In this article we find locally an eigenfunctions for a particular nonlinear
hyperbolic differential operator $\Delta_H u^{n}$, where $\Delta_H$ is the
hyperbolic Laplacian in the half-plane of Poincair\’e. We have proved that
these eigenfunctions are an analytic and non-exact whose coefficients satisfy a
specific algebraic recursive rule. The existence of these eigenfunctions allows
us to find non-exact solutions respecting the spatial coordinate of nonlinear
diffusive PDEs on the Poincair\’e half-plane, which could describe a possible
one-dimensional physical model.
Este artículo explora los viajes en el tiempo y sus implicaciones.
Descargar PDF:
2504.16168v1