during flight, we constrain
each trajectory segment must stay inside the corresponding
ith polyhedron:

Gsafe =

∫ Tsum

0

Aip(t)− bi dt, (15)

where Ai and bi are corresponding parameters of polyhe-
drons. During the optimization process, we observed that
the strong nonlinearity of the z-axis angular velocity can
cause the optimization to get trapped in bad suboptimal
local minima. This leads to significant violations of angular
velocity constraints, which in turn negatively impacts the
actual flight performance. To address this issue, we propose
a hierarchical optimization strategy that operates in two se-
quential stages. First, we solve a relaxed problem formulation

by temporarily removing z-axis angular velocity constraints
to circumvent local minima. This initial solution then serves
as a warm start for the second stage, where we perform a
fully constrained optimization refinement that reinstates all
dynamic constraints. This simple design improves overall
optimization performance while maintaining strict dynamic
constraints, thereby ensuring stunning flight performance as
detailed in Sec. V-C.

V. RESULTS

In this section, we present a series of experiments to vali-
date the key component designs of our method and evaluate
the performance in real-world scenarios. We demonstrate that

1) Explicit conditioning on target points and action seman-
tics enables improved editability of generated aerobatic
trajectories.

2) Historical state integration mitigates abrupt transitions
between motion primitives while preserving agility.

3) The proposed collision avoidance strategy significantly
improves the success rate of aerobatic flight in cluttered
environments.

4) The post-processing is essential for bridging discrete
planning to dynamically executable trajectories in real-
world deployment.

A. Implementation details

Our model is trained on a dataset comprising five distinct
aerobatic primitives (Fig. 4), where each primitive is gen-
erated by uniformly sampling target waypoints within the
spatial bounds of [0, 8]× [−6, 6]× [−1, 1] at a resolution of
1.0 meter. To model dynamic transitions between aerobatic
primitives, the primitives are generated with supplementary
trajectories by randomly sampling waypoints before and after
each primitive. The dataset is further augmented through
transformations in the global coordinate system, specifically
applying discrete z-axis rotations of 90°, 180°, 270° to each
of the aerobatic primitives. This symmetry utilization en-
ables omnidirectional maneuver generation while preserving
dynamic feasibility constraints, ultimately yielding 450,000
training primitives. The network architecture employs a
decoder-only transformer with 4 layers, 4 multi-head atten-
tion, and a latent dimension of 256. For the diffusion pro-
cess, we configure 30 denoising steps with an exponential-
noise scheduler. Each primitive sequence spans 6 seconds,
discretized into Na = 60 time steps at 0.1 s intervals. To
ensure transition continuity, the model incorporates 5-frame
historical observations as prior context.
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Fig. 5: Up: results of the aerobatic generation conditioned on the
“Power Loop” action (a) compared with action-agnostic model (b).
Down: box plot of the errors between the terminal of aerobatic
primitives and the given target, measured by distances.

B. Simulation Ablations

1) Target and Action Conditions: To validate the effec-
tiveness of target and action conditioning, we compare three
model variants: unconstrained generation, target-only con-
ditioning, and target-action joint conditioning. To evaluate
target conditioning, 5,000 aerobatic primitives are generated
with 50 randomly sampled target waypoints in each of the
following four scenarios:
• In-Distribution Sampling (IDS): Targets sampled

within the training distribution.
• Near Out-of-Distribution Sampling (N-OODS): Tar-

gets sampled outside but near the distribution boundary,
defined as [9, 12]× [−9, 9]× [−1, 1].

• Far Out-of-Distribution Sampling (F-OODS): Targets
sampled far outside the distribution, defined as [12, 16]×
[−12, 12]× [−1, 1].

• Unconditional Sampling (UncondS): Targets within
the distribution but generated by the unconstrained
model.

The distribution of distances between primitive terminal posi-
tions and target waypoints is visualized as box plots in Fig. 5.
Our analysis reveals that the target-only conditioning model
reliably guides trajectories to terminate near specified targets,
whereas the unconditioned one scatters endpoints randomly
due to the absence of target awareness. Surprisingly, the
model generalizes to targets near the distribution boundary,
demonstrating generalization ability.

To evaluate action conditioning, Fig. 5 visualizes 10
trajectories generated by the target-only and target-action
joint conditioning models with the same target. When given
“Power Loop” commands, the action-conditioned model pro-
duces maneuvers explicitly aligned with semantic intent (Fig.
5(a)), while the action-agnostic model generates inconsistent
maneuvers. The above ablation results suggest that target
conditioning provides explicit spatial guidance, while ac-
tion conditioning allows flexible trajectory shaping through

Fig. 6: Comparison between models with and without access to
previous primitives. The smoothness is measured with differences
of positions δp and Euler angles δθ between adjacent frames.

human-defined commands, enabling controllable generation
of task-oriented aerobatic maneuvers.

2) Transition Smoothness: To validate the necessity of
historical state conditioning for smooth dynamic transitions,
we compare two model variants: with and without access
to previous primitive states. Both models are tasked to
generate the aerobatic primitives from the same previous
trajectory. We quantify motion smoothness by computing
adjacent-frame differences in axis-aligned position δp and
Euler angles δθ. The results are shown in Fig. 6, the
model without previous observations failed to understand the
dynamic transition process, resulting in abrupt changes in
attitude (more than 1 rad) and position (more than 0.5 m)
that are infeasible in actual flight. In contrast, the model with
observations generates state-coherent maneuvers even during
aggressive transitions. Notably, it achieves smooth attitude
adjustments and continuous positional updates that align with
drone dynamics. This suggests that our model successfully
learns the underlying dynamics of drone flight.

