Let $D\subset\mathbb C^n$ be a bounded, strongly pseudoconvex domain whose
boundary $bD$ satisfies the minimal regularity condition of class $C^2$. A 2017
result of Lanzani \& Stein states that the Cauchy–Szeg\”{o} projection
$S_\omega$ defined with respect to a bounded, positive continuous multiple
$\omega$ of induced Lebesgue measure, {maps $L^p(bD, \omega)$ to $L^p(bD,
\omega)$ continuously} for any $1
Este artículo explora los viajes en el tiempo y sus implicaciones.
Descargar PDF:
2504.17608v1