3) Collision Avoidance: In this task, we test our method
in three different scenarios illustrated in Fig. 7. The factory
environment contains small, complex, and unstructured ob-
stacles, while the indoor industrial workshop is extremely
narrow with walls obstructing the space, presenting signifi-
cant challenges for our collision avoidance strategy. pt are
set to be collision-free to guide the aerobatic generation
traversing the complex environment and covering the whole
flying region. To obtain reliable results, we conduct ablation
tests on five different random seeds, where the batch size for
sampling in each inference is set to 500. In each ablation, we
compare our method with an UnGuided baseline (generating
samples without cost guidance) and an UnCheck baseline
(no coarse collision check implemented). The success rate
is measured by the proportion of collision-free trajectories
among all generated trajectories, where more precise colli-
sion checks are performed on both individual motion frames
and interpolated trajectories between consecutive frames. For



Fig. 7: The illustration of the drone executing aerobatic maneuvers in three different scenarios: (a) Narrow indoor industrial workshop,
(b) Complex outdoor industrial factory, and (c) random forest.

TABLE I: Success rate of different ablation configurations across environments.

Naero 1(%) 2(%) 3(%) 5(%) 10(%)

Random Forest
Ours 99.9± 0.1 99.8± 0.2 99.7± 0.3 99.7± 0.3 99.4± 0.6

UnGuided 51.8± 8.0 7.0± 3.0 3.1± 2.1 0.7± 0.7 0.0± 0.0
UnCheck 97.7± 2.1 85.4± 4.2 79.9± 5.7 72.0± 6.0 53.6± 9.4

Outdoor Factory
Ours 100.0± 0.0 99.9± 0.1 99.8± 0.2 99.5± 0.5 97.2± 2.8

UnGuided 57.5± 3.5 9.7± 0.9 5.8± 1.2 0.0± 0.0 0.0± 0.0
UnCheck 97.0± 1.0 82.5± 1.7 61.9± 3.3 23.9± 3.3 7.0± 1.6

Indoor Workshop
Ours 99.9± 0.1 100.0± 0.0 97.9± 2.1 98.4± 1.6 97.1± 2.9

UnGuided 65.7± 18.1 43.3± 20.3 15.4± 9.8 10.7± 8.5 0.4± 0.4
UnCheck 81.1± 12.3 62.9± 19.9 35.6± 17.0 26.± 16.5 2.6± 2.6

Fig. 8: Snapshot of a quadrotor executing aerobatic flight trajecto-
ries with five distinct maneuvers generated by the proposed method
in real-world.

each baseline, the median success rate and its fluctuation
range across all seeds are statistically evaluated as the
number of aerobatic maneuvers Naero increases.

Experimental results are summarized in Table I. Our
method demonstrates superior success rates across all sce-
narios compared to two baselines. The comparison reveals
that cost guidance contributes most significantly to collision
avoidance but cannot guarantee collision-free trajectories
in all cases. Specifically, trajectories generated from pre-
viously collided motion primitives may compromise subse-
quent collision-free generation. To address this limitation, the
coarse collision check module serves as a lightweight yet
effective safeguard, intercepting collision risks in the final
trajectory generation process.

C. The Real-World Experiment

To verify the real-world applicability of the proposed
method, the aerobatic trajectories containing five aerobatic
maneuvers are generated in a narrow and cluttered indoor
space with the size of 12 × 6 × 4 m3, where a drone exe-
cutes these trajectories under the NOKOV Motion Capture
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Fig. 9: Numerical analysis, δp demonstrates the position error along
axis X,Y, Z and total tracking error ∥δp∥. Ref. and Meas. denotes
the net thrust values ∥ft∥ obtained from planned trajectory and the
practical measured value calculated from an inertial measurement
unit (IMU) respectively. δθ indicates the rotational angle corre-
sponding to the quaternion that describes the error between desired
and actual attitude. ω is the angular velocity along the flight as
angular velocity X,Y, Z along the axis and norm ∥ω∥.

System1. The real-world performance is demonstrated in Fig.
8, with the numerical analysis provided in Fig. 9. As Fig. 9
indicates, the post-processing constrains the thrust and angu-
lar velocity to remain within feasible values, ensuring that the
low-level controllers can accurately track the control signals.
As a result, the tracking errors in both attitude and position
are small, with maximum errors of less than 15 degrees and
0.15 meter respectively. This highlights the critical role of
post-processing in practical aerobatic flight generation. Since

1https://www.nokov.com/



the discrete outputs of positional and attitude references from
the diffusion model would be challenging for the controller
to precisely track at the actuator-level commands, they would
lead to potential flight failures.

VI. CONCLUSION AND FUTURE WORK

In this work, we unlock the potential of diffusion models
for generating long-horizon, multi-maneuver aerobatic trajec-
tories. Our key contribution lies in learning aerobatic primi-
tives with specific conditioning and guidance from trajectory
costs, enabling automatic and editable generation. The post-
processing further ensures dynamic feasibility, making the
method directly deployable on physical drones in the real
world. However, the proposed method achieves interaction
with the environment primarily through passive obstacle
avoidance, which limits the ability to generate truly visually
impressive maneuvers that reflect a deep understanding of the
environment. Therefore, future work will focus on develop-
ing scene-aware aerobatic generation, where trajectories are
dynamically crafted in response to environmental features
(e.g., flips through narrow gaps). With a better understanding
of the environments, we believe that it can create more visu-
ally appealing maneuvers, blending agility with surroundings
in a way that enhances both performance and aesthetic value.
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